Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans

Abstract

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E. coli ycfD is an arginine hydroxylase of the 50S ribosomal protein Rpl16.
Figure 2: NO66 catalyzes β-carbon histidine hydroxylation of 60S ribosomal protein Rpl8.
Figure 3: Histidyl hydroxylation of endogenous human Rpl8 is NO66 dependent.

Similar content being viewed by others

References

  1. Kaelin, W.G. Jr. & Ratcliffe, P.J. Mol. Cell 30, 393–402 (2008).

    Article  CAS  Google Scholar 

  2. Klose, R.J., Kallin, E.M. & Zhang, Y. Nat. Rev. Genet. 7, 715–727 (2006).

    Article  CAS  Google Scholar 

  3. Webby, C.J. et al. Science 325, 90–93 (2009).

    Article  CAS  Google Scholar 

  4. Hausinger, R.P. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    Article  CAS  Google Scholar 

  5. Loenarz, C. & Schofield, C.J. Trends Biochem. Sci. 36, 7–18 (2011).

    Article  CAS  Google Scholar 

  6. Iyer, L.M., Abhiman, S., de Souza, R.F. & Aravind, L. Nucleic Acids Res. 38, 5261–5279 (2010).

    Article  CAS  Google Scholar 

  7. Lu, Y. et al. Cell Cycle 8, 2101–2109 (2009).

    Article  CAS  Google Scholar 

  8. Sinha, K.M., Yasuda, H., Coombes, M.M., Dent, S.Y. & de Crombrugghe, B. EMBO J. 29, 68–79 (2010).

    Article  CAS  Google Scholar 

  9. Baba, T. et al. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  10. Yin, X. & Zabriskie, T.M. ChemBioChem 5, 1274–1277 (2004).

    Article  CAS  Google Scholar 

  11. Kaczanowska, M. & Ryden-Aulin, M. Microbiol. Mol. Biol. Rev. 71, 477–494 (2007).

    Article  CAS  Google Scholar 

  12. Suzuki, C. et al. Mol. Cancer Ther. 6, 542–551 (2007).

    Article  CAS  Google Scholar 

  13. Teye, K. et al. Am. J. Pathol. 164, 205–216 (2004).

    Article  CAS  Google Scholar 

  14. Tsuneoka, M., Koda, Y., Soejima, M., Teye, K. & Kimura, H. J. Biol. Chem. 277, 35450–35459 (2002).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Oncogene 24, 4873–4882 (2005).

    Article  CAS  Google Scholar 

  16. Fukahori, S. et al. J. Pediatr. Surg. 42, 1831–1840 (2007).

    Article  Google Scholar 

  17. Ishizaki, H. et al. Pathol. Int. 57, 672–680 (2007).

    Article  CAS  Google Scholar 

  18. Ogasawara, S. et al. Hepatol. Res. 40, 330–336 (2010).

    Article  CAS  Google Scholar 

  19. Tsuneoka, M. et al. Clin. Cancer Res. 10, 7347–7356 (2004).

    Article  CAS  Google Scholar 

  20. Eilbracht, J., Kneissel, S., Hofmann, A. & Schmidt-Zachmann, M.S. Eur. J. Cell Biol. 84, 279–294 (2005).

    Article  CAS  Google Scholar 

  21. Eilbracht, J. et al. Mol. Biol. Cell 15, 1816–1832 (2004).

    Article  CAS  Google Scholar 

  22. Coleman, M.L. & Ratcliffe, P.J. Curr. Pharm. Des. 15, 3904–3907 (2009).

    Article  CAS  Google Scholar 

  23. Fu, Y. et al. Angew. Chem. Int. Edn Engl. 49, 8885–8888 (2010).

    Article  CAS  Google Scholar 

  24. Noma, A. et al. J. Biol. Chem. 285, 34503–34507 (2010).

    Article  CAS  Google Scholar 

  25. Mullen, A.R. & Deberardinis, R.J. Trends Endocrinol. Metab. published online, doi:10.1016/j.tem.2012.06.009 (1 August 2012).

Download references

Acknowledgements

We thank the Biotechnology and Biological Sciences Research Council (BB/G014124/1 to P.J.R. and C.J.S.), Wellcome Trust (091857/Z/10/Z to P.J.R. and C.J.S.), Cancer Research UK for studentships (to R.S. and A.Z.), the Slovenian Academy of Sciences and Arts (R.S.), the Oxford Cancer Research Centre (M.L.C.) and the Oak Foundation (M.L.C.) for funding. We thank C. Ducho (Georg-August University, Göttingen, Germany) for the kind gift of standards of hydroxyarginine stereoisomers, R. Fischer for generating MS data and U. Ackermann and C. Tessmer for technical assistance in antibody preparation. R.B.H. is on leave from the Department of Pharmacognosy, Assiut University, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

W.G., A.W. and T.F. contributed equally; W.G. led in vitro assays and identified substrates by peptide screening, A.W. performed in vivo ycfD experiments and proteomics (with assistance from Z.Z.), and T.F. performed in vivo NO66 experiments. C.-h.H., R.S. and A.Z. contributed equally; C.-h.H. discovered ycfD Arg hydroxylase activity, R.S. analyzed ribosome structures and performed and analyzed all whole protein mass spectrometry, and A.Z. performed in vivo MINA53 experiments. N.G. and M.E.C. performed MINA53 proteomics. R.C. assisted with peptide design. C.L. undertook evolutionary analysis. N.D.L. performed amino acid analyses. T.D.W.C. and R.B.H. undertook NMR. L.G., M.M.M., D.C.T., J.S.M., Y.G., M.Y., P.L.-Y., B.M.K. and C.V.R. performed, supervised or advised on mass analyses. A.Y. designed and supervised shRNA work. A.P.H. and A.T. assisted with MINA53 and ycfD in vitro experiments, respectively. M.S.-Z. developed the NO66 antibody. M.J. synthesized hydroxylated standards. P.J.R. and G.M.P. contributed to the design of the MINA53 and NO66 project and the ycfD project, respectively. M.L.C. and C.J.S. designed and supervised the study, analyzed data and wrote the manuscript with assistance of other authors.

Corresponding authors

Correspondence to Mathew L Coleman or Christopher J Schofield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 14349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, W., Wolf, A., Feng, T. et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat Chem Biol 8, 960–962 (2012). https://doi.org/10.1038/nchembio.1093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing