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The human brain develops through atightly organized cascade of patterning events,
induced by transcription factor expression and changes in chromatin accessibility.
Although gene expression across the developing brain has been described at single-

cellresolution’, similar atlases of chromatin accessibility have been primarily focused
onthe forebrain®*. Here we describe chromatin accessibility and paired gene
expression across the entire developing human brain during the first trimester

(6-13 weeks after conception). We defined 135 clusters and used multiomic
measurements to link candidate cis-regulatory elements to gene expression.

The number of accessible regions increased both with age and along neuronal
differentiation. Using a convolutional neural network, we identified putative
functional transcription factor-binding sites in enhancers characterizing neuronal
subtypes. We applied this model to cis-regulatory elements linked to ESRRB to
elucidateits activation mechanism in the Purkinje cell lineage. Finally, by linking
disease-associated single nucleotide polymorphisms to cis-regulatory elements,

we validated putative pathogenic mechanisms in several diseases and identified
midbrain-derived GABAergic neurons as being the most vulnerable to major depressive
disorder-related mutations. Our findings provide a more detailed view of key gene
regulatory mechanisms underlying the emergence of brain cell types during the first
trimester and acomprehensive reference for future studies related to human

neurodevelopment.

Through a tightly organized cascade of patterning, specification and
differentiation events, the human brain developsinto a highly complex
system capable of unique cognitive abilities beyond those of other
mammals. The human brain consists of more than 1,000 distinct types
of neuron, gliaand non-neural cell types’. Single-cell RNA sequencing
(scRNA-seq) has enabled parallel profiling of cell types and states,
revealing both regional differences and subtle variation between
closely related cell types® 3. Profiling the developing humanbrain has
revealed differentiation trajectories leading to diverse neuronal and
non-neuronal celltypes'. During development, the functional architec-
ture of the genomeis constantly in flux, with changesin the expression,
binding and regulation of transcription factors (TFs) driving cell-fate
decisions. The activities of regulatory elements in development are
often both cell-type specific and brief. This dynamism complicates
theinterpretation of genome-wide association studies (GWAS) of com-
plex neurodevelopmental disorders, because identified loci—which
predominantly fall in the non-coding DNA—are equally context
specific®. Previous work has mapped the regulatory landscapes
of the developing human brain in the second-trimester developing
cortex>*, whole embryos*,as well as organoids andinduced pluripotent
stem cell-derived model systems™. Here we focus on the chromatin

landscape across the whole developing human brain during the first
trimester, a pivotal time when the brain is patterned and many neural
cell types acquire their core transcriptional identities.

Chromatin accessibility in the first trimester

We measured chromatin accessibility in the developing human brain
from 6 to 13 post-conception weeks using the 10x Genomics single-
cell assay of transposase-accessible chromatin using sequencing
(ScATAC-seq'?; 18 specimens), acombined scATAC-seq and scRNA-seq
assay (multiome; 3 specimens) or both (5 specimens; Fig. 1a,b). Each
specimen was dissected into the main antero-posterior segments
(telencephalon, diencephalon, mesencephalon, metencephalon and
cerebellum; Fig.1c). We collected relatively more nuclei from the brain
stem region, which is highly complex but has been comparatively
less studied than the forebrain®*. After removing low-quality nuclei
(Methods), we collected chromatin profiles from a total of 526,094
nuclei and 76 unique biological samples (116 including technical rep-
licates; Extended Data Fig. 1and Supplementary Table 1). A total of
166,785 of these nuclei included gene expression profiles from mul-
tiome sequencing.
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Fig.1|Atlasoverview. a, Overview of experimental design. Dissected samples
were processed using scATAC-seq and single-cell multiome sequencing to

infer gene-regulatory relationships throughout early developmentacross the
human brain. lllustration by Ivana Kapustova. b-d, t-SNE embedding plot

of developmental ages (b), regional identities (c) and cell classes (d). PCW,
post-conception week. e, Proportions of cell class by age and anatomical region.
f, Top to bottom: per-cluster regional distribution of cell types (legend in c);
distribution of ages (legend inb); assigned cell class (legend ind); aggregated
geneactivity by cluster based on region co-accessibility; gene expression of

Toidentify the feature set of accessible regions, we applied stratified
peak calling on arough clustering of the data using 20-kb genomic bins
as temporary features. This was followed by a more robust clustering
based on the accessible regions using latent semantic indexing and
Louvain clustering. Batch correction was carried out using Harmony.
A split-and-pool approach was then used to subcluster each cell class
(radialglia or glioblast, oligodendrocyte progenitor cell, neuron, fibro-
blast, vascular and immune cells; Fig. 1d,e, Extended Data Fig. 2 and
Supplementary Table 2), resulting in 135 clusters (Fig. 1f).

Following annotation of the accessible regions (Extended Data
Fig. 3), about 36% of accessible regions were found to be intergenic,
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thesame genes; TF motif enrichment (HOMER; one-sided; no multiple test
correction) inthe top 2,000 most enriched accessible regions per cluster

(by Pearsonresidual enrichment). For the accessibility scores and gene
expression, the dot size represents percentage of positive cells. For motif
enrichment, the dot size represents the Pvalue and colourindicates
corresponding expression ofthe TF (trinarization score; a probabilistic score
of whether ageneisexpressed). OPCs, oligodendrocyte progenitor cells;
VLMC s, vascular lepotomeningeal cells; max., maximum.

whereas 64% were in gene bodies or promoter regions with most being
intronic (51%; Extended Data Fig. 3a). When taking only the distance
to the transcription start site (TSS) into account, 87% of accessible
regions were marked as distal (>2 kb from the TSS) and 19,494 acces-
sible regions (4.7%) overlapped with known TSS sites (Extended Data
Fig.3b). Additionally, 18% of elements overlapped with atransposable
element, compared to 22% in similar data from the adult humanbrain®
(Extended Data Fig. 3i).

Accessto gene expression data also allowed for better identification
of candidate cis-regulatory elements (cCREs) using amodified version
of Cicero. By leveraging co-occurrence of chromatin accessibility and



geneexpression, 106,991 predicted enhancer-gene interactions were
identified for 16,267 genes and 59,069 accessible regions (henceforth,
cCREs).

The dataset primarily consisted of nuclei from the neural lineage,
showing strong regional identities, whereas non-neural clusters
including endothelial cells, fibroblasts and microglia showed limited
spatial identities (Extended Data Fig. 4a,b). Radial glia are the pro-
genitor cells that give rise to neurons, before transitioning to a more
restricted glioblastidentity that givesrise to oligodendrocyte progeni-
tor cells and astrocytes. The ratio of radial glia to glioblasts differed
markedly between regions, with posterior regions being enriched for
glioblasts whereas the more anterior regions showed primarily radial
glia (Extended Data Fig. 4c; see Extended Data Fig. 4d-f for further
information onthetransition fromradial glia to glioblasts). This differ-
enceinabundanceis most likely the consequence of alater transition
fromradial gliato glioblasts'in the anterior brain, allowing for alonger
period of neurogenesis.

The multiome data allowed us to impute gene expression across
the dataset, providing adirect comparison between gene expression,
gene accessibility and the enrichment of TF-binding motifs. Notably,
most marker genes had concordant expression and gene accessibil-
ity, with some exceptions such as RBFOX3, which is expressed in most
glutamatergic neurons, but had low accessibility. Conversely, TNCwas
expressed only in glioblasts, but accessible in most neural cell types
(Fig.1f). We combined conventional motif discovery with gene expres-
sionforeachcelltypeto limitidentified TF motifs to those coinciding
with TF expression, discarding unexpressed redundant motifs. The
identified motifs included expected early neuronal (EBF1), pan-glial
(SOX9) and oligodendrocyte lineage (SOX10) markers, as well as TFs
with strong lineage-specific expression (for example, LHX6 and DLX2
ininterneurons derived from the medial ganglionic eminence and
the lateral or caudal ganglionic eminence, EMX2 in telencephalic
glutamatergic neurons and OTX2 in midbrain GABAergic neurons;
Fig. 1f; additional TFs in Extended Data Fig. 5). Among non-neural
cells, RUNX1—-whichisindispensable for microgliaand haematopoietic
stem cell development in mice'*—was specific toimmune cells (mainly
microglia and border-associated macrophages). Similarly, FOXF2,
which is required for pericyte development in mice, was specific to
pericytes and endothelia, whereas FOXC1was also active in meningeal
fibroblasts and vascular lepotomeningeal cells and is required for the
development of the meninges in mice®. These findings reinforce our
confidencein the identity of the main clusters.

