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then MSigDB to find biological functions 
and pathways enriched in that set of genes.

“The most popular recipes, by a long shot, 
are those that relate to RNA-seq data: pre-
processing and QC, finding differentially 
expressed genes, and finding subnetworks of 
differentially expressed genes and identify-
ing the associated biological functions,” says 
Mesirov. To develop and test their recipes, 
they drew on their own work on gene regula-
tory networks in cancer1,2. Mesirov and her 
colleagues will keep developing and posting 
recipes and hope to entice the scientific com-
munity to submit recipes as well.

Cross-platform analyses
Choices and preferences will differ as exist-
ing tools are built into workflow approaches 
for integrated multi-omic analysis. Jorrit 
Boekel of the Karolinska Institute, Timothy 
Griffin of the University of Minnesota and 
their colleagues believe that the widely used 
platform Galaxy is especially promising for 
multi-omic types of analysis. The research-
ers say that after a period of rapid expansion 

Cancer: smoother journeys for molecular data
Vivien Marx

Data integration and tool interoperability can ease analyses of cancer ‘omics data and yield surprises.

Cancer ‘omics data sets are now available 
in all sizes, especially XXL, thanks to large-
scale tumor-genome sequencing efforts 
and the transcriptomic, epigenomic and 
proteomic characterization of thousands of 
tumors. These data help scientists decipher 
molecular mechanisms involved in tumor 
formation and cancer progression. Labs 
increasingly take on integrative analyses 
of these large, complex data, drawing on a 
wealth of bioinformatics tools and their own 
growing skill in using those tools. But these 
analyses are not yet a smooth, integrated 
ride.

Data integration is challenging on multi-
ple levels: a comprehensive readout of tumor 
biology data involves more than the simple 
addition of different data types, and compu-
tational tools do not readily converse with 
one another. A number of labs and cross-lab 
initiatives are addressing these issues.

Tool interoperators
According to an informal survey in 2012 by 
scientists at the Broad Institute of MIT and 
Harvard, there are over 10,000 bioinformat-
ics tools and more than 5,000 data sources. 
Jill Mesirov, the Broad’s chief informatics 
officer and director of computational biol-

ogy and informat-
ics, says it is hard to 
estimate the num-
ber of tools, because 
they keep emerg-
ing, and platforms 
with assemblies of 
tools such as Galaxy 
and GenePattern 
keep expanding. 
In cancer research, 
data,  too,  keeps 
growing, thanks to 
tumor sequencing 
projects such as The 

Cancer Genome Atlas and the work of the 
International Cancer Genome Consortium.

For analysis and integration of data such as 
whole-genome or exome sequences, single-
nucleotide polymorphisms, gene expres-
sion, and changes in epigenetic, proteomic 
or metabolomic processes, different tools 
are connected into a pipeline. Often scien-
tists must write scripts to ‘glue’ software tools 
together, says Mesirov, and tools differ in 
their data format needs such that, for exam-
ple, scientists have to convert output about 
gene variants from one tool so that they can 
look at the expression of these genes with 
another tool.

To address these issues, the Mesirov and 
Regev labs at the Broad, along with six other 
labs, developed the platform GenomeSpace, 
which is targeted toward the non-program-
ming biomedical investigator.

To construct the platform, the team built 
a ‘lightweight’ computational bridge con-
necting the widely used software Cytoscape, 
Galaxy, GenePattern, Genomica, the 
Integrative Genomics Viewer and the 
University of California at Santa Cruz Table 
Browser. The tools are written in a variety of 
programming languages and have different 
architectures, but the platform lets the tools 
speak computationally to one another.

The GenomeSpace team also addressed 
data conversion by curating existing data 
converters and by developing new convert-
ers, to give researchers fewer and cleaner 
choices.

The developers have also created ‘recipes’ 
consisting of prearranged tool combina-
tions for certain experimental questions. For 
example, a biologist might want to identify 
up- or downregulated pathways from expres-
sion data. The GenomeSpace recipe for that 
question: InSilicoDB as the source of gene 
expression data sets, GenePattern for iden-
tifying differentially expressed genes, and 

There are many gene expression data resources 
with data collected on different platforms; the 
search engine SEEK can help people explore them.
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GenomeSpace bridges 
widely used software 
tools, so scientists 
don’t have to write 
scripts to glue software 
tools together, says 
Jill Mesirov.
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of the genomics and 
t ranscr iptomics 
tools hosted there, 
Galaxy has been 
the home for multi-
omic applications 
in proteomics and 
metabolomics since 
20133.

