
Creators of computer programs that underpin experiments don’t always get their
due — so the website Depsy is trying to track the impact of research code.

THE UNSUNG HEROES OF
SCIENTIFIC SOFTWARE

B Y D A L M E E T S I N G H C H A W L A

For researchers who code, academic
norms for tracking the value of their
work seem grossly unfair. They can

spend hours contributing to software that
underpins research, but if that work does not
result in the authorship of a research paper
and accompanying citations, there is little way
to measure its impact.

Take Klaus Schliep, a postdoctoral researcher

who is studying evolutionary biology at the
University of Massachusetts in Boston. His
Google Scholar page lists the papers that he has
authored — including his top-cited work, an
article describing phylogenetics software called
phangorn — but it does not take into account
contributions that he has made to other people’s
software. “Compared to writing papers, coding
is treated as a second-class activity in science,”
Schliep says.

Enter Depsy, a free website launched in

November 2015 that aims to “measure the
value of software that powers science”.

Schliep’s profile on that site shows that he
has contributed in part to seven software pack-
ages, and that he shares 34% of the credit for
phangorn. Those packages have together
received more than 2,600 downloads, have
been cited in 89 open-access research papers
and have been heavily recycled for use in other
software — putting Schliep in the 99th percen-
tile of all coders on the site by impact. “Depsy

IL
LU

ST
R

AT
IO

N
 B

Y
TH

E
P

R
O

JE
C

T
TW

IN
S

7 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 1 1 5

TOOLBOX

© 2015 Macmillan Publishers Limited. All rights reserved

“There is a culture
that reinforces
the idea that
producing and
publishing code
has no perceived
benefit to the
researcher.”

does a good job in finding all my software
contributions,” says Schliep.

Depsy’s creators hope that their platform
will provide a transparent and meaningful
way to track the impact of software built by
academics. The technology behind it was
developed by Impactstory, a non-profit firm
based in Vancouver, Canada, that was founded
four years ago to help scientists to track the
impact of their online output. That includes
not just papers but also blog posts, data sets
and software, and measuring impact by diverse
metrics such as tweets, views, downloads and
code reuse, as well as by conventional citations.

In effect, Depsy recognizes the “unsung
heroes” of scientific software, says Jason Priem,
co-founder of Impactstory, which is funded by
the US National Science Foundation and vari-
ous philanthropic foundations.

Such a tool is needed, notes Neil Chue Hong,
founding director of the Software Sustainabil-
ity Institute in Edinburgh, UK, because there
are few ways to credit scientists for their soft-
ware. Young researchers are enthusiastic about
coding, he says. Last year, he ran a survey of
1,000 randomly selected UK scientists, which
suggested that more than 50% of researchers
develop their own code. Even so, few UK aca-
demics listed code or software as one of their
research outputs in the nation’s latest research
quality audit (the ‘Research Excellence Frame-
work’) even in disciplines such as computer
science that rely heavily on software. “There
is a culture that reinforces the idea that pro-
ducing and publishing code has no perceived
benefit to the researcher,” Hong says.

TRACKING SOFTWARE USE
The usual way to track academic impact — by
counting citations — still has some relevance
to software. Researchers can write papers that
describe their software, as Schliep has done for
his phangorn package, so that anyone who uses
the program can cite it in subsequent papers.
But counting citations is an imperfect meas-
ure. Researchers may not know which paper to
cite, argues Priem, because software packages
often have multiple articles associated with
them — and some pivotal software projects,
he says, such as the GDAL Python library, are
not linked to a canonical paper.

If software has no associated paper, there is
no universally recognized way to cite it. Still,
it is now quite common for coders to assign
digital object identifiers (DOIs) to their code,
and increasingly to their data sets as well, notes
Martin Fenner, technical director of the online
repository DataCite in Hanover, Germany.
Software is often first stored in the popular
code repository GitHub, from which a copy
can be automatically archived on scholarly
focused repositories such as Zenodo or Fig-
share, which allocate DOIs to software and
thus make it a citable object. Other initiatives
are trying to ensure that research papers cite
software in a standardized format — such as by

using the Research Resource Identifier.
But counting citations of software DOIs,

papers or any other standard format does not
reveal the full impact of coders on science,
because software so often goes uncited. A
2015 analysis of 90 random biology papers
found that two-thirds informally mentioned
the use of software, but fewer than half of those
papers actually cited the package.