We observed a significant 10% increase in the number of acces-
sible regions along the neuronal differentiation trajectory, but no
significant increase in the glioblast lineage (P < 0.05; Extended Data
Fig. 4g). Indeed, in oligodendrocytes (part of the glioblast lineage),
a shift towards heterochromatin has been observed in which large
numbersof neuronal and later oligodendrocyte progenitor cell genes
are silenced during differentiation'". Notably, the number of acces-
sibleregions also increased with age across all classes except radial glia
(P<0.001; coefficient 3,206; s.e. 634; t = 5.06; 6 d.f; linear regression),
with the newly acquired accessible regions being strongly enriched for
NFI-binding sites (Fig.2a,b). Similarly, in the combined radial gliaand
glioblast classes, we found that more mature cell neighbourhoods,
representing primarily glioblasts, were also most associated with
NFI-binding sites (Milopy; Extended Data Fig. 4d-f). Together, these
featuresrepresentageneral maturation function for NFIfactors across
different neural progeny in the developing brain, where they have been
described to promote a loss of stemness®.

Cis-regulatory element specificity

We next investigated how cell-type specificity compared between
chromatin accessibility and gene expression. We used the variance
between the cluster-level Pearson residuals as ameasure of specificity.

For most marker genes, gene expression was more specific than the
sum of linked accessible regions (Extended Data Fig. 6a). By contrast,
individual accessible marker regions were generally more cell-type
specific than marker genes (Fig. 2c). As aconsequence, we found 1,361
marker genes, but 120,183 marker regions (Fig. 2d). Thus, cCREs dis-
covered here provide arich source of regulatory elements with precise
cell-type, cell-state and temporal resolution during brain development.

We next assessed the region specificity of accessible regions by com-
paring them to known functional central nervous system enhancers
from the VISTA developmental enhancers database®. Nearly all of the
VISTA enhancers overlapped with accessible regions in our data (96%
overlapping feature set; 39% intergenic, 53% intronic, 4% promoter).
Many VISTA enhancers are specific to the forebrain, midbrain or hind-
brain, and these showed asimilar pattern of activity in the scATAC-seq
dataset (Extended Data Fig. 3c). In many cases these enhancers (HS;
Homo sapien sequence) were accessible only in more specific cellular
lineages such as hindbrain glutamatergic neurons (HS161; Extended
Data Fig. 3d), immature interneurons in the ganglionic eminences
(HS702) orradial gliaand GABAergic neurons in the midbrain (HS830).

Tobetter understand the gene-regulatory programs underlying the
dataset, we identified accessible region topics using pycisTopic, which
usesalatent Dirichlet allocation model to identify groups of accessible
regions that covary and are likely to represent biological programs.
Each cluster was downsampled to 1,000 nuclei, and we fitted amodel
with175topics on the basis of the point where the log-likelihood estima-
tionand topic coherence scoresreached saturation. At-SNE plot of the
accessible regions based on the topic scores showed distinct clusters
linked to individual topics (Fig. 2e), representing distinct regulatory
programmes. In contrast to distal elements, most TSS regions were
not strongly linked to individual topics and clustered together on the
embedding, indicating that they were less variable and represent con-
stitutively open promoters. A subset of promoter-proximal regions
clustered separately, and represented two topics of pan-neuronal and
glial CTCF-bindingsites (Fig. 2f,g). CTCF isakey factorin the establish-
ment of genomic organization and CTCF deregulation has been shown
tobeinvolved in several neurodevelopmental disorders?.

We used the Genomic Regions Enrichment for Annotation Tool to
link topics to knownbiological processes through the biological anno-
tation of nearby genes (Supplementary Table 3). For example, topics
4 and 25 were enriched for genes relevant to GABAergic interneuron
identity and oligodendrocyte differentiation, respectively. When scor-
ing the associated signatures (accessible regions in the topic related
to the pathway), clear enrichments in the immature interneuron and
oligodendrocyte precursor populations could be identified (Fig. 2h),
respectively. As individual topics reflected only region accessibility
and not gene expression, we identified enriched TF motifs for each
topicand reduced them to a set of archetypal motifs (arche-motifs)*.
This prevented the prioritization of false-positive motifs based on
the similarity of the binding motif in TF families. Indeed, topic 4 was
enriched for the MEIS (that is, MEIS2), HD/2 (that is, DLX2 or DLXS5),
Ebox/CAGATGG (thatis, NEURODI) and NFI (that is, NFIA, NFIB or NFIX)
arche-motifs, whereas topic 25 was primarily enriched for the SOX/4
(thatis, SOX10) arche-motif (Fig. 2i).

Inconclusion, we found that although accessibility gene scores were
not as descriptive of cellular identify as gene expression, individual
genomic regions were often highly specific and descriptive of cellular
programs when analysed as coherent topics.

Enhancer logicin neuronal specification

Althoughtopic modelling can be a useful tool to understand the activity
ofaccessibleregions, it does not offer any explanations as to the under-
lyinglogic that drives activity of regions between cellular lineages. To
better understand the syntax of regulatory elements that differentiate
neuronal lineages, we trained a convolutional neural network (CNN)
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Fig.2|Functional annotation of open chromatinregions.a, Number of
accessibleregions by cell class, split betweenbiological samples.n=26
biologicallyindependent samples (17 samples at <10 post-conception weeks
and 9 samples >10 post-conception weeks). Box plots are centred on the
median, thebox represents thefirstto third quartiles and the whiskers extend
to the minima and maxima withamaximum of 1.5x the interquartile range;
points beyond this range are plotted as outliers. b, TF motifsin regions that
aredifferentially accessible early or latein the dataset (P < 0.05; Benjamini-
Hochberg-corrected one-sided Fisher exact test). ¢, Enrichment comparison
between the gene expression and chromatin accessibility components of the
dataset. Amovingthreshold was used to identify the fraction of features
enrichedinatleastonecluster at differentlevels of stringency.d, Selection of
marker gene expression and accessible marker regions. Accessible regions are
limited totop 2,000 per cluster. OCRs, open chromatinregions. e, t-SNE plotin
whichdotsrepresentaccessible regions and are coloured by highest-scoring

to predict cell-type identity on the basis of sequence composition>?,

We focused on five large, well-sampled clades: GABAergic neurons
from the midbrain, glutamatergic neurons from the hindbrain and
telencephalon, and granule and Purkinje neurons from the cerebellum.
The model consisted of four convolutional layers followed by two dense
layers and was able to predict the correct class with an average receiver
operating characteristic area under curve (ROC AUC) score of 0.92
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topic. Astrongenrichment of promoterregionsinthe top right of the second
plotshows constitutively active elements. f, &-SNE plots of topics 9 and 18. Both
were enriched for CTCF-binding sites and grouped together on the ¢-SNE map.
g, Enriched TF-binding motifsin topics 9 and 18 identified using HOMER
(one-sided; no multiple test correction). h, &-SNE plots of nuclei showing
enrichment of Gene Ontology signatures enriched in topics 4 and 25 (shown
ine), identified using the Genomic Regions Enrichment for Annotation Tool.

i, Arche-motifenrichment forasubset of topics. Dot size represents enrichment
(identified using HOMER; one-sided; no multiple test correction). The arche-
motifs contain binding sites for the following TFs (non-exhaustive)-HD/19:
OTX1/2; MEIS: MEIS2/3; HD/2: HOXA2/LBX2; TFAP2/1: TFAP2A/B; NF1/3:
NFIA/C; Ebox/CAGATGG: PTF1A/NEUROD1/2/ATOH1; SOX/4: SOX4/10; FOX/4:
FOXA1/2/FOXP2; SPI: SPI1/SPIB/C; ETS/1: ELF1/3/5/GABPA; NFY: NFYA/B/C;
RFX/1:RFX1/2/3/4.

