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Chromatin accessibility during human 
first-trimester neurodevelopment
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Xiaofei Li4, Xiaoling He5, Roger A. Barker5, Erik Sundström4, Danielle Posthuma2 & 
Sten Linnarsson1 ✉

The human brain develops through a tightly organized cascade of patterning events, 
induced by transcription factor expression and changes in chromatin accessibility. 
Although gene expression across the developing brain has been described at single- 
cell resolution1, similar atlases of chromatin accessibility have been primarily focused 
on the forebrain2–4. Here we describe chromatin accessibility and paired gene 
expression across the entire developing human brain during the first trimester  
(6–13 weeks after conception). We defined 135 clusters and used multiomic 
measurements to link candidate cis-regulatory elements to gene expression.  
The number of accessible regions increased both with age and along neuronal 
differentiation. Using a convolutional neural network, we identified putative 
functional transcription factor-binding sites in enhancers characterizing neuronal 
subtypes. We applied this model to cis-regulatory elements linked to ESRRB to 
elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking 
disease-associated single nucleotide polymorphisms to cis-regulatory elements,  
we validated putative pathogenic mechanisms in several diseases and identified 
midbrain-derived GABAergic neurons as being the most vulnerable to major depressive 
disorder-related mutations. Our findings provide a more detailed view of key gene 
regulatory mechanisms underlying the emergence of brain cell types during the first 
trimester and a comprehensive reference for future studies related to human 
neurodevelopment.

Through a tightly organized cascade of patterning, specification and 
differentiation events, the human brain develops into a highly complex 
system capable of unique cognitive abilities beyond those of other 
mammals. The human brain consists of more than 1,000 distinct types 
of neuron, glia and non-neural cell types5. Single-cell RNA sequencing 
(scRNA-seq) has enabled parallel profiling of cell types and states, 
revealing both regional differences and subtle variation between 
closely related cell types6–8. Profiling the developing human brain has 
revealed differentiation trajectories leading to diverse neuronal and 
non-neuronal cell types1. During development, the functional architec-
ture of the genome is constantly in flux, with changes in the expression, 
binding and regulation of transcription factors (TFs) driving cell-fate 
decisions. The activities of regulatory elements in development are 
often both cell-type specific and brief. This dynamism complicates 
the interpretation of genome-wide association studies (GWAS) of com-
plex neurodevelopmental disorders, because identified loci—which  
predominantly fall in the non-coding DNA—are equally context  
specific9,10. Previous work has mapped the regulatory landscapes 
of the developing human brain in the second-trimester developing  
cortex2,3, whole embryos4, as well as organoids and induced pluripotent 
stem cell-derived model systems11. Here we focus on the chromatin 

landscape across the whole developing human brain during the first 
trimester, a pivotal time when the brain is patterned and many neural 
cell types acquire their core transcriptional identities.

Chromatin accessibility in the first trimester
We measured chromatin accessibility in the developing human brain 
from 6 to 13 post-conception weeks using the 10x Genomics single- 
cell assay of transposase-accessible chromatin using sequencing 
(scATAC-seq12; 18 specimens), a combined scATAC-seq and scRNA-seq 
assay (multiome; 3 specimens) or both (5 specimens; Fig. 1a,b). Each 
specimen was dissected into the main antero-posterior segments 
(telencephalon, diencephalon, mesencephalon, metencephalon and 
cerebellum; Fig. 1c). We collected relatively more nuclei from the brain 
stem region, which is highly complex but has been comparatively 
less studied than the forebrain2–4. After removing low-quality nuclei  
(Methods), we collected chromatin profiles from a total of 526,094 
nuclei and 76 unique biological samples (116 including technical rep-
licates; Extended Data Fig. 1 and Supplementary Table 1). A total of 
166,785 of these nuclei included gene expression profiles from mul-
tiome sequencing.
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To identify the feature set of accessible regions, we applied stratified 
peak calling on a rough clustering of the data using 20-kb genomic bins 
as temporary features. This was followed by a more robust clustering 
based on the accessible regions using latent semantic indexing and 
Louvain clustering. Batch correction was carried out using Harmony. 
A split-and-pool approach was then used to subcluster each cell class 
(radial glia or glioblast, oligodendrocyte progenitor cell, neuron, fibro-
blast, vascular and immune cells; Fig. 1d,e, Extended Data Fig. 2 and 
Supplementary Table 2), resulting in 135 clusters (Fig. 1f).

Following annotation of the accessible regions (Extended Data 
Fig. 3), about 36% of accessible regions were found to be intergenic, 

whereas 64% were in gene bodies or promoter regions with most being 
intronic (51%; Extended Data Fig. 3a). When taking only the distance 
to the transcription start site (TSS) into account, 87% of accessible 
regions were marked as distal (>2 kb from the TSS) and 19,494 acces-
sible regions (4.7%) overlapped with known TSS sites (Extended Data 
Fig. 3b). Additionally, 18% of elements overlapped with a transposable 
element, compared to 22% in similar data from the adult human brain13 
(Extended Data Fig. 3i).

Access to gene expression data also allowed for better identification 
of candidate cis-regulatory elements (cCREs) using a modified version 
of Cicero. By leveraging co-occurrence of chromatin accessibility and 

a e

f

Hindbrain
Pons

Medulla
Cerebellum

Brain (6 PCW)
Telencephalon
Diencephalon
Midbrain

R
eg

io
n

5 76 8 9 10 14131211

Age (PCW)
Neuron
Radial glia
Glioblast
Oligodendrocyte

Fibroblast
Immune
VascularC

la
ss

Telencephalon

Diencephalon

Midbrain

Hindbrain

Cerebellum

76 8 9 10 131211

C
el

l-
ty

p
e 

co
m

p
os

iti
on

Age (PCW)

0

RUNX1
ERG
FOXF2
FOXC1
EMX2
SOX9
SOX10
NFIB
DLX2
LHX6
MEIS2
LHX2
OTX2
TFAP2B
EBF1

TF
en

ric
hm

en
t 

 

A
cc

es
si

b
ili

ty
sc

or
e 

G
en

e
ex

p
re

ss
io

n

Age

Class

Region

Glioblasts

Glutamatergic GABAergic

Purkinje OPCs VLMCsRadial glia Pericytes Endothelia Immune

Trinaries 1
–log[P] 250 500 750 1,000

Inter-
neurons

AIF1
CLDN5
DCN
TNC
BCAN
OLIG1
RBFOX3
SLC17A6
GAD2

AIF1
CLDN5
DCN
TNC
BCAN
OLIG1
RBFOX3
SLC17A6
GAD2

A
cc

es
si

b
ili

ty
E

xp
re

ss
io

n Max.

0

% cells
33
66
100

Max.

0

% cells
33
66
100

dcb

Fig. 1 | Atlas overview. a, Overview of experimental design. Dissected samples 
were processed using scATAC-seq and single-cell multiome sequencing to  
infer gene-regulatory relationships throughout early development across the 
human brain. Illustration by Ivana Kapustova. b–d, t-SNE embedding plot  
of developmental ages (b), regional identities (c) and cell classes (d). PCW, 
post-conception week. e, Proportions of cell class by age and anatomical region. 
f, Top to bottom: per-cluster regional distribution of cell types (legend in c); 
distribution of ages (legend in b); assigned cell class (legend in d); aggregated 
gene activity by cluster based on region co-accessibility; gene expression of 

the same genes; TF motif enrichment (HOMER; one-sided; no multiple test 
correction) in the top 2,000 most enriched accessible regions per cluster  
(by Pearson residual enrichment). For the accessibility scores and gene 
expression, the dot size represents percentage of positive cells. For motif 
enrichment, the dot size represents the P value and colour indicates 
corresponding expression of the TF (trinarization score; a probabilistic score 
of whether a gene is expressed). OPCs, oligodendrocyte progenitor cells; 
VLMCs, vascular lepotomeningeal cells; max., maximum.
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gene expression, 106,991 predicted enhancer–gene interactions were 
identified for 16,267 genes and 59,069 accessible regions (henceforth, 
cCREs).

