Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Immunotherapy with gene-modified T cells: limiting side effects provides new challenges

Abstract

Genetic tools have been developed to efficiently engineer T-cell specificity and enhance T-cell function. Chimeric antigen receptors (CAR) use the antibody variable segments to direct specificity against cell surface molecules. T-cell receptors (TCR) can redirect T cells to intracellular target proteins, fragments of which are presented in the peptide-binding groove of HLA molecules. A recent clinical trial with CAR-modified T cells redirected against the B-cell lineage antigen CD19 showed dramatic clinical benefit in chronic lymphocytic leukaemia patients. Similarly, impressive clinical responses were seen in melanoma and synovial cell carcinoma with TCR-modified T cells redirected against the melanocyte lineage antigen MART-1 and the testis-cancer antigen NY-ESO-1. However, on and off-target toxicity was associated with most of these clinical responses, and fatal complications have been observed in some patients treated with gene modified T cells. This review will discuss factors that might contribute to toxic side effects of therapy with gene modified T cells, and outline potential strategies to retain anticancer activity while reducing unwanted side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Apperley JF, Jones L, Hale G, Waldmann H, Hows J, Rombos Y et al. Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukaemic relapse. Bone Marrow Transplant 1986; 1: 53–66.

    CAS  PubMed  Google Scholar 

  2. Ferrara JL, Levine JE, Reddy P, Holler E . Graft-versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  Google Scholar 

  3. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  4. Vincent K, Roy DC, Perreault C . Next-generation leukemia immunotherapy. Blood 2011; 118: 2951–2959.

    Article  CAS  Google Scholar 

  5. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26: 5233–5239.

    Article  CAS  Google Scholar 

  6. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  Google Scholar 

  7. Pagliara D, Savoldo B . Cytotoxic T lymphocytes for the treatment of viral infections and posttransplant lymphoproliferative disorders in transplant recipients. Curr Opin Infect Dis 2012; 25: 431–437.

    Article  CAS  Google Scholar 

  8. Sellar RS, Peggs KS . Therapeutic strategies for the prevention and treatment of cytomegalovirus infection. Expert Opin Biol Ther 2012; 12: 1161–1172.

    Article  CAS  Google Scholar 

  9. Eshhar Z . Adoptive cancer immunotherapy using genetically engineered designer T-cells: First steps into the clinic. Curr Opin Mol Ther 2010; 12: 55–63.

    CAS  PubMed  Google Scholar 

  10. Linnemann C, Schumacher TN, Bendle GM . T-cell receptor gene therapy: critical parameters for clinical success. J Invest Dermatol 2011; 131: 1806–1816.

    Article  CAS  Google Scholar 

  11. Uttenthal BJ, Chua I, Morris EC, Stauss HJ . Challenges in T cell receptor gene therapy. J Gene Med 2012; 14: 386–399.

    Article  CAS  Google Scholar 

  12. Sadelain M, Brentjens R, Riviere I . The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21: 215–223.

    Article  CAS  Google Scholar 

  13. Thomas S, Xue SA, Cesco-Gaspere M, San Jose E, Hart DP, Wong V et al. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J Immunol 2007; 179: 5803–5810.

    Article  CAS  Google Scholar 

  14. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010; 16: 565–570;, 1p following 570.

    Article  CAS  Google Scholar 

  15. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA . Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 2007; 67: 3898–3903.

    Article  CAS  Google Scholar 

  16. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 2007; 109: 2331–2338.

    Article  CAS  Google Scholar 

  17. Sommermeyer D, Uckert W . Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 2010; 184: 6223–6231.

    Article  CAS  Google Scholar 

  18. Voss RH, Thomas S, Pfirschke C, Hauptrock B, Klobuch S, Kuball J et al. Coexpression of the T-cell receptor constant alpha domain triggers tumor reactivity of single-chain TCR-transduced human T cells. Blood 2010; 115: 5154–5163.

    Article  CAS  Google Scholar 

  19. Ochi T, Fujiwara H, Okamoto S, An J, Nagai K, Shirakata T et al. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 2011; 118: 1495–1503.

    Article  CAS  Google Scholar 

  20. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 2012; 18: 807–815.

    Article  CAS  Google Scholar 

  21. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine 2011; 3: 95ra73.

    Article  CAS  Google Scholar 

  22. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  Google Scholar 

  23. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–4828.

    Article  CAS  Google Scholar 

  24. Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H . T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol 2004; 173: 7647–7653.

    Article  CAS  Google Scholar 

  25. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    Article  Google Scholar 

  26. Thomas S, Xue SA, Bangham CR, Jakobsen BK, Morris EC, Stauss HJ . Human T cells expressing affinity-matured TCR display accelerated responses but fail to recognize low density of MHC-peptide antigen. Blood 2011; 118: 319–329.

    Article  CAS  Google Scholar 

  27. Valitutti S, Lanzavecchia A . Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunology Today 1997; 18: 299–304.

    Article  CAS  Google Scholar 

  28. Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A . Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 1995; 375: 148–151.

    Article  CAS  Google Scholar 

  29. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114: 535–546.

    Article  CAS  Google Scholar 

  30. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19: 620–626.

    Article  CAS  Google Scholar 

  31. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

    Article  CAS  Google Scholar 

  32. Weber J, Yang JC, Topalian SL, Parkinson DR, Schwartzentruber DS, Ettinghausen SE et al. Phase I trial of subcutaneous interleukin-6 in patients with advanced malignancies. J Clin Oncol 1993; 11: 499–506.

    Article  CAS  Google Scholar 

  33. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18: 843–851.

    Article  CAS  Google Scholar 

  34. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M . Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18: 666–668.

    Article  CAS  Google Scholar 

  35. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673–1683.

    Article  CAS  Google Scholar 

  36. Russo V, Bondanza A, Ciceri F, Bregni M, Bordignon C, Traversari C et al. A dual role for genetically modified lymphocytes in cancer immunotherapy. Trends Mol Med 2012; 18: 193–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from Leukaemia & Lymphoma Research UK, Medical Research Council, Experimental Cancer Medicine Centre, EU ATTACK and ATTRACT Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H J Stauss or E C Morris.

Ethics declarations

Competing interests

HJS is on the scientific advisory board of Cell Medica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauss, H., Morris, E. Immunotherapy with gene-modified T cells: limiting side effects provides new challenges. Gene Ther 20, 1029–1032 (2013). https://doi.org/10.1038/gt.2013.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.34

Keywords

This article is cited by

Search

Quick links