acrossthe classes (Fig. 3a,b). We determined the contribution of each
nucleotide in the target sequences towards the prediction (contribu-
tionscore) using DeepExplainer, and identified short motifs with high
predictive power (seqlets) that recur in the target sequences by clus-
tering them using TF-MoDisCo. In this way, we discovered on average
6 seqlets per accessible region, and 84% of the selected regions were
associated with at least one seqlet (online data; GitHub repository).
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We identified MEISI and ATOH]1 as key regulators in both hindbrain
glutamatergic neurons and cerebellar granule neurons even though
ATOHI expression could be detected only in a subset of the nuclei in
those populations (Fig. 3c,d). Telencephalic glutamatergic neurons,
in contrast, were very distinct from their posterior counterparts and
were characterized by LHX2 and BHLHE22 motifs. For the GABAergic
neurons, the GATA2 motif was observed only in midbrain neurons,
whereas the OTX2 motif could also be seenin the Purkinje neurons, in
which the gene is not expressed. This most likely represents DMBX1,
aTF from the same family that is expressed at low levels in Purkinje
progenitor cells bothin this dataset and a previously published human
neurodevelopment scRNA-seq dataset' (Extended Data Fig. 7a). Both
populations contained the motif for TFAP2B and LHX1 or LHXS, with
LHX1being only minimally expressed in the midbrain neurons.

Generegulatory dynamics in Purkinje neurons

The CNN itself did not provide a temporal order of what stages of the
cell trajectory these TFs are active in. To further investigate the tem-
poral relationship between TF expression and cCRE accessibility, we
focused on the Purkinje lineage, which was well sampled in our dataset.
Purkinje neurons are born in the ventricular zone of the hindbrain
from PTFIA* progenitors. From there they migrate into the developing
cerebellumformingacharacteristiclayer of large, arborated neurons.
We fitted a pseudotime trajectory to the 71,947 nuclei of the Purkinje
lineage (Fig. 4a). We next applied DELAY, a different CNN method that

. 3.
Fraction 67% 0 Max.

exploits the temporal shift between the expression of TFs and their tar-
getsinsingle-celllineagesin combination with TF-binding-site informa-
tionderived from chromatinimmunoprecipitation with sequencing to
estimate gene regulatory networks. This revealed anetwork of 148 TFs
co-regulating each other during Purkinje cell differentiation (Fig. 4b;
network in Supplementary Table 4).

We used the inferred gene regulatory network to computationally
model single nuclei using BoolODE, a tool that allows conversion of
boolean TF networks to ordinary differential equation networks, reca-
pitulatinginssilico the expression dynamics of TFs along the trajectory
(Fig.4c,d). One of the central TFsin the network dynamics was ESRRB,
an oestrogen-related nuclear receptor TF that in the cerebellum is
expressed uniquely in Purkinje neurons. Expression of ESRRBwas pre-
ceded by that of a series of other TFs (PTFIA, ASCLI and NEUROGZ2in
the progenitor phase; NHLHI, NHLH2, TFAP2B, LHXS5 and PAX2 in the
neuroblast phase) and itself preceded the expression of later Purkinje
markers such as PCP4. We identified nine cCREs linked to ESRRB, which
showed two distinct activation patterns, early and late (Fig. 4e,f). Using
the CNN we had previously trained to distinguish neuronal cell types,
we then identified the nucleotides driving the Purkinje lineage iden-
tity in these two groups of cCREs. We found several TFAP2B-binding
motifs in the early cCREs, and an increase of LHX5-binding motifs in
thelate cCREs (Fig. 4g; other cCRES in Extended DataFig. 7b). Finally,
once ESRRB was expressed, we observed increased accessibility at its
downstream binding sites elsewhere in the genome (Fig. 4e, bottom).
The activation of ESRRB can thus be seen as a two-step process in which
the gene s first poised for expression by TFAP2B, after which LHX5
binds the late cCREs and ESRRB expression is induced, leading even-
tually to the activation of ESRRB target genes. Our dataset provides
rich resources—RNA expression for every TF (online data; CATlas),
predicted cCREs and their activities (online data; CATlas) and predicted
seqletsforeveryaccessibleregionincludedin trainingthe CNN (online
data; GitHub)—to explore similar regulatory processes for many other
genes and lineages.

Cell type specificity of GWAS polymorphisms

Mutations in non-coding gene-regulatory regions have been impli-
cated in numerous psychiatric disorders®. In many instances these
non-coding regions are primarily active during a limited temporal
window in selective cell types, which makes it difficult to identify the
affected developmental processes®. Chromatin accessibility atlases
with single-cell resolution spanning across several developmental
time points can thus be an important tool in the identification of
cell-type-specific vulnerabilities in complex trait disorders by provid-
ingincreased selectivity>. Toidentify whether any of the cell typesin
our dataset were selectively vulnerable during development to muta-
tions associated with psychiatric disorders, we curated a large set of
phenotypes from the UK Biobank? as well as GWAS results from 11
psychiatric phenotypes? ¥. We used stratified linkage disequilibrium
score regression to identify cell types for which the phenotype was
enriched for single nucleotide polymorphisms (SNPs) in the corre-
sponding cell-type-specific accessible regions®. As all of the accessible
regionsinour dataset are of brain tissue during early development, we
wanted to ensure that cell-type enrichments for aphenotype remained
significant when conditioned on other life stages and tissues. We there-
fore added accessible regions identified throughout development*
and adulthood® to the background dataset to correct for our fetal
neural-focused selection of features.

We found the expected associations for many of the non-neural cell
types (Extended Data Fig. 8) and several significant enrichments for
the psychiatric phenotypes in neuronal subtypes. After correcting
for multiple testing (Bonferroni or false discovery rate; Fig. 5a), no
significant enrichments were found for Tourette’s syndrome, obses-
sive compulsive disorder, bipolar disorder, alcohol use disorder or
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Fig.4|Generegulatory dynamics in Purkinje neurons. a, --SNE map of
Purkinje neurons showing pseudotime and the differentiation trajectory.

b, TFsinvolvedinthe generegulatory network as identified using DELAY. The
nodes are sized by centrality. ¢, --SNE map of nuclei simulated from the DELAY
network using BoolODE. Colour represents the expression of NHLH2, LHX5 and
ESRRB.d, Heat maps of Purkinje marker genes expressed along the pseudotime
trajectory and the corresponding predictionbased onthe DELAY network.

e, Trend lines ofimportant factorsin ESRRB gene progression. The vertical
lines markimportant events. Top to bottom: expression of LHX5and TFAP2B;
accessibility of cCCREs regulating ESRRB; expression of the ESRRB gene; and

Alzheimer’s disease, although we did see lower uncorrected P values
(Extended DataFig. 9a; 0.003 < P< 0.01; Methods) inallimmune cells
for Alzheimer’s disease compared to the neural cell types (all P> 0.1;
Methods), which agrees with previous findings linking SNPs toimmune
genes*,

Several disorders showed associations that agree with known dis-
ease biology. Schizophreniawas associated with cortical interneurons
derived from the medial ganglionic eminence and SATB2-expressing
telencephalic excitatory neurons, supporting a cortical develop-
mental origin of the disease®. Attention-deficit hyperactivity disor-
der was associated with immature GABAergic neurons and Purkinje
neuroblasts in the cerebellum, which might be related to the struc-
tural abnormalities in the cerebellum often observed in patients with
attention-deficit hyperactivity disorder*'. Anorexia nervosa was associ-
ated withinterneurons derived from the lateral and caudal ganglionic
eminences, inagreement with known eating-disorder associated SNPs
in GABAergic receptors*. Autism spectrum disorder was associated
with neuroblasts from the hindbrain, supporting potential involve-
ment of the brainstem in autism spectrum disorder*®. For insomnia,
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enrichment of the ESRRB-bindingsitein target peaks. f, Chromatin accessibility
landscape around the ESRRB gene. Nine cCREs were identified to regulate
ESRRBexpression. Two are highlighted that occur close to each other but open
up at differentstagesin differentiation. g, The contribution scores of two
cCREsregulating ESRRB expression (an early and alate cCRE), corresponding to
themarked peaksinf. The top plotshows the contribution score (importance
of nucleotide for prediction); the bottom plot shows the effect of mutating each
nucleotide variant ofaregion on the prediction score (saturation mutagenesis).
The early example contains two binding sites for TFAP2B, whereas the late cCRE
contains an LHX5-bindingsite.