Depsy searches through research papers
to discover both citations and informal men-
tions of software — of which, unsurprisingly,
it has found many,
says Priem, such
as in the acknowl-
edgement sections
or the main text of
academic papers.
But a limitation
of the site, Priem
admits, is that it
currently searches
only open-access
research papers — missing the vast bulk of
paywalled scholarly content. Impactstory will,
however, negotiate with publishers for permis-
sion to mine the text of paid-access literature.

Mentions in research papers are one of three
ways in which Depsy tracks the impact of soft-
ware, Priem says. Second, the site tracks how
code is reused by others. The name Depsy
originates from ‘dependency network’ — an
overarching term for a map of factors that
depend on each other, such as software packages
that recycle code from other packages. Depsy
calculates the extent to which code is recycled
by using Google’s PageRank algorithm, which
gives weight to reuse by more-prominent soft-
ware. From the view of measuring impact, an
example of code reuse may be more meaning-
ful than a citation in the literature, Priem notes.

And third, the site gathers download statistics
on code packages by trawling through CRAN
and PyPI, which are the main repositories for
software written in the popular R and Python
programming languages, respectively.

FOCUS ON RESEARCH
Other websites do some of what Depsy offers.
Crantastic, for example, is a review site that
tracks the most popular R packages, and PyPI
ranking lists the most popular Python modules
by tracking downloads from PyPI. In addition,
a few commercial services such as VersionEye
and Libraries.io track dependency networks,
explaining which software depends on which
other packages.

But Depsy is unconventional in its focus on
research software, which it distinguishes from
other code by identifying key words and the
descriptions and titles of software — although
the classification process is imperfect, Priem
says. The site tracks other code, but it includes
research software only when it calculates the
percentile impact rankings for academics such
as Schliep.

Depsy apportions fractional credit to each
participant who has contributed to a soft-
ware package by counting the percentage of
code that they have contributed or edited —
known in the programming world as a per-
son’s ‘commits’. Fingerprints of each commit
are saved in the code, making it easy to track
down the originator. But not every edit has
the same impact, and Depsy currently cannot
distinguish between important contributions
and trivial ones. The tool may be adapted to
attempt this distinction — by tracking the
influence of individual commits — in the
future, says Priem.

Depsy also enables users to determine the
software with the highest impact in specific
disciplines. A search on Depsy for ‘astrophys-
ics’, for instance, yields 11 software packages,
of which an analysis and visualization toolkit
for astrophysical simulations called ‘yt’ has the
greatest impact; it lies in the 97th percentile of
all packages.

OBSTACLES TO PROGRESS
One of Depsy’s restrictions, notes Hong, is that
it only tracks code that is available in public
repositories — so it cannot show the impact
of commercial software. Moreover, the site
tracks software in only two coding languages:
R and Python.

But Depsy’s creators aim to eventually
include other coding languages, and to add
a fourth way to measure impact: a social-
influence metric that would take into
account the number of stars that software
packages receive from other GitHub users,
and how many times a piece of software is
discussed online.

The site’s code-reuse metrics have their
limitations, too. Researchers often reuse their
own code, but might ‘game’ Depsy by repeat-
edly doing so to garner better profile scores
— the software equivalent of citing your own
paper. Another way for researchers to game the
site might be to start lots of projects but not
to finish them, Fenner warns, leaving others
to refine them instead; the project originator
could then claim credit after the fine-tuned
versions of their software become prominent.

“I would love to get to the place where
people are trying to game Depsy, because it
would mean people are taking software reuse
seriously,” Priem says.

Ultimately, transparent metrics that demon-
strate the impact of code might enable software
creators to secure larger funds during grant
reviews, Hong hopes. Science’s coders deserve
more funding and support, he says — but get-
ting to that point requires a culture change
from everyone involved in scientific research.
“The real irony is that by not rewarding the use
of software, we’re actually putting roadblocks
in the way of science,” Hong says. ■

Dalmeet Singh Chawla is a science journalist
based in London.

1 1 6 | N A T U R E | V O L 5 2 9 | 7 J A N U A R Y 2 0 1 6

TOOLBOX

© 2015 Macmillan Publishers Limited. All rights reserved

	The unsung heroes of scientific software
	Note
	References