The dataset primarily consisted of nuclei from the neural lineage, 
showing strong regional identities, whereas non-neural clusters 
including endothelial cells, fibroblasts and microglia showed limited 
spatial identities (Extended Data Fig. 4a,b). Radial glia are the pro-
genitor cells that give rise to neurons, before transitioning to a more 
restricted glioblast identity that gives rise to oligodendrocyte progeni-
tor cells and astrocytes. The ratio of radial glia to glioblasts differed 
markedly between regions, with posterior regions being enriched for 
glioblasts whereas the more anterior regions showed primarily radial 
glia (Extended Data Fig. 4c; see Extended Data Fig. 4d–f for further 
information on the transition from radial glia to glioblasts). This differ-
ence in abundance is most likely the consequence of a later transition 
from radial glia to glioblasts1 in the anterior brain, allowing for a longer 
period of neurogenesis.

The multiome data allowed us to impute gene expression across 
the dataset, providing a direct comparison between gene expression, 
gene accessibility and the enrichment of TF-binding motifs. Notably, 
most marker genes had concordant expression and gene accessibil-
ity, with some exceptions such as RBFOX3, which is expressed in most 
glutamatergic neurons, but had low accessibility. Conversely, TNC was 
expressed only in glioblasts, but accessible in most neural cell types 
(Fig. 1f). We combined conventional motif discovery with gene expres-
sion for each cell type to limit identified TF motifs to those coinciding 
with TF expression, discarding unexpressed redundant motifs. The 
identified motifs included expected early neuronal (EBF1), pan-glial 
(SOX9) and oligodendrocyte lineage (SOX10) markers, as well as TFs 
with strong lineage-specific expression (for example, LHX6 and DLX2 
in interneurons derived from the medial ganglionic eminence and 
the lateral or caudal ganglionic eminence, EMX2 in telencephalic 
glutamatergic neurons and OTX2 in midbrain GABAergic neurons; 
Fig. 1f; additional TFs in Extended Data Fig. 5). Among non-neural 
cells, RUNX1—which is indispensable for microglia and haematopoietic 
stem cell development in mice14—was specific to immune cells (mainly 
microglia and border-associated macrophages). Similarly, FOXF2, 
which is required for pericyte development in mice, was specific to 
pericytes and endothelia, whereas FOXC1 was also active in meningeal 
fibroblasts and vascular lepotomeningeal cells and is required for the 
development of the meninges in mice15. These findings reinforce our 
confidence in the identity of the main clusters.

We observed a significant 10% increase in the number of acces-
sible regions along the neuronal differentiation trajectory, but no 
significant increase in the glioblast lineage (P < 0.05; Extended Data 
Fig. 4g). Indeed, in oligodendrocytes (part of the glioblast lineage), 
a shift towards heterochromatin has been observed in which large 
numbers of neuronal and later oligodendrocyte progenitor cell genes 
are silenced during differentiation16,17. Notably, the number of acces-
sible regions also increased with age across all classes except radial glia 
(P < 0.001; coefficient 3,206; s.e. 634; t = 5.06; 6 d.f.; linear regression), 
with the newly acquired accessible regions being strongly enriched for 
NFI-binding sites (Fig. 2a,b). Similarly, in the combined radial glia and 
glioblast classes, we found that more mature cell neighbourhoods, 
representing primarily glioblasts, were also most associated with 
NFI-binding sites (Milopy; Extended Data Fig. 4d–f). Together, these 
features represent a general maturation function for NFI factors across 
different neural progeny in the developing brain, where they have been 
described to promote a loss of stemness18.

Cis-regulatory element specificity
We next investigated how cell-type specificity compared between 
chromatin accessibility and gene expression. We used the variance 
between the cluster-level Pearson residuals as a measure of specificity. 

For most marker genes, gene expression was more specific than the 
sum of linked accessible regions (Extended Data Fig. 6a). By contrast, 
individual accessible marker regions were generally more cell-type 
specific than marker genes (Fig. 2c). As a consequence, we found 1,361 
marker genes, but 120,183 marker regions (Fig. 2d). Thus, cCREs dis-
covered here provide a rich source of regulatory elements with precise 
cell-type, cell-state and temporal resolution during brain development.

We next assessed the region specificity of accessible regions by com-
paring them to known functional central nervous system enhancers 
from the VISTA developmental enhancers database19. Nearly all of the 
VISTA enhancers overlapped with accessible regions in our data (96% 
overlapping feature set; 39% intergenic, 53% intronic, 4% promoter). 
Many VISTA enhancers are specific to the forebrain, midbrain or hind-
brain, and these showed a similar pattern of activity in the scATAC-seq 
dataset (Extended Data Fig. 3c). In many cases these enhancers (HS; 
Homo sapien sequence) were accessible only in more specific cellular 
lineages such as hindbrain glutamatergic neurons (HS161; Extended 
Data Fig. 3d), immature interneurons in the ganglionic eminences 
(HS702) or radial glia and GABAergic neurons in the midbrain (HS830).

To better understand the gene-regulatory programs underlying the 
dataset, we identified accessible region topics using pycisTopic, which 
uses a latent Dirichlet allocation model to identify groups of accessible 
regions that covary and are likely to represent biological programs. 
Each cluster was downsampled to 1,000 nuclei, and we fitted a model 
with 175 topics on the basis of the point where the log-likelihood estima-
tion and topic coherence scores reached saturation. A t-SNE plot of the 
accessible regions based on the topic scores showed distinct clusters 
linked to individual topics (Fig. 2e), representing distinct regulatory 
programmes. In contrast to distal elements, most TSS regions were 
not strongly linked to individual topics and clustered together on the 
embedding, indicating that they were less variable and represent con-
stitutively open promoters. A subset of promoter-proximal regions 
clustered separately, and represented two topics of pan-neuronal and 
glial CTCF-binding sites (Fig. 2f,g). CTCF is a key factor in the establish-
ment of genomic organization and CTCF deregulation has been shown 
to be involved in several neurodevelopmental disorders20.

We used the Genomic Regions Enrichment for Annotation Tool to 
link topics to known biological processes through the biological anno-
tation of nearby genes (Supplementary Table 3). For example, topics 
4 and 25 were enriched for genes relevant to GABAergic interneuron 
identity and oligodendrocyte differentiation, respectively. When scor-
ing the associated signatures (accessible regions in the topic related 
to the pathway), clear enrichments in the immature interneuron and 
oligodendrocyte precursor populations could be identified (Fig. 2h), 
respectively. As individual topics reflected only region accessibility 
and not gene expression, we identified enriched TF motifs for each 
topic and reduced them to a set of archetypal motifs (arche-motifs)21. 
This prevented the prioritization of false-positive motifs based on 
the similarity of the binding motif in TF families. Indeed, topic 4 was 
enriched for the MEIS (that is, MEIS2), HD/2 (that is, DLX2 or DLX5), 
Ebox/CAGATGG (that is, NEUROD1) and NFI (that is, NFIA, NFIB or NFIX) 
arche-motifs, whereas topic 25 was primarily enriched for the SOX/4 
(that is, SOX10) arche-motif (Fig. 2i).