TAL2-expressing GABAergic neuronsin the midbrain wereimplicated,
inline with the reported role of such neuronsin the reticular formation
of the ventral midbrain in wakefulness***,

The strongest associations, however, were those observed between
midbrain-derived GABAergic neurons (several groups) and major
depressive disorder (MDD), which we validated in a second cohort*®
(Supplementary Table 5; stratified linkage disequilibrium score regres-
sion; one-sided; Benjamini-Hochberg a = 3.37 x 10~°). The involvement
of GABAergic neuronsin MDD is well established”, but often attributed
to corticalinterneurons for which we found no significant associations.
Midbrain GABAergic neurons, however, are also known to be involved
in the regulation of reward behaviour and stress*®, two systems known
tobedisruptedin MDD. Moreover, asubset of these SOXI14-expressing
midbrain-derived neurons also migrate to the thalamus and pons’®, sug-
gesting apotentially broader effect from these mutations. The overlap
between MDD and insomnia in TAL2-expressing midbrain GABAergic
neurons is also notable as the two disorders have high comorbidity*.

To better understand the association between MDD and midbrain
GABAergic neurons, we used cCREs to identify target genesin MDD. We
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Fig. 5| Enrichment of psychiatric SNPs in first-trimester central nervous
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reachingsignificanceinone of the phenotypesare plotted. ADHD, attention-
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pooled the set of cCREs linked to eachindividual gene and used MAGMA
to identify genes significantly associated with MDD. This yielded 25
associated genes consisting mostly of known MDD genes suchas NEGRI,
BTN3A2, LRFN5 and SCN8A, as well as anumber of histone genes located
inthe samelocus as BTN3A2 (Fig.5b; H2AC13, H2ACI1S, H2BC14, H2BC15
and H4C13). Although many of these genes were expressed in midbrain
GABAergic neurons, none was specific to these neurons. Conversely,
accessible regions significantly associated with MDD were enriched
for the MEIS2, OTX2 and GATA2-binding motifs, indicatingamidbrain
GABAergicidentity (Fig. 5c and Extended Data Fig. 9b), with 29 of the 114
significant MDD regions also containing CNN-predicted OTX2-binding
sites and 46 containing predicted GATA2-binding sites. We also iden-
tified binding motifs from MYCN and PRDM10, which are expressed
broadlyinthe developingbrain, and NFIA, which had higher expression
levels in glutamatergic neurons and glioblasts. Midbrain GABAergic
neurons are unlikely to be the sole contributor to MDD aetiology, with
the other cell types perhaps being more affected during adulthood or
later stages of development. For instance, a similar methodology has
been used to link intratelencephalic-projecting neurons in the adult
brain to MDD" and excitatory hippocampal neurons have also been
linked to MDD*°.

We next examined individual accessible regions and the predicted
nucleotide contributions to the midbrain GABAergic fate (DeepEx-
plainer scores). For most MDD-associated SNPs, we did not find immedi-
ately interpretable overlaps, with only rs114155007 directly overlapping
with the OTX2-binding site (Fig. 5d). We do not expect the effects of
these SNPs in midbrain GABAergic neurons to be primarily mediated
through the disruption of key cell-fate-defining TFs. In conclusion,
these findings suggest that some broadly expressed genes associated
with MDD contribute to disease when perturbed specifically in mid-
brain GABAergic neurons during early neurodevelopment.

Discussion

In this study we provide a high-resolution multiomic atlas of chro-
matin accessibility and gene expression in the first-trimester human

it

-log,[Pvalues]for gene-associated cCREs with the Benjamini-Hochberg a set
at1.2 x10* ¢, Enriched TF-binding motifs in the MDD-associated SNPs passing
Bonferronicorrection (HOMER; one-sided; no multiple test correction). MEIS2,
OTX2and GATA2 are TFs strongly associated with midbraininhibitory neurons.
d, The contribution scores of region chr 6: 28,885,244-28,885,645, which
contains rs114155007, one of the SNPs associated with MDD.

brain. We identified more than 100,000 cell-type- and region-specific
developmental accessible chromatinregions, inferred cCREs and pre-
dicted their regulatory syntax using CNN modelling. These resources
enable analyses that span from developmental lineages to individual
nucleotides—linking TFs to putative enhancers, and enhancers to their
target genes—as exemplified here by our analysis of the regulation of
ESRRBin the Purkinje neuron lineage.

Our dataset further enabled analysis of genetic association with
disease. We found that most genes linked to MDD were not cell-type
specific, yet the associated accessible regions showed enriched TF
motifs consistent with midbrain GABAergic neurons. This suggests
that dysregulation of those genes contributes to MDD only when the
dysregulation affects specific midbrain cell types (but may cause other
phenotypes when dysregulated in other cell types). The observation
reinforces the fact that disease-associated alleles are contextual, and
yield disease phenotypes mainly by their effect in specific cell types.
Nonetheless, our GWAS analysis covered only arelatively early period of
neurodevelopment and more complete datasets will be required to fully
elucidate the genetics of complex diseasesrelative to brain cell types.

In conclusion, this study provides a rich resource for the study of
early embryonic human neurodevelopment in the context of gene
regulation and neurodevelopmental disease.
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Methods

Sample collection
Allexperiments in this study followed all relevant guidelines and regu-
lations, including the International Society for Stem Cell Research
2021 guidelines. Human fetal samples were collected from routine
termination of pregnancies at the Karolinska University Hospital,
Addenbrooke’s Hospital in Cambridge and the Human Developmen-
tal Brain Resource following informed consent of the donors. The
use of fetal samples collected from abortions was approved by the
Swedish Ethical Review Authority and the National Board of Health
and Welfare (Etikprovningsmyndigheten; DNR2020-02074). In the
UK, approval from the National Research Ethics Committee East of
England, Cambridge Central was obtained as well as approval from
the North East - Newcastle & North Tyneside 1 Research Ethics Com-
mittee (Local Research Ethics Committee, 96/085; DNR2019-04595).
The samples were dissected by a trained embryologist into the major
developmental regions (telencephalon, diencephalon, mesencephalon
and metencephalon) along the anterior—-posterior axis. In addition, the
cerebellum was separated from the metencephalon and when possible
the metencephalon was divided into medulla oblongata and pons.
Following the dissection, the samples were transferred to ice-cold
Hibernate E medium (ThermoFisher, A1247601) and either shipped
overnightatrefrigerated temperature to Sweden or processed the same
day when collected at the Karolinska University Hospital.
Someimportant limitations of this study must be considered. First,
as these are clinical samples, the timing was variable and based on
expert annotation rather than knowledge of the date of conception.
Second, owing to damage incurred during collection, not all regions
could be collected from every sample and had to be compensated for
by collecting more samples. Third, as the samples were derived from
several sources the time between collection and dissociation varied.

Statistics and reproducibility

Sample size was dictated by the availability of scarce early developmen-
talhumansamples, and based on previous experience with similar stud-
iesinmice. No power calculations were carried out to determine sample
size. The investigators were not blinded, as this was an exploratory
study with anonymous untreated samples. The reproducibility of the
dataset across specimens was assessed by the contribution of donors to
eachcluster (Extended DataFig.1d). The linkage disequilibriumscore
regression analysis linking MDD to midbrain GABAergic neurons was
validated in a separate GWAS cohort (see below).