When scientists 
want to move beyond 
their favorite tools 
and platforms and, 
for example, hunt 
for data broadly and 
then integrate it, they 

run into some speed bumps. Some of these are 
being addressed by Olga Troyanskaya and her 
team at Princeton University, who have created 
SEEK (search-based exploration of expres-
sion compendia), a search engine that lets 
researchers explore the many gene expression 
data resources that house data collected with 
different platforms, such as microarrays and 
high-throughput sequencing technologies, on 
over 50 instrument types. Troyanskaya is at the 
Lewis-Sigler Institute of Integrative Genomics 
and the computer science department, and 
SEEK’s co-developers are Moses Charikar and 
Kai Li, her colleagues in the computer science 
department4.

SEEK helps scientists find associations 
between coexpressed genes and limit their 
analysis to a particular disease or pathway. 
It can help researchers find the knowledge 
that’s hidden in the piles of banked expres-
sion data, says Troyanskaya.

“Biomedical labs cannot download thou-
sands of expression data sets, analyze each 
of them, come up with a systematic quality 
assessment metric to identify relevant and 
accurate data sets for their area of interest, 
and then somehow integrate signals from any 
such relevant data sets,” says Troyanskaya. “In 
fact, simple solutions that trust each data set 
equally fail completely in this task.”

One important SEEK element is ‘hubbi-
ness correction,’ which is a way of removing 
genes that might skew a search. For example, 
well-connected ‘hubby’ genes can dominate 
the list of gene coexpression results. These 
hubby genes are prominent because they 
represent global, well-coexpressed processes, 
says Charikar. Hubbiness correction gets to 
the genes that matter in a particular query. 
Without this correction, Troyanskaya says, 
hubby genes such as TP53 would likely be 
among the top results of almost any query 
related to cancer. With hubbiness correction,  

these hubby genes can be side-stepped, 
allowing researchers to integrate data and 
find connections between the data and path-
ways that had not been previously apparent. 
Cancer researchers can, for example, more 
quickly detect processes related to faster and 
uncontrolled cellular growth and see which 
factors enable this growth in the tumor types 
they are studying.

Moving beyond point-and-click
Experimental biologists used to resist com-
putational tools that went beyond point-
and-click analysis, says Wolfgang Huber, an 
‘omics researcher at the European Molecular 
Biology Laboratory. But biologists have 
learned to edit, adapt and compose scripts.

A pre-devised query can be fine, such as 
a GenomeSpace recipe for RNA-seq data to 
find differentially expressed genes, locate 
subnetworks of such genes and identify func-
tion, says Huber. Though complex enough 
to require computational tools, the analysis 
is often straightforward enough for a pre
assembled analysis pipeline. But there are 
issues to keep in mind, because data integra-
tion is not easily standardized.

Among the issues to heed, says Huber, are 
batch effects: ‘omics data are calibrated not 
in universal physical units, such as meters or 
kilograms, but rather in units specific to a lab. 
This situation is not unlike that in the Middle 
Ages, when towns would define their own 
measures in feet, inches or stones, he says. 
The integration of data across different cit-
ies, as was sometimes needed for commerce 
and trade, could be challenging.

Another hurdle to integration is that dif-
ferent data sets can have different rates of 
false positives and false negatives, says Huber. 
They might have different biases, which push 
measurements slightly off in a systematic 
way, such as when a bathroom scale adds two 
kilograms to a person’s true weight. “This is 

not really a problem 
as long as one uses 
these data to moni-
tor one’s own weight 
over time, but might 
become a problem 
when integrating 
the data,” he says.

Yet another issue 
relates to semantics. 
Integrating genetic, 
transcriptomic and 
prote om i c  d at a 
means taking into 
account that genes 

are linked to transcripts and transcripts are 
linked to proteins. “This is simple at first 
sight, but can become arbitrarily subtle when 
alleles, paralogs, isoforms, post-translational 
modifications are important for the biology 
considered,” says Huber.

These challenges are neither new nor 
particular to genomics or cancer, but they 
apply to all reanalyses of data. Integrating a 
data set from another lab or a database with 
one’s own data to compare diseases A and B 
might seem straightforward, says Huber. But 
it also implicitly, and perhaps unbeknownst 
to a researcher, might compare young people 
with old, people of one gender with people of 
another, or people leading one lifestyle with 
people leading another, and the incidence 
of the disease might be different between 
these groups. After completing an integrated 
analysis, a scientist might end up reporting a 
molecular effect purported to relate to these 
diseases, when in fact the differences are 
explained by the underlying lifestyles.

When designing and adding to their 
Bioconductor data analysis platform for 
‘omics analyses, Huber and his colleagues 
keep these aspects in mind, he says5. They 
want to educate biologists about statistics 
and programming and entice computer sci-
entists and physicists to learn about biology. 
They also want to ensure that analyses can be 
inspected and re-run by others.

Researchers with particular areas of exper-
tise need to be able to add to the functionality 
of software tools and make them interoper-
able. Often these scientists with specialized 
expertise are not necessarily the best software 
engineers, but they know which applica-
tions would be helpful and which methods 
are currently being used, says Huber. Code 
produced by these scientists might need to 
be polished by professional programmers, 
but over the course of the past 14 years with 
Bioconductor Huber has seen users becom-
ing active tool developers.