In conclusion, we found that although accessibility gene scores were 
not as descriptive of cellular identify as gene expression, individual 
genomic regions were often highly specific and descriptive of cellular 
programs when analysed as coherent topics.

Enhancer logic in neuronal specification
Although topic modelling can be a useful tool to understand the activity 
of accessible regions, it does not offer any explanations as to the under-
lying logic that drives activity of regions between cellular lineages. To 
better understand the syntax of regulatory elements that differentiate 
neuronal lineages, we trained a convolutional neural network (CNN) 
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to predict cell-type identity on the basis of sequence composition22,23. 
We focused on five large, well-sampled clades: GABAergic neurons 
from the midbrain, glutamatergic neurons from the hindbrain and 
telencephalon, and granule and Purkinje neurons from the cerebellum. 
The model consisted of four convolutional layers followed by two dense 
layers and was able to predict the correct class with an average receiver 
operating characteristic area under curve (ROC AUC) score of 0.92 

across the classes (Fig. 3a,b). We determined the contribution of each 
nucleotide in the target sequences towards the prediction (contribu-
tion score) using DeepExplainer, and identified short motifs with high 
predictive power (seqlets) that recur in the target sequences by clus-
tering them using TF-MoDisCo. In this way, we discovered on average 
6 seqlets per accessible region, and 84% of the selected regions were 
associated with at least one seqlet (online data; GitHub repository). 
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and 9 samples >10 post-conception weeks). Box plots are centred on the 
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to the minima and maxima with a maximum of 1.5× the interquartile range; 
points beyond this range are plotted as outliers. b, TF motifs in regions that  
are differentially accessible early or late in the dataset (P < 0.05; Benjamini–
Hochberg-corrected one-sided Fisher exact test). c, Enrichment comparison 
between the gene expression and chromatin accessibility components of the 
dataset. A moving threshold was used to identify the fraction of features 
enriched in at least one cluster at different levels of stringency. d, Selection of 
marker gene expression and accessible marker regions. Accessible regions are 
limited to top 2,000 per cluster. OCRs, open chromatin regions. e, t-SNE plot in 
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plot shows constitutively active elements. f, t-SNE plots of topics 9 and 18. Both 
were enriched for CTCF-binding sites and grouped together on the t-SNE map. 
g, Enriched TF-binding motifs in topics 9 and 18 identified using HOMER 
(one-sided; no multiple test correction). h, t-SNE plots of nuclei showing 
enrichment of Gene Ontology signatures enriched in topics 4 and 25 (shown  
in e), identified using the Genomic Regions Enrichment for Annotation Tool.  
i, Arche-motif enrichment for a subset of topics. Dot size represents enrichment 
(identified using HOMER; one-sided; no multiple test correction). The arche- 
motifs contain binding sites for the following TFs (non-exhaustive)—HD/19: 
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FOXA1/2/FOXP2; SPI: SPI1/SPIB/C; ETS/1: ELF1/3/5/GABPA; NFY: NFYA/B/C; 
RFX/1: RFX1/2/3/4.
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We identified MEIS1 and ATOH1 as key regulators in both hindbrain 
glutamatergic neurons and cerebellar granule neurons even though 
ATOH1 expression could be detected only in a subset of the nuclei in 
those populations (Fig. 3c,d). Telencephalic glutamatergic neurons, 
in contrast, were very distinct from their posterior counterparts and 
were characterized by LHX2 and BHLHE22 motifs. For the GABAergic 
neurons, the GATA2 motif was observed only in midbrain neurons, 
whereas the OTX2 motif could also be seen in the Purkinje neurons, in 
which the gene is not expressed. This most likely represents DMBX1, 
a TF from the same family that is expressed at low levels in Purkinje 
progenitor cells both in this dataset and a previously published human 
neurodevelopment scRNA-seq dataset1 (Extended Data Fig. 7a). Both 
populations contained the motif for TFAP2B and LHX1 or LHX5, with 
LHX1 being only minimally expressed in the midbrain neurons.

Gene regulatory dynamics in Purkinje neurons
The CNN itself did not provide a temporal order of what stages of the 
cell trajectory these TFs are active in. To further investigate the tem-
poral relationship between TF expression and cCRE accessibility, we 
focused on the Purkinje lineage, which was well sampled in our dataset. 
Purkinje neurons are born in the ventricular zone of the hindbrain 
from PTF1A+ progenitors. From there they migrate into the developing 
cerebellum forming a characteristic layer of large, arborated neurons. 
We fitted a pseudotime trajectory to the 71,947 nuclei of the Purkinje 
lineage (Fig. 4a). We next applied DELAY, a different CNN method that 

exploits the temporal shift between the expression of TFs and their tar-
gets in single-cell lineages in combination with TF-binding-site informa-
tion derived from chromatin immunoprecipitation with sequencing to 
estimate gene regulatory networks. This revealed a network of 148 TFs 
co-regulating each other during Purkinje cell differentiation (Fig. 4b; 
network in Supplementary Table 4).

We used the inferred gene regulatory network to computationally 
model single nuclei using BoolODE, a tool that allows conversion of 
boolean TF networks to ordinary differential equation networks, reca-
pitulating in silico the expression dynamics of TFs along the trajectory 
(Fig. 4c,d). One of the central TFs in the network dynamics was ESRRB, 
an oestrogen-related nuclear receptor TF that in the cerebellum is 
expressed uniquely in Purkinje neurons. Expression of ESRRB was pre-
ceded by that of a series of other TFs (PTF1A, ASCL1 and NEUROG2 in 
the progenitor phase; NHLH1, NHLH2, TFAP2B, LHX5 and PAX2 in the 
neuroblast phase) and itself preceded the expression of later Purkinje 
markers such as PCP4. We identified nine cCREs linked to ESRRB, which 
showed two distinct activation patterns, early and late (Fig. 4e,f). Using 
the CNN we had previously trained to distinguish neuronal cell types, 
we then identified the nucleotides driving the Purkinje lineage iden-
tity in these two groups of cCREs. We found several TFAP2B-binding 
motifs in the early cCREs, and an increase of LHX5-binding motifs in 
the late cCREs (Fig. 4g; other cCRES in Extended Data Fig. 7b). Finally, 
once ESRRB was expressed, we observed increased accessibility at its 
downstream binding sites elsewhere in the genome (Fig. 4e, bottom). 
The activation of ESRRB can thus be seen as a two-step process in which 
the gene is first poised for expression by TFAP2B, after which LHX5 
binds the late cCREs and ESRRB expression is induced, leading even-
tually to the activation of ESRRB target genes. Our dataset provides 
rich resources—RNA expression for every TF (online data; CATlas), 
predicted cCREs and their activities (online data; CATlas) and predicted 
seqlets for every accessible region included in training the CNN (online 
data; GitHub)—to explore similar regulatory processes for many other 
genes and lineages.