Nucleusisolation

Tissue was gently minced using a razor blade and incubated with the
papaindissociationsystem (Worthington) following the manufacturer’s
recommendations (including 200 U mI™ DNAse), at 37 °C for 10 min.
The suspension was then triturated using glass pipettes to dissolve
any remaining chunks of tissue, before being filtered througha30-pm
filter (CellTrics). The cells were then washed with EBSS, concentrated
(200g, 5 min) and counted using a haemocytometer, after which1 x 10°
cellswere pelleted (500g, 5 min) ina 2-ml LoBind Eppendorftube and
pelleted. The cell pellets were dissociated for 5 minonice using 100 pl
of dissociation mix (0.001% digitonin, 0.01% Non-idet P40,1 mM dithio-
threitol, 1U pl RNAse inhibitor, 0.1% Tween-20,1% BSA, 10 mM Tris-HClI,
10 mM NaCl, 3 mM MgCl,). When only scATAC-seq was carried out, no
RNAse inhibitor or dithiothreitol was added to the mix. Dissociation
was halted by addition of 1 ml of wash buffer, after which nuclei were
pelleted again (500g, 5 min) and resuspended in 1x nuclei buffer (10x
Genomics) and recounted.

Single-cell sequencing
Libraries were generated using the 10x Genomics Chromium Controller
and Single Cell ATAC or Single Cell Multiome ATAC + Gene Expression

kits. Briefly, a targeted number of nuclei (5,000-10,000) was treated
with a Tn5 transposase for 60 min at 37 °C to fragment the DNA and
insert adapter sequences into open parts of the chromatin. The sus-
pension was then mixed with the provided barcoding PCR mix and a
gel-bead emulsion was generated by co-encapsulating the suspension
withbarcoded beads in the 10x microfluidic chip and PCR with reverse
transcriptionwas carried outina C1000 Touch thermal cycler (Bio-Rad)
with one of two programs—ATAC: 12 cycles of (5minat 72 °C,30 s at
98°C,10sat98°C,30sat59 °C,1minat72°C)and hold at15 °C; or
multiome: 45 min at 37 °C, 30 min at 25 °C and hold at 4 °C. For mul-
tiome samples, quenching agent was added to prevent the PCR with
reverse transcription reaction from continuing. Following PCR, the
DNAwas isolated from the droplets and cleaned up with Cleanup mix
and silane Dynabeads. Sample indices and P7 primers (Illumina) were
ligated during library construction using the following PCR protocol:
9or10cyclesof (45sat98°C,20sat98°C,30sat 67 °C,20sat72°C)
and1minat72°Cbeforeholdingat 4 °C.SPRIselect beads were used for
size selection of fragments to generate the final library. The fragment
size distribution was analysed using the Bioanalyzer high-sensitivity
chip to eliminate libraries that did not show the expected nuclear
banding pattern. Libraries were then sequenced using the Illumina
Nova-seq instrument using the recommended setting for paired-end
sequencing, with the scATAC-seq and scATAC-seq (multiome) librar-
iesinseparate flow cells as pooling of them is not recommended with
atarget of 100,000 read pairs per nucleus. The multiome scRNA-seq
libraries were pooled with other 10x Genomics scRNA-seq v3.1libraries.

10x data processing

All samples were demultiplexed and aligned to the human genome
GRCh38.p13 Gencode v35 primary sequence assembly using either
Cellranger-atac 2.0.0 or Cellranger-arc 2.0.0 for scATAC-seq and
single-cell multiome, respectively. The RNA libraries from multiome
samples were aligned as described previously'.

Chromograph pipeline

Chromographis anew analysis pipeline for scATAC-seq databased on
thekey architecture of Cytograph 2 (ref. 8), which uses loomfiles asthe
underlying dataformatandis available forusein GitHub (https://github.
com/linnarsson-lab/chromograph). The results in this paper were gen-
erated using commit #9ael434. In brief, chromograph provides tools to
pooland split scATAC-seq data, carry out clustering, carry out balanced
peak calling based on cluster partitions, and identify marker peaks and
enriched TF motifs, and enables imputation of gene expression from
limited multiome data. This dataset was analysed by first carrying out
a primary analysis, and then manually splitting it into subsets based
onmarker genes. These subsets were thenreanalysed, and the results
were again pooled to generate a more fine-grained dataset than the
primary analysis. The pybedtools and pybigwig packages were used to
work with bed files and bigwig files, the loompy package was used to
work withloom files, numpy was used to work with matrices and numba
was used to speed up computations wherever possible. Scikit-learn and
statsmodel were used for more complex calculations and pynndescent
was used for fast nearest-neighbour computations.

SCATAC-seq quality control

TSS enrichment was calculated using pycisTopic™ (TSS window 50 base
pairs (bp), flanking window 1,000 bp) as we noticed discernible change
in some of the samples after updating Cellranger-arc. Samples with a
score below 5 were discarded. For the other samples, nucleus-by-bin
matrices were generated at both 5-kb and 20-kb resolution with bins
that overlapped with any of the ENCODE blacklist®> being removed. The
5-kb nucleus-by-bin matrix was used for doublet detection using an
adapted version of DoubletFinder. In brief, nuclei were co-embedded
with 20% artificial doublets to determine a threshold to distinguish
doublets fromsinglets onthe basis of their nearest-neighbour network
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and a doublet score was assigned on the basis of each nucleus’s local
neighbourhood. For the multiome samples, the RNA-doublet score
was used as it proved slightly more stable. Additionally, the sex of the
sample was determined on the basis of the fraction of Y-chromosomal
reads (>0.05% for male) as well TSS fraction. Nuclei that were not dou-
bletsand had more than 5,000 and fewer than100,000 fragments, more
than 20% TSS fragments and more than 1,000 RNA unique molecular
identifiers (UMIs), and atleast 10% unspliced RNA UMIs were pooled to
generate the main dataset (the final two filters apply only to multiome).

On average 27,599 high-quality fragments per nucleus were identi-
fied with a fragments in peaks ratio of 54%. High-quality nuclei were
selected on the basis of the number of fragments and the fraction of
fragments overlapping TSS as well as UMI count and splice ratio in
multiome samples.

Preclustering and consensus peak calling

Thefeature set used to generate the nucleus-by-peak matrices is dynam-
ically derived from the data through peak calling. To do so, the 20-kb
matrices were first joined and binarized, after which the top 20% of
autosomal bins were selected with an upper threshold of 60% coverage
across the dataset and decomposed using latent semantic indexing
(LSI; more detailed description below). A k-nearest-neighbour graph
was then constructed, and the data was clustered into broad clusters
using Louvain clustering. Fragments from the nucleibelonging toeach
cluster were then aggregated and randomly split in two to generate
two pseudobulk replicates per cluster. The pseudobulk aggregates
were then downsampled to 25 million fragments and MACS2% was
used to call peaks using the following parameters: callpeak -f BEDPE
-g hs --nomodel --shift 100 --ext 200 --qval 5 x 102 -B -~SPMR. Peaks
were then extended to 400 bp using BEDtools and non-overlapping
peaks between the pseudo-replicates were discarded. Next theidenti-
fied peaks for all clusters were pooled and clustered using BEDtools
cluster. For each cluster of peaks, the centre point was extracted and
extended to400 bp to generate the consensus peak set. Peaks overlap-
ping with the ENCODE blacklist were removed and the remainder were
annotated using HOMER** on the basis of Gencode v32, after which the
nucleus-by-peak matrix was generated.

Latent semantic indexing

Decomposition was carried out in two steps. First the matrix was
depth-normalized and infrequent features were upweighted by car-
rying out a term frequency-inverse document frequency transfor-
mation. The resulting non-binary matrix was then used to compute
the principal components using anincremental principal component
analysis. Initially 40 components were computed, but components that
arenot distributed significantly differently from their predecessor are
discarded along with a depth-correlated component if present. Next
the components were batch-corrected using Harmony to mediate
chemistry and sample effects™.

