Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Capture of a recombination activating sequence from mammalian cells

Abstract

We have developed a genetic trap for identifying sequences that promote homologous DNA recombination. The trap employs a retroviral vector that normally disables itself after one round of replication. Insertion of defined DNA sequences into the vector induced the repair of a 300 base pair deletion, which restored its ability to replicate. Tests of random sequence libraries made in the vector revealed a putative recombination signal (CCCACCC). When this heptamer or an abbreviated form (CCCACC) were reinserted into the vector, they stimulated vector repair and other DNA rearrangements. Mutant forms of these oligomers (eg CCCAACC or CCWACWS) did not. Our data suggest that the recombination events occurred within 48 h after transfection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sadowski PD . Site-specific genetic recombination: hops, flips, and flops FASEB J 1993 7: 760–767

    Article  CAS  Google Scholar 

  2. Alt FW et al. VDJ recombination Immunol Today 1992 13: 306–314

    Article  CAS  Google Scholar 

  3. Shiroishi T et al. Hotspots of homologous recombination in mouse meiosis Adv Biophys 1995 31: 119–132

    Article  CAS  Google Scholar 

  4. Lafuse WP . Molecular biology of murine MHC class II genes Crit Rev Immunol 1991 11: 167–194

    CAS  PubMed  Google Scholar 

  5. Smith GR . Hotspots of homologous recombination Experientia 1994 50: 234–241

    Article  CAS  Google Scholar 

  6. Cole-Strauss A, Noe A, Kmiec EB . Recombinational repair of genetic mutations Antisense Nucleic Acid Drug Dev 1997 7: 211–216

    Article  CAS  Google Scholar 

  7. Cheng KC, Smith GR . Distribution of Chi-stimuated recombinational exchanges and heteroduplex endpoints in phage lambda Genetics 1989 123: 5–17

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng KC, Smith GR . Cutting of chi-like sequences by the RecBCD enzyme of Escherichia coli J Mol Biol 1987 194: 747–750

    Article  CAS  Google Scholar 

  9. Smith GR et al. Roles of RecBC enzyme and chi sites in homologous recombination Cold Spring Harb Symp Quant Biol 1984 49: 485–495

    Article  CAS  Google Scholar 

  10. Cheng KC, Smith GR . Recombinational hotspot activity of Chi-like sequences J Mol Biol 1984 180: 371–377

    Article  CAS  Google Scholar 

  11. Kowalczykowski C et al. Biochemistry of homologous recombination in Escherichia coli Microbiol Rev 1994 58: 401–465

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Myers RS, Stahl FW . Chi and the RecBC D enzyme of Escherichia coli Annu Rev Genet 1994 28: 49–70

    Article  CAS  Google Scholar 

  13. Olson P, Temin HM, Dornburg R . Unusually high frequency of reconstitution of long terminal repeats in U3-minus retrovirus vectors by DNA recombination or gene conversion J Virol 1992 66: 1336–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Olson P, Nelson S, Dornburg R . Improved self-inactivating retroviral vectors derived from spleen necrosis virus J Virol 1994 68: 7060–7066

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dornburg R . Reticuloendotheliosis viruses and derived vectors Gene Therapy 1995 2: 301–310

    CAS  PubMed  Google Scholar 

  16. Varmus HE, Brown P . Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology: Washington DC 1988 pp 53–108

    Article  CAS  Google Scholar 

  17. Temin HM . Retrovirus vectors for gene transfer: efficient integration into and expression of exogenous DNA in vertebrate cell genomes. In: Kucherlapati R (ed) Gene Transfer Plenum Press: New York 1986 pp 144–187

    Google Scholar 

  18. Jorgensen RA, Thothstein SJ, Reznikof W . A restriction enzyme cleavage map of TN5 and location of a region encoding neomycin resistance Mol Gen Genet 1979 177: 65–72

    Article  CAS  Google Scholar 

  19. Shinnick TM, Lerner RA, Sutcliffe JG . Nucleotide sequence of Moloney murine leukemia virus Nature 1981 293: 543–548

    Article  CAS  Google Scholar 

  20. Dornburg R, Temin HM . Presence of a retroviral encapsidation sequence in nonretroviral RNA increases the efficiency of formation of cDNA genes J Virol 1990 64: 886–889

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dornburg R, Temin HM . cDNA genes formed after infection with retroviral vector particles lack the hallmarks of natural processed pseudogenes Mol Cell Biol 1990 10: 68–74