Cell type specificity of GWAS polymorphisms
Mutations in non-coding gene-regulatory regions have been impli-
cated in numerous psychiatric disorders24. In many instances these 
non-coding regions are primarily active during a limited temporal 
window in selective cell types, which makes it difficult to identify the 
affected developmental processes25. Chromatin accessibility atlases 
with single-cell resolution spanning across several developmental 
time points can thus be an important tool in the identification of 
cell-type-specific vulnerabilities in complex trait disorders by provid-
ing increased selectivity2,13. To identify whether any of the cell types in 
our dataset were selectively vulnerable during development to muta-
tions associated with psychiatric disorders, we curated a large set of 
phenotypes from the UK Biobank26 as well as GWAS results from 11 
psychiatric phenotypes27–37. We used stratified linkage disequilibrium 
score regression to identify cell types for which the phenotype was 
enriched for single nucleotide polymorphisms (SNPs) in the corre-
sponding cell-type-specific accessible regions38. As all of the accessible 
regions in our dataset are of brain tissue during early development, we 
wanted to ensure that cell-type enrichments for a phenotype remained 
significant when conditioned on other life stages and tissues. We there-
fore added accessible regions identified throughout development4 
and adulthood39 to the background dataset to correct for our fetal 
neural-focused selection of features.

We found the expected associations for many of the non-neural cell 
types (Extended Data Fig. 8) and several significant enrichments for 
the psychiatric phenotypes in neuronal subtypes. After correcting 
for multiple testing (Bonferroni or false discovery rate; Fig. 5a), no 
significant enrichments were found for Tourette’s syndrome, obses-
sive compulsive disorder, bipolar disorder, alcohol use disorder or 
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Alzheimer’s disease, although we did see lower uncorrected P values 
(Extended Data Fig. 9a; 0.003 < P < 0.01; Methods) in all immune cells 
for Alzheimer’s disease compared to the neural cell types (all P > 0.1; 
Methods), which agrees with previous findings linking SNPs to immune 
genes40.

Several disorders showed associations that agree with known dis-
ease biology. Schizophrenia was associated with cortical interneurons 
derived from the medial ganglionic eminence and SATB2-expressing 
telencephalic excitatory neurons, supporting a cortical develop-
mental origin of the disease35. Attention-deficit hyperactivity disor-
der was associated with immature GABAergic neurons and Purkinje 
neuroblasts in the cerebellum, which might be related to the struc-
tural abnormalities in the cerebellum often observed in patients with 
attention-deficit hyperactivity disorder41. Anorexia nervosa was associ-
ated with interneurons derived from the lateral and caudal ganglionic 
eminences, in agreement with known eating-disorder associated SNPs 
in GABAergic receptors42. Autism spectrum disorder was associated 
with neuroblasts from the hindbrain, supporting potential involve-
ment of the brainstem in autism spectrum disorder43. For insomnia, 

TAL2-expressing GABAergic neurons in the midbrain were implicated, 
in line with the reported role of such neurons in the reticular formation 
of the ventral midbrain in wakefulness44,45.

The strongest associations, however, were those observed between 
midbrain-derived GABAergic neurons (several groups) and major 
depressive disorder (MDD), which we validated in a second cohort46 
(Supplementary Table 5; stratified linkage disequilibrium score regres-
sion; one-sided; Benjamini–Hochberg α = 3.37 × 10−5). The involvement 
of GABAergic neurons in MDD is well established47, but often attributed 
to cortical interneurons for which we found no significant associations. 
Midbrain GABAergic neurons, however, are also known to be involved 
in the regulation of reward behaviour and stress48, two systems known 
to be disrupted in MDD. Moreover, a subset of these SOX14-expressing 
midbrain-derived neurons also migrate to the thalamus and pons5, sug-
gesting a potentially broader effect from these mutations. The overlap 
between MDD and insomnia in TAL2-expressing midbrain GABAergic 
neurons is also notable as the two disorders have high comorbidity49.

To better understand the association between MDD and midbrain 
GABAergic neurons, we used cCREs to identify target genes in MDD. We 
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pooled the set of cCREs linked to each individual gene and used MAGMA 
to identify genes significantly associated with MDD. This yielded 25 
associated genes consisting mostly of known MDD genes such as NEGR1, 
BTN3A2, LRFN5 and SCN8A, as well as a number of histone genes located 
in the same locus as BTN3A2 (Fig. 5b; H2AC13, H2AC15, H2BC14, H2BC15 
and H4C13). Although many of these genes were expressed in midbrain 
GABAergic neurons, none was specific to these neurons. Conversely, 
accessible regions significantly associated with MDD were enriched 
for the MEIS2, OTX2 and GATA2-binding motifs, indicating a midbrain 
GABAergic identity (Fig. 5c and Extended Data Fig. 9b), with 29 of the 114 
significant MDD regions also containing CNN-predicted OTX2-binding 
sites and 46 containing predicted GATA2-binding sites. We also iden-
tified binding motifs from MYCN and PRDM10, which are expressed 
broadly in the developing brain, and NFIA, which had higher expression 
levels in glutamatergic neurons and glioblasts. Midbrain GABAergic 
neurons are unlikely to be the sole contributor to MDD aetiology, with 
the other cell types perhaps being more affected during adulthood or 
later stages of development. For instance, a similar methodology has 
been used to link intratelencephalic-projecting neurons in the adult 
brain to MDD13 and excitatory hippocampal neurons have also been 
linked to MDD50.

We next examined individual accessible regions and the predicted 
nucleotide contributions to the midbrain GABAergic fate (DeepEx-
plainer scores). For most MDD-associated SNPs, we did not find immedi-
ately interpretable overlaps, with only rs114155007 directly overlapping 
with the OTX2-binding site (Fig. 5d). We do not expect the effects of 
these SNPs in midbrain GABAergic neurons to be primarily mediated 
through the disruption of key cell-fate-defining TFs. In conclusion, 
these findings suggest that some broadly expressed genes associated 
with MDD contribute to disease when perturbed specifically in mid-
brain GABAergic neurons during early neurodevelopment.

Discussion
In this study we provide a high-resolution multiomic atlas of chro-
matin accessibility and gene expression in the first-trimester human 

brain. We identified more than 100,000 cell-type- and region-specific 
developmental accessible chromatin regions, inferred cCREs and pre-
dicted their regulatory syntax using CNN modelling. These resources 
enable analyses that span from developmental lineages to individual  
nucleotides—linking TFs to putative enhancers, and enhancers to their 
target genes—as exemplified here by our analysis of the regulation of 
ESRRB in the Purkinje neuron lineage.

Our dataset further enabled analysis of genetic association with 
disease. We found that most genes linked to MDD were not cell-type 
specific, yet the associated accessible regions showed enriched TF 
motifs consistent with midbrain GABAergic neurons. This suggests 
that dysregulation of those genes contributes to MDD only when the 
dysregulation affects specific midbrain cell types (but may cause other 
phenotypes when dysregulated in other cell types). The observation 
reinforces the fact that disease-associated alleles are contextual, and 
yield disease phenotypes mainly by their effect in specific cell types. 
Nonetheless, our GWAS analysis covered only a relatively early period of 
neurodevelopment and more complete datasets will be required to fully 
elucidate the genetics of complex diseases relative to brain cell types.