Clustering, embedding and aggregation

The nucleus-by-peak matrix was decomposed using an iterative LSI,
meaning that the data was decomposed and clustered in two rounds.
First the top 20,000 features by total coverage from the autosomal
chromosomes were used to carry out preclustering, after which 20,000
autosomal features were selected again on the basis of the variance
of their precluster-level enrichment for a second LSI. Batch effects
were again corrected for using Harmony. The second LSl is then used
to generate nearest-neighbour graphs and carry out Louvain cluster-
ing. A t-SNE map was then generated using an adapted version of ‘the
art of using t-SNE*° that better preserves global structure than native
t-SNE. Additionally, a uniform manifold approximation and projec-
tionwas generated using UMAP-learn¥ with default settings. For both
methods, Euclidean distances were used as a metric. Next all clusters
were aggregated and anormalized counts per million layer was added.

The enrichment of individual peaks was calculated as a Pearson
residual®. In brief, fragments were modelled as a negative binomial
distribution for which the expected accessibility is the product of the
total number of fragments per cluster (c) and the fraction of fragments
per peak (g). The residuals can then be calculated as the difference
between the observed (X) and expected (i) accessibility corrected by
the negative binomial variation (dispersion parameter fixed at 100 for
allanalysisin this paper). For each cluster, the top 2,000 peaks by Pear-
son residual were marked as marker peaks. The 20,000 peaks with
most variance between Pearson residuals were used to calculate clus-
ter similarities and to generate the cluster dendrogram.
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Gene expression imputation and marker selection
Thirty-one percent of nuclei in the dataset were processed using the
Single Cell Multiome ATAC + Gene Expression kit. This allows for the
imputation of gene expression measurementsin the ATAC-alone sam-
ples. To predict gene expressionin the scATAC-seq nuclei, first all multi-
ome nucleiwere scaled to 5,000 UMIs and an ‘anchor’ net was generated
consisting of adirected graph of each scATAC-seq nucleus and their 10
nearest multiome neighbours. Next the weights were scaled tosumto
1for each nucleus and the nearest-neighbour matrix was multiplied
by the gene expression profiles of the multiome nuclei to generate
predicted gene expression profiles for each scATAC-seq nucleus.
Trinarization scores and gene enrichment were calculated as
defined previously? with marker genes being selected on the basis
of their enrichment. The trinarization scores were then used for
auto-annotation using a set of punch cards specific to early human
development™*,

Subset analysis and pooling

The dataset was split on the basis of cluster-level marker expression
into the following partitions: fibroblast (DCNand COL1A-expressing),
immune (PTPRC-expressing), vascular (TAGLN-expressing or CLDNS
and FLT1-expressing), oligodendrocyte progenitor cell (PDGFRA and
OLIGI-expressing), radial glia or glioblast (HESI-expressing or BCAN
and TNC-expressing) and neuronal (expressing any of INA, NHLH1,
GAD2,SLC17A6 or SLC6AS) lineages. The subsets were reanalysed using
the same pipeline described above. Clusters that contained fewer than
10 multiome nuclei or for whichless than 1% of the total cluster size was
multiome nuclei were excluded as well as clear clusters of doublets. The
neuronal lineage partition was split for asecond round into GABAergic
(GAD2), glutamatergic (SLC17A6,SLC17A7 or SLC17A8) and peptidergic
lineages. All partitions were then pooled again and new summary sta-
tistics and embeddings were generated.

Motifenrichment

Forevery cluster, the 2,000 selected marker peaks were used as input
to HOMER findMotifsGenome®* using GC-matched genomic sequences
as background. The Hocomoco v11 Full collection was chosen as the
TF-binding motif's to be tested. The naming convention was manu-
ally altered to reflect genes names in the gene expression analysis.
This allowed the filtering of false positives by exclusion of nucleus-
motif combinations for which the corresponding TF was unlikely to be
expressed (trinarizationscore < 0.5). Additionally, all TFs were assigned
to a family on the basis of their arche-motif?'.

Gene accessibility and cCREs

Gene-accessibility scores were computed using an adapted version
of the cicero workflow*® using the python SKGGM package. First, the
distance parameter was estimated by optimizing the calculation of the



regularized covariance matrices for 100 random 500-kb regions. Next
the distance-adjusted covariance for each accessible region with each
TSSsite was calculated in 500-kb bins with a250-kb overlap. Most pairs
aresampled twice and pairs withinconsistent covariances are discarded
(about 5%). The co-accessibility cutoff was set empirically by testing the
number of subnetworks over varying cutoff thresholds. Gene activity
scores were then calculated by multiplying the peak-by-nucleus and
region-to-TSS covariance matrices, normalizing against size factors
derived fromalinear regression model and pooling across the 25 near-
estneighbours. Similarly to the region-TSS covariance matrix, cCREs
wereidentified by calculating the region-gene expression covariance.

Identification of total accessible regions by sample

To identify general trends in opening and closing of chromatin, all
fragments from individual cell classes and biological samples were
pooled together and MACS2 was used to call peaks per class per sam-
ple. A one-sided Fisher exact test (using the fisher python package)
with Benjamini-Hochberg correction was used to identify differential
regions. Ageneralized linear model was used to estimate the influence
of age on the number of accessible regions.

VISTA enhancer overlap

CNSenhancers (from the VISTA database’) were downloaded and lifted
over to GRCh38 using UCSC liftOver, excluding any that could not
be confidently lifted over, resulting in 620 enhancers, of which 596
overlapped with our peak set. The enhancers that were specific to the
forebrain, midbrain and hindbrain according to the original authors
were isolated (total of 159, 75 and 78, respectively), the correspond-
ing peaks in the dataset were identified and the brain region with the
highest accessibility was identified, after which the Jaccard similarity
was calculated.

PycisTopic modelling

The full dataset was downsampled to a maximum of 10,000 nuclei
per cluster to reduce computational burden and prevent over-
representation. The number of topics was varied from 25 to 500 at
intervals of 25, running for 50 iterations with an « of 50 divided by the
number of topics and a 8 of 0.1. The most stable model (175 topics)
was selected on the basis of topic coherence and log-likelihood in the
last iteration. The region-topic scores were normalized so that they
summed to 1for every nucleus and a ¢-SNE map was generated for the
regions and binarized topic lists were generated by assigning each
region to the topic that it scored the highest on. Next each topic was
used asinput for HOMER with the Hocomoco TFs and the results were
reduced to the highest-scoring representative of each arche-motif
group. The binarized topics were also used as input for Genomic
Regions Enrichment for Annotation Tool analysis®® to identify Gene
Ontology terms describing each topic. For some selected terms, the
associated regions (in the topic) were used to calculate an enrichment
score using the signature_enrichment function of pycisTopic®.

Enhancer CNN

Nuclei from all clusters annotated as Purkinje, midbrain GABA, cere-
bellum granular neuroprogenitor, hindbrain glutamatergic or telen-
cephalic glutamatergic were grouped into five superclusters and
enrichment between the clusters was recalculated and peaks were
includedforlearning onlyifthe log-fold change with the second high-
estaccessibility wasmore than1. One-hot-encoded sequences (401 bp)
were used as input to a CNN trained as a classification model using
pyTorch. The network consists of 4 convolutional layers of 256, 60,
60 and 120 nodes and kernel sizes 7, 3, 5 and 3, respectively, and each
layer was followed by batch normalization, RELU activation and maxi-
mum pooling. There were then 2 dense layers of 256 nodes with batch
normalization, RELU activation and a dropout rate of 0.4. A softmax
normalization was applied to the final output layer and cross-entropy

loss was used as the loss function with label smoothing set to 0.1. The
modelwas trained using an Adam optimizer with alearning rate of 0.01.
The model was trained for 26 epochs.

Contribution scores for each sequence were calculated using Deep-
LiftShap’s (deepExplainer®) attribute function using the mean of the
input sequence shuffled 100 times as background. The hypothetical
score was calculated for each possible nucleotide in the sequence by
multiplying the contribution by the background-corrected input®2.
TF-MoDisCo® was then applied to all of the sequences enriched in
a cluster with a flanking size of 5 bp, a sliding window of 15 bp and
aminimum cluster size of 30 seqlets.