    Article  CAS  Google Scholar 

  22. Dornburg R, Temin HM . Retroviral vector system for the study of cDNA gene formation Mol Cell Biol 1988 8: 2328–2334

    Article  CAS  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: a Laboratory Manual Cold Spring Harbor Press: Cold Spring Harbor NY 1995

    Google Scholar 

  24. Hu W-S, Temin HM . Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination Proc Natl Acad Sci USA 1990 87: 1556–1560

    Article  CAS  Google Scholar 

  25. Hu W-S, Temin HM . Retroviral recombination and reverse transcription Science 1990 250: 1227–1233

    Article  CAS  Google Scholar 

  26. Gauwerky CE et al. Evolution of B-cell malignancy: pre-B-cell leukemia resulting from MYC activation in a B-cell neoplasm with a rearranged BCL2 gene Proc Natl Acad Sci USA 1988 85: 8548–8552

    Article  CAS  Google Scholar 

  27. Seite P et al. Molecular analysis of a variant 18;22 translocation in a case of lymphocytic lymphoma Genes Chromosom Cancer 1993 6: 39–44

    Article  CAS  Google Scholar 

  28. Gauwerky CE et al. Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia Proc Natl Acad Sci USA 1989 86: 8867–8870

    Article  CAS  Google Scholar 

  29. Denny CT, Hollis GF, Magrath IT, Kirsch IR . Burkitt lymphoma cell line carrying a variant translocation creates new DNA at the breakpoint and violates the hierarchy of immunoglobulin gene rearrangement Mol Cell Biol 1985 5: 3199–3207

    Article  CAS  Google Scholar 

  30. Spain TA, Sun R, Miller G . The locus of Epstein–Barr virus terminal repeat processing is bound with enhanced affinity by Sp1 and Sp3 Virology 1997 237: 137–147

    Article  CAS  Google Scholar 

  31. Sun R, Spain TA, Lin SF, Miller G . Spl binds to the precise locus of end processing within the terminal repeats of Epstein–Barr virus DNA J Virol 1997 71: 6136–6143

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dougherty JP, Temin HM . Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication J Virol 1988 62: 2817–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dougherty JP, Temin HM . High mutation rate of a spleen necrosis virus-based retrovirus vector Mol Cell Biol 1986 168: 4387–4395

    Article  Google Scholar 

  34. Pathak VK, Temin HM . Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: deletions and deletions with insertions Proc Natl Acad Sci USA 1990 87: 6024–6028

    Article  CAS  Google Scholar 

  35. Eckert KA, Kunkel TA . High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase Nucleic Acids Res 1990 18: 3739–3744

    Article  CAS  Google Scholar 

  36. Cole-Strauss A et al. Correction of the mutation responsible for sickle cell anemia by an RNA–DNA oligonucleotide (see comments) Science 1996 273: 1386–1389

    Article  CAS  Google Scholar 

  37. Gruenert DC . Cystic fibrosis therapy – where we are and how we got there West J Med 1996 164: 361–362

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoon K, Cole-Strauss A, Kmiec EB . Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA. DNA oligonucleotide Proc Natl Acad Sci USA 1996 93: 2071–2076

    Article  CAS  Google Scholar 

  39. Gritz L, Davies J . Plasmid encoded hygromycin B phosphotransferase gene and its expression in Escherichi coli and Saccharomyces cerevisiae Gene 1983 25: 179–188

    Article  CAS  Google Scholar 

  40. Watanabe S, Temin HM . Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors Mol Cell Biol 1983 3: 2241–2249

    Article  CAS  Google Scholar 

  41. Kawai S, Nishizawa M . New procedure for DNA transfection with polycation and dimethyl sulfoxide Mol Cell Biol 1984 4: 1172–1174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Hugh Fisher for his help in preparing this manuscript. We would like to thank Dr Howard Passmore (Rutgers University) for his critical and helpful comments on this paper. We also would like to thank Dr Ren Sun and Dr G Miller (Yale University) for communication before publication. This work was sponsored by grants from the March of Dimes Birth Defect Foundation and the New Jersey Commission on Cancer Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, P., Dornburg, R. Capture of a recombination activating sequence from mammalian cells. Gene Ther 6, 1819–1825 (1999). https://doi.org/10.1038/sj.gt.3301035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301035

Keywords

Search

Quick links