In conclusion, this study provides a rich resource for the study of 
early embryonic human neurodevelopment in the context of gene 
regulation and neurodevelopmental disease.
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Methods

Sample collection
All experiments in this study followed all relevant guidelines and regu-
lations, including the International Society for Stem Cell Research 
2021 guidelines. Human fetal samples were collected from routine 
termination of pregnancies at the Karolinska University Hospital, 
Addenbrooke’s Hospital in Cambridge and the Human Developmen-
tal Brain Resource following informed consent of the donors. The 
use of fetal samples collected from abortions was approved by the 
Swedish Ethical Review Authority and the National Board of Health 
and Welfare (Etikprövningsmyndigheten; DNR2020-02074). In the 
UK, approval from the National Research Ethics Committee East of 
England, Cambridge Central was obtained as well as approval from 
the North East – Newcastle & North Tyneside 1 Research Ethics Com-
mittee (Local Research Ethics Committee, 96/085; DNR2019-04595). 
The samples were dissected by a trained embryologist into the major 
developmental regions (telencephalon, diencephalon, mesencephalon 
and metencephalon) along the anterior–posterior axis. In addition, the 
cerebellum was separated from the metencephalon and when possible 
the metencephalon was divided into medulla oblongata and pons. 
Following the dissection, the samples were transferred to ice-cold 
Hibernate E medium (ThermoFisher, A1247601) and either shipped 
overnight at refrigerated temperature to Sweden or processed the same 
day when collected at the Karolinska University Hospital.

Some important limitations of this study must be considered. First, 
as these are clinical samples, the timing was variable and based on 
expert annotation rather than knowledge of the date of conception. 
Second, owing to damage incurred during collection, not all regions 
could be collected from every sample and had to be compensated for 
by collecting more samples. Third, as the samples were derived from 
several sources the time between collection and dissociation varied.

Statistics and reproducibility
Sample size was dictated by the availability of scarce early developmen-
tal human samples, and based on previous experience with similar stud-
ies in mice. No power calculations were carried out to determine sample 
size. The investigators were not blinded, as this was an exploratory 
study with anonymous untreated samples. The reproducibility of the 
dataset across specimens was assessed by the contribution of donors to 
each cluster (Extended Data Fig. 1d). The linkage disequilibrium score 
regression analysis linking MDD to midbrain GABAergic neurons was 
validated in a separate GWAS cohort (see below).

Nucleus isolation
Tissue was gently minced using a razor blade and incubated with the 
papain dissociation system (Worthington) following the manufacturer’s 
recommendations (including 200 U ml−1 DNAse), at 37 °C for 10 min. 
The suspension was then triturated using glass pipettes to dissolve 
any remaining chunks of tissue, before being filtered through a 30-μm 
filter (CellTrics). The cells were then washed with EBSS, concentrated 
(200g, 5 min) and counted using a haemocytometer, after which 1 × 106 
cells were pelleted (500g, 5 min) in a 2-ml LoBind Eppendorf tube and 
pelleted. The cell pellets were dissociated for 5 min on ice using 100 μl 
of dissociation mix (0.001% digitonin, 0.01% Non-idet P40, 1 mM dithio-
threitol, 1 U μl−1 RNAse inhibitor, 0.1% Tween-20, 1% BSA, 10 mM Tris-HCl, 
10 mM NaCl, 3 mM MgCl2). When only scATAC-seq was carried out, no 
RNAse inhibitor or dithiothreitol was added to the mix. Dissociation 
was halted by addition of 1 ml of wash buffer, after which nuclei were 
pelleted again (500g, 5 min) and resuspended in 1× nuclei buffer (10x 
Genomics) and recounted.

Single-cell sequencing
Libraries were generated using the 10x Genomics Chromium Controller 
and Single Cell ATAC or Single Cell Multiome ATAC + Gene Expression 

kits. Briefly, a targeted number of nuclei (5,000–10,000) was treated 
with a Tn5 transposase for 60 min at 37 °C to fragment the DNA and 
insert adapter sequences into open parts of the chromatin. The sus-
pension was then mixed with the provided barcoding PCR mix and a 
gel-bead emulsion was generated by co-encapsulating the suspension 
with barcoded beads in the 10x microfluidic chip and PCR with reverse 
transcription was carried out in a C1000 Touch thermal cycler (Bio-Rad) 
with one of two programs—ATAC: 12 cycles of (5 min at 72 °C, 30 s at 
98 °C, 10 s at 98 °C, 30 s at 59 °C, 1 min at 72 °C) and hold at 15 °C; or 
multiome: 45 min at 37 °C, 30 min at 25 °C and hold at 4 °C. For mul-
tiome samples, quenching agent was added to prevent the PCR with 
reverse transcription reaction from continuing. Following PCR, the 
DNA was isolated from the droplets and cleaned up with Cleanup mix 
and silane Dynabeads. Sample indices and P7 primers (Illumina) were 
ligated during library construction using the following PCR protocol: 
9 or 10 cycles of (45 s at 98 °C, 20 s at 98 °C, 30 s at 67 °C, 20 s at 72 °C) 
and 1 min at 72 °C before holding at 4 °C. SPRIselect beads were used for 
size selection of fragments to generate the final library. The fragment 
size distribution was analysed using the Bioanalyzer high-sensitivity 
chip to eliminate libraries that did not show the expected nuclear 
banding pattern. Libraries were then sequenced using the Illumina 
Nova-seq instrument using the recommended setting for paired-end 
sequencing, with the scATAC-seq and scATAC-seq (multiome) librar-
ies in separate flow cells as pooling of them is not recommended with 
a target of 100,000 read pairs per nucleus. The multiome scRNA-seq 
libraries were pooled with other 10x Genomics scRNA-seq v3.1 libraries.

10x data processing
All samples were demultiplexed and aligned to the human genome 
GRCh38.p13 Gencode v35 primary sequence assembly using either 
Cellranger-atac 2.0.0 or Cellranger-arc 2.0.0 for scATAC-seq and 
single-cell multiome, respectively. The RNA libraries from multiome 
samples were aligned as described previously1.

Chromograph pipeline
Chromograph is a new analysis pipeline for scATAC-seq data based on 
the key architecture of Cytograph 2 (ref. 8), which uses loom files as the 
underlying data format and is available for use in GitHub (https://github.
com/linnarsson-lab/chromograph). The results in this paper were gen-
erated using commit #9ae1434. In brief, chromograph provides tools to 
pool and split scATAC-seq data, carry out clustering, carry out balanced 
peak calling based on cluster partitions, and identify marker peaks and 
enriched TF motifs, and enables imputation of gene expression from 
limited multiome data. This dataset was analysed by first carrying out 
a primary analysis, and then manually splitting it into subsets based 
on marker genes. These subsets were then reanalysed, and the results 
were again pooled to generate a more fine-grained dataset than the 
primary analysis. The pybedtools and pybigwig packages were used to 
work with bed files and bigwig files, the loompy package was used to 
work with loom files, numpy was used to work with matrices and numba 
was used to speed up computations wherever possible. Scikit-learn and 
statsmodel were used for more complex calculations and pynndescent 
was used for fast nearest-neighbour computations.

scATAC-seq quality control
TSS enrichment was calculated using pycisTopic51 (TSS window 50 base 
pairs (bp), flanking window 1,000 bp) as we noticed discernible change 
in some of the samples after updating Cellranger-arc. Samples with a 
score below 5 were discarded. For the other samples, nucleus-by-bin 
matrices were generated at both 5-kb and 20-kb resolution with bins 
that overlapped with any of the ENCODE blacklist52 being removed. The 
5-kb nucleus-by-bin matrix was used for doublet detection using an 
adapted version of DoubletFinder. In brief, nuclei were co-embedded 
with 20% artificial doublets to determine a threshold to distinguish 
doublets from singlets on the basis of their nearest-neighbour network 

https://github.com/linnarsson-lab/chromograph
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and a doublet score was assigned on the basis of each nucleus’s local 
neighbourhood. For the multiome samples, the RNA-doublet score 
was used as it proved slightly more stable. Additionally, the sex of the 
sample was determined on the basis of the fraction of Y-chromosomal 
reads (>0.05% for male) as well TSS fraction. Nuclei that were not dou-
blets and had more than 5,000 and fewer than 100,000 fragments, more 
than 20% TSS fragments and more than 1,000 RNA unique molecular 
identifiers (UMIs), and at least 10% unspliced RNA UMIs were pooled to 
generate the main dataset (the final two filters apply only to multiome).