Pseudotime, generalized additive models and ChromVAR

For analysis of the Purkinje lineage, all clusters labelled ‘Purkinje’ and
the PTF1A-expressing cluster of ventricular zone progenitors were iso-
lated and anew t-SNE map was generated. pySlingshot was then used to
calculate the pseudotime. pyGAM was used to fit gene and cCRE trends
to the Purkinje neuron lineage with gene expression being modelled
using a Poisson generalized additive model and cCRE accessibility using
alinear generalized additive model. ChromVAR was applied using the
JASPAR human PWM (human_pwms_v2) to compute motif variability.

Supervised inference and stochastic simulation of Purkinje gene
regulatory network

We used DELAY® (https://github.com/calebclayreagor/DELAY) to infer
the Purkinje gene regulatory network from gene-accessibility dynam-
icsin pseudotime and then carried out stochastic simulations to verify
the putative network’s gene-expression dynamics. First, we retrained
DELAY on alarge scATAC-seq dataset of plasma B cell differentiation
data®* with ground-truth data from chromatin immunoprecipitation
with sequencing® to prepare the neural network to infer the Purkinje
gene regulatory network from tens of thousands of single nuclei.
Then, we fine-tuned DELAY on the Purkinje developmental trajectory
using ground-truth targets of a cerebellar ataxia-related gene, ataxin 7
(ref. 66). For the final gene regulatory network inference, we used the
expression-linked, log-normalized gene-linked peak counts from all
TFs that were differentially expressed in at least 1% of Purkinje nuclei
across pseudotime (Supplementary Tables 6 and 7; TradeSeq; Wald
test; two-sided). We then used BoolODE® to simulate the expression
of each gene inthe network given its top eight most likely regulators.

GWAS enrichment

Accessible regionlocations werelifted over to GRCh37. Features were
binarized on the cluster level with a Pearson residual threshold of 10.
Cluster heritability was calculated using linkage disequilibrium score
regression®. As abackground, we used the merger of our feature set
with the features from development* and adulthood®. Only SNPs
from hapmap3 were included to reduce imputation errors. In total
we tested 325 phenotypes from the UK Biobank?® and 11 psychiatric
phenotypes?” . All used UK Biobank phenotypes had non-zero her-
itability estimates (z score > 4). Results for UK Biobank phenotype
enrichments were corrected for the number of cell types using FDR
or Benjamini-Hochberg procedures. For the psychiatricenrichments,
FDR and Bonferroni corrections were applied for the number of cell
types and tests (& = 3.37 x 107,135 x 11 tests).

Two different MAGMA®8 tests were conducted with default settings.
First, the cCREs linked to genes were annotated to genes in a custom
MAGMA annotation file. A MAGMA gene analysis was used to assess
which genes were affected in MDD. Next, MAGMA gene analyses were
conducted for ADHD, anorexia, autism spectrum disorder, MDD and
schizophrenia, on a custom annotation file in which individual acces-
sible regions were treated like individual genes to identify specific
deregulated elements. Accessible regions passing Benjamini-Hochberg
correction were then used as input for HOMER with the full vertebrate
motifreference.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Rawsequencing dataare available through from the European Genome
Phenome Archive (EGAS00001007472). To facilitate ease of use of the
resource, the chromatin accessibility and gene expression data are
browsable through the CATlas web browser (http://catlas.org/human-
braindev) and the CNN and anonymized cell-ranger outputs can be
downloaded through GitHub at https://github.com/linnarsson-lab/
fetal_brain_multiomics®.

Code availability

All code used to reproduce the figures is available through GitHub at
https://github.com/linnarsson-lab/fetal_brain_multiomics®. Code
toreanalyse the data is available through GitHub at https://github.
com/linnarsson-lab/chromograph®. The DELAY models trained on
scATAC-seq data are available through GitHub at https://github.com/
calebclayreagor/DELAY®’,
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Extended DataFig.1|Quality control. A) Collected nuclei counts per (number of cells per sample in H). Box plots within the violins are centered on
post-conceptual week (p.c.w.) and region. B) Distribution of fragment count the median, the box represents the first to third quartiles and the whiskers
(log10) and fraction of fragments in TSS for collected barcodes. C) t-SNE extend to the minima/maximawithamaximum of 1.5x the interquartile range,
embedding generated from Latent Semantic Indexing without Harmony points beyond thisrange are plotted as outliers. G) Fragment count (log10)
sample correction (top) and withsample correction (bottom). D) fragmentsize  across nuclei per sample. n=26 biologically independent samples. Boxplot
distribution per sample. Top plot shows log scaled density. E) TSS enrichment representations follow the same rules as F. H) Number of nuclei collected per

persample.5was used asaminimum sample level cut-off. F) Distributionof TSS ~ sample, separated by method.
enrichmentacross nuclei per sample.n=26 biologicallyindependent samples
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Extended DataFig.2|Analysis pipeline. Steps taken to analyze single nucleus
data. Following quality control the dataset is clustered using genomic bins as
features. Peak calling is then performed per cluster and a nucleus-by-peak
matrixisgenerated and nucleiare clustered. The available multiome nucleiare
thenused toimpute gene expression across the dataset. Downstream analysis
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is performed including motif enrichment analysis and region-to-gene linkage
before splitting the dataset by cell class. Each subsetis reclustered and
reanalyzed separately before being pooled together again using the subset
clustersandafinal analysis roundis conducted.
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Extended DataFig. 3| Annotation of accessible chromatinregions.

A) Distribution of functional region annotationsinrelation to nearby genes.
B) Distribution of accessible region distance to nearest TSS. C) Jaccard
similarity between region-specific enhancers from the VISTA database and
accessibleregionsidentifiedin corresponding regions of the dataset.

D) Spatially restricted accessibility of developmental enhancers overlapping
withknown enhancer sequences from the VISTA enhancer-database' shown
by LacZ staining. From lefttoright, active in Hindbrain neurons and glioblasts,
immature interneurons in the Ganglionic Eminence and Midbrain radial glia
andinhibitory neurons. E) Mean DNA conservation of proximal (<2,000 bp
fromTSS) and distal elements based on the PhastCon100-way. F) Number of
accessibleregions that overlap withthe ENCODE cCRE and DNAse hypersensitive
sitereference datasets. Additionally the number of elements that overlap

with the humanenhancer atlas fetal brain dataset. Red shows regions notin
thereference dataset, gray are overlapping regions. G) Overlap between the

identified accessible regions in this study (development) and acomparable
studyintheadulthumanbrain (Lietal., 2022 under revision). The second panel
shows the overlap between variable regions in the two datasets (pearson
residuals>10in atleast one cluster). Interestingly, alarge number of regions
thatarevariablein development seemto be invariablein adult. H) Overlap with
two sets of evolutionarily accelerated regions, with overlapin blue and regions
from the comparisonlist notinour datasetin gray. Human accelerated regions
(HARs) areregions withincreased rates of nucleotide substitution that are
conserved in other species, while human ancestor quickly evolved regions
(HAQERs) areregions that diverged rapidly between humans and chimpanzees
that were not previously constrained.I) Overlap withannotated transposable
elements.]) Comparison of transposable elementsin early vs. late nucleiacross
the dataset. K) Heatmap of region topics across the 135,00 nucleiincluded
inthe topic modeling. Bottom imagesind reproduced fromref. 19, https://
enhancer.lbl.gov.
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Extended DataFig. 4 |Regionalization of cell types. A) Annotation of region
of origin for each cell class. While clear effects of regionalization canbe seen
inthe neural lineage, the non-neuronal nucleiare more similar across brain
regions. B) Expression of canonical markers used to annotate radial glia,
glioblasts, the roof plate and the floor plate. C) Distribution of radial gliaand
glioblasts between brainregions. D) tSNE showing change in abundance of
early vs. late nucleiinlocal neighborhoods amongradial gliaand glioblasts.