Data integration gives scientists a more 
systems-level view of their data—for exam-
ple, a way to query pathways involved in 
tumor progression. But surprises await those 
integrating ‘omics data.

Data integration surprises
Data integration can enable prediction. For 
example, researchers might integrate data 
to see whether genomic, epigenomic and 
proteomic signatures of tumor cells predict 
reactions to perturbations. This knowledge 
can help determine whether a cancer patient 
might react favorably to an approved drug or 

Hubby genes such 
as TP53 get in 
the way of cancer 
data integration. 
Hubbiness correction 
is a way around those 
hindrances, says Olga 
Troyanskaya.
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‘Omics data are not 
calibrated in universal 
physical units, so 
researchers must be 
cautious about them, 
says Wolfgang Huber.
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one still in clinical trials. However, such inte-
grative prediction is often difficult.

In cooperation with the National Cancer 
Institute, a team of scientists—the Dialogue 
for Reverse Engineering Assessment and 
Methods (DREAM)—recently compared the 
ability of almost four dozen drug-sensitivity 
prediction algorithms to predict the effects 
of over two dozen compounds on over 50 
breast cancer cell lines for which genomic, 
proteomic and epigenomic data had been 
collected6. For example, the cell lines had 

been profiled for 
mutations, copy-
number variation, 
methylation, gene 
expression and pro-
tein abundance.

The team ranked 
t he  resu l t s  and 
found that the pre-
dictions were robust 
for the majority of 
tested compounds. 
But there was also 
an interesting, unex-

pected result, says Gustavo Stolovitzky, the 
IBM researcher leading the DREAM proj-
ect: most of the signal came from the gene 
expression data. Adding the other data types 
did not boost the performance of the algo-
rithms as much as gene expression data did.

There are many ways to explain this result, 
says Stolovitzky. Gene expression experi-
ments are probably the most mature of the 
technologies in this data integration and 
prediction comparison. The outcomes likely 
have the least amount of technical noise, and 
labs are perhaps most familiar with analyz-
ing these types of data. But he also wonders 
whether the scientific community just might 
not yet know how to use and integrate data 
from different types of molecular character-
izations, such as copy-number variation or 
proteomics data.

Perhaps, says Huber, researchers are not 
yet as adept at reading the genome as they are 
at reading transcriptomes. Exome-seq data 
do not cover potentially important regulatory 
regions, and many tumor-driving mutations 
are individually rare, because tumors arise by 
random mutation and selection. Different 

mutations in the same pathway can cause the 
same tumor phenotype, but, Huber says, “we 
currently don’t understand these groupings.” 
Another complication is that proteomics 
methods are currently limited by sensitivity.

The transcriptome offers an important 
readout of the genome. Anything that is 
important for a cell—its genome, its meta-
bolic and proliferative state, its epigenome 
and other factors—tends to be reflected in 
the transcriptome, says Huber. This may be 
particularly true for cell lines, whereas in 
multicellular organisms with plenty of tis-
sue heterogeneity, this aspect might be more 
nuanced.

Cancer biologist Stephen Friend, too, sees 
gene expression readout as important for 
integrating data. Friend is the former vice 
president of cancer research at Merck, and 
he now directs Sage Bionetworks, a nonprofit 
that builds platforms that enable collabora-
tion and data sharing.

At Rosetta Inpharmatics, a genome-analysis 
company Friend cofounded and which Merck 
acquired, he and colleagues did large-scale  
gene expression experiments. He likens the 

Data integration can 
deliver interesting, 
unexpected results, says 
Gustavo Stolovitzky.
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e x p e r i m e n t s  t o 
h a n g i n g  2 0 , 0 0 0 
microphones in a cell 
in order to listen to 
each gene’s activity. 
Such types of experi-
ments, although per-
haps not practiced 
on the same scale, 
were plentiful in labs 
between 2002 and 
2010, he says. Then, 
sequencing emerged, 
prices dropped and 
labs began finding 
‘actionable’ muta-

tions that suggest a clinical course of action 
and offer a view of tumor biology. At the time, 
many scientists belittled arrays for their indi-
rect and inferior approach, whereas the exact 
readout of changes in the DNA sequence was 
seen as the “absolute truth.”

What ensued, says Friend, was a conflict 
between two schools: one that looks to muta-
tions in an altered component list in order to 
see what is amiss in disease, and another that 
looks at expressed genes as a readout of the 
integrated state of the cell. “Eventually the 
two of them are going to have to meet,” he 
says. That meeting will require an under-
standing of genomic alterations and integra-
tion of these data in a network context, he 
says.