On average 27,599 high-quality fragments per nucleus were identi-
fied with a fragments in peaks ratio of 54%. High-quality nuclei were 
selected on the basis of the number of fragments and the fraction of 
fragments overlapping TSS as well as UMI count and splice ratio in 
multiome samples.

Preclustering and consensus peak calling
The feature set used to generate the nucleus-by-peak matrices is dynam-
ically derived from the data through peak calling. To do so, the 20-kb 
matrices were first joined and binarized, after which the top 20% of 
autosomal bins were selected with an upper threshold of 60% coverage 
across the dataset and decomposed using latent semantic indexing 
(LSI; more detailed description below). A k-nearest-neighbour graph 
was then constructed, and the data was clustered into broad clusters 
using Louvain clustering. Fragments from the nuclei belonging to each 
cluster were then aggregated and randomly split in two to generate 
two pseudobulk replicates per cluster. The pseudobulk aggregates 
were then downsampled to 25 million fragments and MACS253 was 
used to call peaks using the following parameters: callpeak -f BEDPE 
-g hs --nomodel --shift 100 --ext 200 --qval 5 × 10−2 -B –SPMR. Peaks 
were then extended to 400 bp using BEDtools and non-overlapping 
peaks between the pseudo-replicates were discarded. Next the identi-
fied peaks for all clusters were pooled and clustered using BEDtools 
cluster. For each cluster of peaks, the centre point was extracted and 
extended to 400 bp to generate the consensus peak set. Peaks overlap-
ping with the ENCODE blacklist were removed and the remainder were 
annotated using HOMER54 on the basis of Gencode v32, after which the 
nucleus-by-peak matrix was generated.

Latent semantic indexing
Decomposition was carried out in two steps. First the matrix was 
depth-normalized and infrequent features were upweighted by car-
rying out a term frequency–inverse document frequency transfor-
mation. The resulting non-binary matrix was then used to compute 
the principal components using an incremental principal component 
analysis. Initially 40 components were computed, but components that 
are not distributed significantly differently from their predecessor are 
discarded along with a depth-correlated component if present. Next 
the components were batch-corrected using Harmony to mediate 
chemistry and sample effects55.

Clustering, embedding and aggregation
The nucleus-by-peak matrix was decomposed using an iterative LSI, 
meaning that the data was decomposed and clustered in two rounds. 
First the top 20,000 features by total coverage from the autosomal 
chromosomes were used to carry out preclustering, after which 20,000 
autosomal features were selected again on the basis of the variance 
of their precluster-level enrichment for a second LSI. Batch effects 
were again corrected for using Harmony. The second LSI is then used 
to generate nearest-neighbour graphs and carry out Louvain cluster-
ing. A t-SNE map was then generated using an adapted version of ‘the 
art of using t-SNE’56 that better preserves global structure than native 
t-SNE. Additionally, a uniform manifold approximation and projec-
tion was generated using UMAP-learn57 with default settings. For both 
methods, Euclidean distances were used as a metric. Next all clusters 
were aggregated and a normalized counts per million layer was added.

The enrichment of individual peaks was calculated as a Pearson 
residual58. In brief, fragments were modelled as a negative binomial 
distribution for which the expected accessibility is the product of the 
total number of fragments per cluster (c) and the fraction of fragments 
per peak (g). The residuals can then be calculated as the difference 
between the observed (Χ) and expected ( ̂μ) accessibility corrected by 
the negative binomial variation (dispersion parameter fixed at 100 for 
all analysis in this paper). For each cluster, the top 2,000 peaks by Pear-
son residual were marked as marker peaks. The 20,000 peaks with 
most variance between Pearson residuals were used to calculate clus-
ter similarities and to generate the cluster dendrogram.
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Gene expression imputation and marker selection
Thirty-one percent of nuclei in the dataset were processed using the 
Single Cell Multiome ATAC + Gene Expression kit. This allows for the 
imputation of gene expression measurements in the ATAC-alone sam-
ples. To predict gene expression in the scATAC-seq nuclei, first all multi-
ome nuclei were scaled to 5,000 UMIs and an ‘anchor’ net was generated 
consisting of a directed graph of each scATAC-seq nucleus and their 10 
nearest multiome neighbours. Next the weights were scaled to sum to 
1 for each nucleus and the nearest-neighbour matrix was multiplied 
by the gene expression profiles of the multiome nuclei to generate 
predicted gene expression profiles for each scATAC-seq nucleus.

Trinarization scores and gene enrichment were calculated as 
defined previously2 with marker genes being selected on the basis 
of their enrichment. The trinarization scores were then used for 
auto-annotation using a set of punch cards specific to early human 
development1,4.

Subset analysis and pooling
The dataset was split on the basis of cluster-level marker expression 
into the following partitions: fibroblast (DCN and COL1A-expressing), 
immune (PTPRC-expressing), vascular (TAGLN-expressing or CLDN5 
and FLT1-expressing), oligodendrocyte progenitor cell (PDGFRA and 
OLIG1-expressing), radial glia or glioblast (HES1-expressing or BCAN 
and TNC-expressing) and neuronal (expressing any of INA, NHLH1, 
GAD2, SLC17A6 or SLC6A5) lineages. The subsets were reanalysed using 
the same pipeline described above. Clusters that contained fewer than 
10 multiome nuclei or for which less than 1% of the total cluster size was 
multiome nuclei were excluded as well as clear clusters of doublets. The 
neuronal lineage partition was split for a second round into GABAergic 
(GAD2), glutamatergic (SLC17A6, SLC17A7 or SLC17A8) and peptidergic 
lineages. All partitions were then pooled again and new summary sta-
tistics and embeddings were generated.

Motif enrichment
For every cluster, the 2,000 selected marker peaks were used as input 
to HOMER findMotifsGenome54 using GC-matched genomic sequences 
as background. The Hocomoco v11 Full collection was chosen as the 
TF-binding motifs to be tested. The naming convention was manu-
ally altered to reflect genes names in the gene expression analysis. 
This allowed the filtering of false positives by exclusion of nucleus–
motif combinations for which the corresponding TF was unlikely to be 
expressed (trinarization score < 0.5). Additionally, all TFs were assigned 
to a family on the basis of their arche-motif21.

Gene accessibility and cCREs
Gene-accessibility scores were computed using an adapted version 
of the cicero workflow59 using the python SKGGM package. First, the 
distance parameter was estimated by optimizing the calculation of the 



regularized covariance matrices for 100 random 500-kb regions. Next 
the distance-adjusted covariance for each accessible region with each 
TSS site was calculated in 500-kb bins with a 250-kb overlap. Most pairs 
are sampled twice and pairs with inconsistent covariances are discarded 
(about 5%). The co-accessibility cutoff was set empirically by testing the 
number of subnetworks over varying cutoff thresholds. Gene activity 
scores were then calculated by multiplying the peak-by-nucleus and 
region-to-TSS covariance matrices, normalizing against size factors 
derived from a linear regression model and pooling across the 25 near-
est neighbours. Similarly to the region–TSS covariance matrix, cCREs 
were identified by calculating the region–gene expression covariance.