E) Volcano plot of change in abundance of early vs. late nucleiinlocal
neighborhoods among radial glia and glioblasts as identified using milopy”.
F) Enriched transcription factor motifs (HOMER; one-sided; no multiple test
correction) amongthe 2,000 mostenriched accessible regions between early
and late neighborhoods (by pearson residual). G) Boxplot showing the number
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ofaccessible regionsidentified in different cell types. Neuroblasts and
neurons have significantly more accessible regions thanradial glia (two-sided
independent t-test; neuroblast: t=3.6; Cl=8,343-30,358; Cohen’s D=1.13;38
DF; p=0.001; neurons: t=2.5;Cl:2,485-22,706; Cohen’sD=0.77; 43 DF;
p=0.015).n=26biologicallyindependent samples, thenumber of cellsineach
classwere 57,210,160,928, 69,716,141,189, 83,800 and 13,251 respectively. Box
plots are centered on the median, the box represents the first to third quartiles
and the whiskers extend to the minima/maximawith amaximum of 1.5x the
interquartile range, points beyond this range are plotted as outliers. H) Linear
regression fitted to age to predict number of accessible regions using the cell
typesas covariates (t-test; two-sided; p-valuesin figure).
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Extended DataFig. 9 |Enrichment of selected psychiatric phenotypesin
neurodevelopmental cell types. A) Nucleiare ordered by major cell class and
LDSC analysis (one-sided) is used to identify susceptible cell types. While not
reachingsignificance after multiple test correction, anincreased association

between Alzheimer’s disease and immune cells can be observed in opposition to
the other traits which primarily are associated with neuronal cells. B) Expression
oftranscription factorsidentified in Fig. 5c.



nature portfolio

Reporting Summary

Corresponding author(s):  Sten Linnarsson

Last updated by author(s): Jul 17, 2023

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

O0OX O O00000%

A description of all covariates tested

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Data analysis

10X Cellranger-ATAC 2.0.0
10X Cellranger-ARC 2.0.0

Programs:
Homer v4.11
bedtools v2.25.0

Python packages:

# Name Version
cytograph 2.0.1
deeplift 0.6.13.0
fisher 0.1.9
harmony-pytorch 0.1.4
loompy 3.0.6
macs2 2.2.7.1
milopy 0.1.1
modisco 0.5.16.2
numba 0.51.0
numpy 1.21.6
opentsne 0.4.4
pybedtools 0.8.1

Build Channel
dev_0 <develop>
pypi_O  pypi
pypi_O  pypi
pypi_0  pypi
dev_0 <develop>
pypi_O  pypi
pypi_O  pypi
dev_0 <develop>
pypi_0  pypi
pypi_O  pypi
pypi_O  pypi
pypi_0  pypi

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




pybigwig 0.3.17 pypi_0 pypi

pygam 0.8.0 pypi_0 pypi

pynndescent 0.4.8 pypi_O pypi

scikit-learn 0.23.2 pypi_0 pypi

statsmodels 0.12.1 pypi_0 pypi
ucsc-bedgraphtobigwig 377 h446ed27_1 bioconda
ucsc-bigwigaverageoverbed 377 h446ed27_1 bioconda
ucsc-liftover 447 h954228d_0 bioconda
umap-learn 0.4.6 pypi_0 pypi

pytorch 1.12.1 py3.9 cudall.6_cudnn8.3.2_0 pytorch
pytorch-lightning 1.7.7 pypi_0 pypi

pycistopic 1.0.2.dev9+gaf3977c dev_0 <develop>
pyslingshot 0.0.2 pypi_0 pypi

skggm 0.2.8 pypi_0 pypi
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ChromVAR 1.22.1

for GRN:
DELAY v0.1.0 https://github.com/calebclayreagor/DELAY
BoolODE vO0.1 https://github.com/Murali-group/BoolODE

for GWAS enrichment:
LDSC v1.0.1 https://github.com/bulik/Idsc
MAGMA v1.0 https://ctg.cner.nl/software/magma

All custom code for analysis is available through:
https://github.com/linnarsson-lab/fetal_brain_multiomics
https://github.com/linnarsson-lab/chromograph

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data Availability. Raw sequencing data is available through from the European Genome Phenome Archive (EGAS00001007472). To facilitate ease of use of the
resource the chromatin accessibility and gene expression data are browsable through the CATlas webbrowser (http://catlas.org/humanbraindev) and the
convolutional neural network can be downloaded through github: https://github.com/linnarsson-lab/fetal_brain_multiomics.

Code Availability. All code used to reproduce the figures is available through github: https://github.com/linnarsson-lab/fetal_brain_multiomics. Code to reanalyze
the data is available through: https://github.com/linnarsson-lab/chromograph. The DELAY models trained on scATAC-seq data are available through https://
github.com/calebclayreagor/DELAY.

All our data is aligned to the GRCh38.p13 gencode V35 primary sequence assembly (https://www.gencodegenes.org/human/release_35.html)

We compared our data to the VISTA database (https://enhancer.lbl.gov) and the ENCODE cCRE datasets (https://www.encodeproject.org). We also used the
HOCOMOCO transcription factor PWM database (https://hocomocoll.autosome.org). For the stratified LDSC analysis we made use of the UKBiobank (http://
www.ukbiobank.ac.uk) and studies from the PGC (https://pgc.unc.edu).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender An equal number of male and female embryos were collected (13 male, 13 female) and used for all analysis in this
manuscript. To correct for structural genomic differences between the sexes, X&Y chromosomal reads were disregarded
during clustering. We found no clear sex differences in cell type abundances or sex-derived artifacts in the clustering. As such
the findings in this paper refer to both sexes.

As our samples were collected and processed as soon as possible, the sex of the sample could not be determined ahead of
time, as such we collected from both sexes and identified the sex based on the presence of Y-chromosomal reads in the
sequence data. For each cell in the data matrices the assigned sex is available as a column attribute.

Gender was not considered in this manuscript as this is generally considered a post-natal phenomenon.

Reporting on race, ethnicity, or ' Samples were collected anonymously from donation in Sweden and the United Kingdom. The donation procedures did not
allow us to collect race or ethnicity or similar information about the donors. As such we do not know if the ethnic
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other socially relevant backgrounds of the samples are broadly representative of the general population, but they are likely to skew towards a
groupings western/northern European Caucasian background.

Population characteristics Samples were collected only from healthy abortions, meaning there was no medical reason to the end the pregnancy. No
chromosomal aberrations were detected in the clinic for these samples nor were any other diagnoses made.

Recruitment Donors were recruited after electing to proceed with voluntary termination of pregnancy. As we do not have access to
personal information of the parents, we do not know if there a self-selection bias in the data. In short, there might be
differences between different parts of the public in their propensity to donate to science. For instance, there might be a
relative over-representation of education level of the mother among our samples compared to the total of performed
abortions for that reason. However, we do not expect this to impact the data in a strong way.

Ethics oversight For UK, by the National Research Ethics Committee East of England, Cambridge Central and the North East — Newcastle &

North Tyneside 1 Research Ethics Committee (DNR2019-04595); for Sweden by Etikprovningsmyndigheten
(DNR2020-02074).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was dictated by the availability of scarce early developmental human samples, and based on prior experience with similar studies
in mice. No power calculations were performed to determine sample size.

Data exclusions  Data for individual cells was excluded based on quality control metrics detailed in the manuscript (Methods)

Replication The reproducibility of the dataset across specimens was assessed by assessing the contribution of donors to each cluster (Supplemental Fig.
1d). The LDSC analysis linking Major Depressive Disorder to Midbrain GABAergic neurons was validated in a separate GWAS cohort.

Randomization  Not applicable, as we did not perform any treatment vs control experiments.

Blinding The investigators were not blinded, as this was an exploratory study with anonymous untreated samples.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
X Eukaryotic cell lines |:| Flow cytometry
X Palaeontology and archaeology |:| MRI-based neuroimaging
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