That kind of data integration calls for 
mutational data, expression data and more. 
But for now, the abilities to capture many 
aspects of the altered component list do not 
match the aggregated benefit that comes 
from expression profiling, says Friend. 
Scientists need a much better understanding 
of the consequences of the altered compo-
nent list to use it as a direct map of disease.

For now, the “20,000 microphones” in 
expression analysis deliver a better readout 
of the state of the cell, Friend says, which 
explains the DREAM result highlighting the 
power of gene expression data. “Over time 
I would be surprised if that continues to be 
true,” he says.

As Stolovitzky explains, the machine learn-
ing algorithms from the DREAM competi-
tion all calculate the rules governing cancer 
cell behavior in smart and sophisticated 
ways. But, he likes to say, when it comes to 
machine learning, the machine does learn, 
but we don’t.

For machines and scientists to learn how 
to better integrate data, it will take increased 
data riches from a variety of resources and 

experiments. Researchers will still need 
to fit the pieces together into an integrated 
narrative to explain, for example, why a cell 
turns cancerous. That narrative can often be 
incomplete, as it is, for example, in the case of 
triple-negative breast cancer, which a genetic 
test might reveal. Physicians know this diag-
nosis means a patient faces an aggressive 
tumor. The answer to what makes the tumor 
tick so aggressively stands to come from data 
integration of all pieces of information: gene 
expression, proteomic data and clinical data. 
Despite the many efforts underway, the best 
way to interrogate these data in an integrated 
way remains elusive, says Stolovitzky.

An example of a different sequence of 
integration steps is one from the lab of Trey 
Ideker at the University of California at San 
Diego7. The analysis starts with mutational 
profiling, then groups genes according to 
pathways in such a way that molecular pat-
terns appear with more prominence. These 
patterns are then used to group tumor sub-
types.

The subtypes grouped according to muta-
tion data were different than the subtypes 
defined by expression data, says Ideker. 
While the reason for this difference still has 
to be resolved, he guesses that the mutations 
are upstream and causal, whereas expression 
changes indicate downstream responses and 
effects from the tumor microenvironment.

From genes to networks
Ideker and his colleagues note that stratifying 
tumor data according to expression profiles is 
challenging for a number of reasons, such as 
the ample opportunities for overfitting data. 
Comparing and integrating mutational pro-
files is tough because the same tumor type 
can have utterly different mutational pat-
terns, a situation that hinders research and 
makes treatment choices hard. Ideker and 
his team used mutation profiles to integrate 
heterogeneous data from a group of ovar-
ian, uterine and lung cancer patients whose 
genomes were characterized as part of The 
Tumor Genome Atlas.

Even though individual mutations from 
one tumor genome did not match those 
from the next, the researchers found a way to 
group the data according to gene pathways 
such as cell proliferation and functional net-
works connected to such aspects as protein 
transport, beta-catenin signaling and fibro-
blast growth factor signaling.

Many of the 350 ovarian tumors they 
looked at, for example, had mutations in the 
tumor suppressor gene TP53 (p53), which are 

well-known cancer drivers. But, says Ideker, 
they sought an integrated result of molecu-
lar events that were exclusive to a subset of 
samples—and they found it.

Ideker hopes that the success in stratify-
ing these ‘omics data with a pathway-based 
integrative view is a reason to continue 
with tumor sequencing, and also a clue that 
will lead researchers to place at least equal 
emphasis on understanding how these 
sequenced genes connect to one another in 
networks and pathways. The network per-
spective made it much more apparent which 
functional areas the mutations in these 
tumors were hitting. “It’s the same damn 
networks,” he says of the finding that made 
it possible to stratify the data into delineated 
tumor subtypes.

To hunt for network-based clues in anoth-
er group of genomes, Ideker is continuing 
with this approach. These data are from 
ovarian cancer patients whose tumors are 
unperturbed by chemotherapy. Studying the 
DNA sequences and the mutations yields no 
pattern, he says, but a pattern emerges when 
the team integrates the mutations of these 
‘non-responders’ in a network context. He 
is currently validating these results in cancer 
cell lines, which will help clarify the molecu-
lar mechanisms that lead the cells to resist 
chemotherapy.

A networked view of data offers some 
answers, and it yields more questions. “The 
network gives us a high-level clue as to what 
those mechanisms could be, but then you 
have to delve into the biochemistry,” says 
Ideker.

Researchers must remember that data 
integration in network-based analysis does 
not automatically deliver conclusions about 
causality. “I believe that we simply don’t know 
enough about the connections to add that 
linear alignment so far,” Ideker says. In order 
to expand the abilities of network-based anal-
ysis, whether for tumors or for other biologi-
cal systems, researchers will need more data, 
as well as more tools that are able to commu-
nicate with one another.
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The same tumor type 
can have utterly 
different mutational 
patterns. That makes 
comparing and 
integrating such profiles 
tough, says Trey Ideker.
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