Identification of total accessible regions by sample
To identify general trends in opening and closing of chromatin, all 
fragments from individual cell classes and biological samples were 
pooled together and MACS2 was used to call peaks per class per sam-
ple. A one-sided Fisher exact test (using the fisher python package) 
with Benjamini–Hochberg correction was used to identify differential 
regions. A generalized linear model was used to estimate the influence 
of age on the number of accessible regions.

VISTA enhancer overlap
CNS enhancers (from the VISTA database19) were downloaded and lifted 
over to GRCh38 using UCSC liftOver, excluding any that could not 
be confidently lifted over, resulting in 620 enhancers, of which 596 
overlapped with our peak set. The enhancers that were specific to the 
forebrain, midbrain and hindbrain according to the original authors 
were isolated (total of 159, 75 and 78, respectively), the correspond-
ing peaks in the dataset were identified and the brain region with the 
highest accessibility was identified, after which the Jaccard similarity 
was calculated.

PycisTopic modelling
The full dataset was downsampled to a maximum of 10,000 nuclei 
per cluster to reduce computational burden and prevent over- 
representation. The number of topics was varied from 25 to 500 at 
intervals of 25, running for 50 iterations with an α of 50 divided by the 
number of topics and a β of 0.1. The most stable model (175 topics) 
was selected on the basis of topic coherence and log-likelihood in the 
last iteration. The region-topic scores were normalized so that they 
summed to 1 for every nucleus and a t-SNE map was generated for the 
regions and binarized topic lists were generated by assigning each 
region to the topic that it scored the highest on. Next each topic was 
used as input for HOMER with the Hocomoco TFs and the results were 
reduced to the highest-scoring representative of each arche-motif 
group. The binarized topics were also used as input for Genomic 
Regions Enrichment for Annotation Tool analysis60 to identify Gene 
Ontology terms describing each topic. For some selected terms, the 
associated regions (in the topic) were used to calculate an enrichment 
score using the signature_enrichment function of pycisTopic51.

Enhancer CNN
Nuclei from all clusters annotated as Purkinje, midbrain GABA, cere
bellum granular neuroprogenitor, hindbrain glutamatergic or telen
cephalic glutamatergic were grouped into five superclusters and 
enrichment between the clusters was recalculated and peaks were 
included for learning only if the log-fold change with the second high-
est accessibility was more than 1. One-hot-encoded sequences (401 bp) 
were used as input to a CNN trained as a classification model using 
pyTorch. The network consists of 4 convolutional layers of 256, 60, 
60 and 120 nodes and kernel sizes 7, 3, 5 and 3, respectively, and each 
layer was followed by batch normalization, RELU activation and maxi-
mum pooling. There were then 2 dense layers of 256 nodes with batch 
normalization, RELU activation and a dropout rate of 0.4. A softmax 
normalization was applied to the final output layer and cross-entropy 

loss was used as the loss function with label smoothing set to 0.1. The 
model was trained using an Adam optimizer with a learning rate of 0.01. 
The model was trained for 26 epochs.

Contribution scores for each sequence were calculated using Deep-
LiftShap’s (deepExplainer61) attribute function using the mean of the 
input sequence shuffled 100 times as background. The hypothetical 
score was calculated for each possible nucleotide in the sequence by 
multiplying the contribution by the background-corrected input62. 
TF-MoDisCo62 was then applied to all of the sequences enriched in 
a cluster with a flanking size of 5 bp, a sliding window of 15 bp and  
a minimum cluster size of 30 seqlets.

Pseudotime, generalized additive models and ChromVAR
For analysis of the Purkinje lineage, all clusters labelled ‘Purkinje’ and 
the PTF1A-expressing cluster of ventricular zone progenitors were iso-
lated and a new t-SNE map was generated. pySlingshot was then used to 
calculate the pseudotime. pyGAM was used to fit gene and cCRE trends 
to the Purkinje neuron lineage with gene expression being modelled 
using a Poisson generalized additive model and cCRE accessibility using 
a linear generalized additive model. ChromVAR was applied using the 
JASPAR human PWM (human_pwms_v2) to compute motif variability.

Supervised inference and stochastic simulation of Purkinje gene 
regulatory network
We used DELAY63 (https://github.com/calebclayreagor/DELAY) to infer 
the Purkinje gene regulatory network from gene-accessibility dynam-
ics in pseudotime and then carried out stochastic simulations to verify 
the putative network’s gene-expression dynamics. First, we retrained 
DELAY on a large scATAC-seq dataset of plasma B cell differentiation 
data64 with ground-truth data from chromatin immunoprecipitation 
with sequencing65 to prepare the neural network to infer the Purkinje 
gene regulatory network from tens of thousands of single nuclei. 
Then, we fine-tuned DELAY on the Purkinje developmental trajectory 
using ground-truth targets of a cerebellar ataxia-related gene, ataxin 7 
(ref. 66). For the final gene regulatory network inference, we used the 
expression-linked, log-normalized gene-linked peak counts from all 
TFs that were differentially expressed in at least 1% of Purkinje nuclei 
across pseudotime (Supplementary Tables 6 and 7; TradeSeq; Wald 
test; two-sided). We then used BoolODE67 to simulate the expression 
of each gene in the network given its top eight most likely regulators.

GWAS enrichment
Accessible region locations were lifted over to GRCh37. Features were 
binarized on the cluster level with a Pearson residual threshold of 10. 
Cluster heritability was calculated using linkage disequilibrium score 
regression38. As a background, we used the merger of our feature set 
with the features from development4 and adulthood39. Only SNPs 
from hapmap3 were included to reduce imputation errors. In total 
we tested 325 phenotypes from the UK Biobank26 and 11 psychiatric 
phenotypes27–37. All used UK Biobank phenotypes had non-zero her-
itability estimates (z score > 4). Results for UK Biobank phenotype 
enrichments were corrected for the number of cell types using FDR 
or Benjamini–Hochberg procedures. For the psychiatric enrichments, 
FDR and Bonferroni corrections were applied for the number of cell 
types and tests (α = 3.37 × 10−5, 135 × 11 tests).

Two different MAGMA68 tests were conducted with default settings. 
First, the cCREs linked to genes were annotated to genes in a custom 
MAGMA annotation file. A MAGMA gene analysis was used to assess 
which genes were affected in MDD. Next, MAGMA gene analyses were 
conducted for ADHD, anorexia, autism spectrum disorder, MDD and 
schizophrenia, on a custom annotation file in which individual acces-
sible regions were treated like individual genes to identify specific 
deregulated elements. Accessible regions passing Benjamini–Hochberg 
correction were then used as input for HOMER with the full vertebrate 
motif reference.

https://github.com/calebclayreagor/DELAY
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data are available through from the European Genome 
Phenome Archive (EGAS00001007472). To facilitate ease of use of the 
resource, the chromatin accessibility and gene expression data are 
browsable through the CATlas web browser (http://catlas.org/human-
braindev) and the CNN and anonymized cell-ranger outputs can be 
downloaded through GitHub at https://github.com/linnarsson-lab/
fetal_brain_multiomics69.

Code availability
All code used to reproduce the figures is available through GitHub at 
https://github.com/linnarsson-lab/fetal_brain_multiomics69. Code 
to reanalyse the data is available through GitHub at https://github.
com/linnarsson-lab/chromograph69. The DELAY models trained on 
scATAC-seq data are available through GitHub at https://github.com/
calebclayreagor/DELAY69.
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Extended Data Fig. 1 | Quality control. A) Collected nuclei counts per 
post-conceptual week (p.c.w.) and region. B) Distribution of fragment count 
(log10) and fraction of fragments in TSS for collected barcodes. C) t-SNE 
embedding generated from Latent Semantic Indexing without Harmony 
sample correction (top) and with sample correction (bottom). D) fragment size 
distribution per sample. Top plot shows log scaled density. E) TSS enrichment 
per sample. 5 was used as a minimum sample level cut-off. F) Distribution of TSS 
enrichment across nuclei per sample. n = 26 biologically independent samples 

(number of cells per sample in H). Box plots within the violins are centered on 
the median, the box represents the first to third quartiles and the whiskers 
extend to the minima/maxima with a maximum of 1.5x the interquartile range, 
points beyond this range are plotted as outliers. G) Fragment count (log10) 
across nuclei per sample. n = 26 biologically independent samples. Boxplot 
representations follow the same rules as F. H) Number of nuclei collected per 
sample, separated by method.
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Extended Data Fig. 2 | Analysis pipeline. Steps taken to analyze single nucleus 
data. Following quality control the dataset is clustered using genomic bins as 
features. Peak calling is then performed per cluster and a nucleus-by-peak 
matrix is generated and nuclei are clustered. The available multiome nuclei are 
then used to impute gene expression across the dataset. Downstream analysis 

is performed including motif enrichment analysis and region-to-gene linkage 
before splitting the dataset by cell class. Each subset is reclustered and 
reanalyzed separately before being pooled together again using the subset 
clusters and a final analysis round is conducted.
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Extended Data Fig. 3 | Annotation of accessible chromatin regions.  
A) Distribution of functional region annotations in relation to nearby genes.  
B) Distribution of accessible region distance to nearest TSS. C) Jaccard 
similarity between region-specific enhancers from the VISTA database and 
accessible regions identified in corresponding regions of the dataset.  
D) Spatially restricted accessibility of developmental enhancers overlapping 
with known enhancer sequences from the VISTA enhancer-database19 shown  
by LacZ staining. From left to right, active in Hindbrain neurons and glioblasts, 
immature interneurons in the Ganglionic Eminence and Midbrain radial glia 
and inhibitory neurons. E) Mean DNA conservation of proximal (<2,000 bp 
from TSS) and distal elements based on the PhastCon 100-way. F) Number of 
accessible regions that overlap with the ENCODE cCRE and DNAse hypersensitive 
site reference datasets. Additionally the number of elements that overlap  
with the human enhancer atlas fetal brain dataset. Red shows regions not in  
the reference dataset, gray are overlapping regions. G) Overlap between the 

identified accessible regions in this study (development) and a comparable 
study in the adult human brain (Li et al., 2022 under revision). The second panel 
shows the overlap between variable regions in the two datasets (pearson 
residuals > 10 in at least one cluster). Interestingly, a large number of regions 
that are variable in development seem to be invariable in adult. H) Overlap with 
two sets of evolutionarily accelerated regions, with overlap in blue and regions 
from the comparison list not in our dataset in gray. Human accelerated regions 
(HARs) are regions with increased rates of nucleotide substitution that are 
conserved in other species, while human ancestor quickly evolved regions 
(HAQERs) are regions that diverged rapidly between humans and chimpanzees 
that were not previously constrained. I) Overlap with annotated transposable 
elements. J) Comparison of transposable elements in early vs. late nuclei across 
the dataset. K) Heatmap of region topics across the 135,00 nuclei included  
in the topic modeling. Bottom images in d reproduced from ref. 19, https://
enhancer.lbl.gov.
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Extended Data Fig. 4 | Regionalization of cell types. A) Annotation of region 
of origin for each cell class. While clear effects of regionalization can be seen  
in the neural lineage, the non-neuronal nuclei are more similar across brain 
regions. B) Expression of canonical markers used to annotate radial glia, 
glioblasts, the roof plate and the floor plate. C) Distribution of radial glia and 
glioblasts between brain regions. D) tSNE showing change in abundance of 
early vs. late nuclei in local neighborhoods among radial glia and glioblasts.  
E) Volcano plot of change in abundance of early vs. late nuclei in local 
neighborhoods among radial glia and glioblasts as identified using milopy70.  
F) Enriched transcription factor motifs (HOMER; one-sided; no multiple test 
correction) among the 2,000 most enriched accessible regions between early 
and late neighborhoods (by pearson residual). G) Boxplot showing the number 

of accessible regions identified in different cell types. Neuroblasts and 
neurons have significantly more accessible regions than radial glia (two-sided 
independent t-test; neuroblast: t = 3.6; CI = 8,343-30,358; Cohen’s D = 1.13; 38 
DF; p = 0.001; neurons: t = 2.5; CI: 2,485-22,706; Cohen’s D = 0.77; 43 DF; 
p = 0.015). n = 26 biologically independent samples, the number of cells in each 
class were 57,210, 160,928, 69,716, 141,189, 83,800 and 13,251 respectively. Box 
plots are centered on the median, the box represents the first to third quartiles 
and the whiskers extend to the minima/maxima with a maximum of 1.5x the 
interquartile range, points beyond this range are plotted as outliers. H) Linear 
regression fitted to age to predict number of accessible regions using the cell 
types as covariates (t-test; two-sided; p-values in figure).



Extended Data Fig. 5 | Cluster annotation. A) Extended motif enrichment 
plot of all clusters (HOMER; one-sided; no multiple test correction). Dot size 
represents -log p-value of the motif enrichment. The color represents 

expression level. B) Correlation between cell types based on marker peak 
accessibility. The colorbar at the top represents the assigned cell class.
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Extended Data Fig. 6 | Gene expression imputation. A) Comparison between 
cell type specificity of marker genes in gene expression and gene accessibility 
space. Top 5 enriched genes were selected for each cluster in both modalities 
and the union was used for plotting. B) Correlation between expression and 
accessibility of each selected marker gene. C) Maximum log fold change of 

marker versus median expression. The genes with RNA enrichment of zero  
are not expressed. D) Distribution of scATAC-seq and multiomic nuclei across 
the tSNE embedding. E) Leave-one-out validation of imputed expression. 
Predicted versus true expression of CA8. F) Top 100,000 gene-cluster 
expression pairs true vs imputed expression pairs.



Extended Data Fig. 7 | Additional figures related to TF CNN model. A) Expression of DMBX1 in this dataset and Braun et al.1, B) Additional cCREs upstream  
of ESRRB.
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Extended Data Fig. 8 | Enrichment of selected UK Biobank traits in 
neurodevelopmental cell types. Each trait is assigned to a group of related 
traits (Immune, blood pressure, cognitive, hayfever and psychiatric) and LDSC 

analysis (one-sided) is used to identify susceptible cell types. Nuclei are 
ordered by major cell class. Most traits show the expected enrichment pattern.



Extended Data Fig. 9 | Enrichment of selected psychiatric phenotypes in 
neurodevelopmental cell types. A) Nuclei are ordered by major cell class and 
LDSC analysis (one-sided) is used to identify susceptible cell types. While not 
reaching significance after multiple test correction, an increased association 

between Alzheimer’s disease and immune cells can be observed in opposition to 
the other traits which primarily are associated with neuronal cells. B) Expression 
of transcription factors identified in Fig. 5c.
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