Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MuSK controls where motor axons grow and form synapses

An Erratum to this article was published on 01 February 2008

This article has been updated

Abstract

Motor axons approach muscles that are regionally prespecialized, as acetylcholine receptors are clustered in the central region of muscle before and independently of innervation. This muscle prepattern requires MuSK, a receptor tyrosine kinase that is essential for synapse formation. It is not known how muscle prepatterning is established, and whether motor axons recognize this prepattern. Here we show that expression of Musk is prepatterned in muscle and that early Musk expression in developing myotubes is sufficient to establish muscle prepatterning. We further show that ectopic Musk expression promotes ectopic synapse formation, indicating that muscle prepatterning normally has an instructive role in directing where synapses will form. In addition, ectopic Musk expression stimulates synapse formation in the absence of Agrin and rescues the lethality of Agrn mutant mice, demonstrating that the postsynaptic cell, and MuSK in particular, has a potent role in regulating the formation of synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endogenous Musk expression is patterned independent of innervations, whereas HSA::Musk is expressed uniformly in skeletal muscle.
Figure 2: High ectopic Musk expression induces ectopic AChR clusters and disrupts AChR prepatterning.
Figure 3: High ectopic Musk expression promotes motor axon outgrowth.
Figure 4: Ectopic Musk induces ectopic synapses that arise from axon collateral branching.
Figure 5: Synaptic AChR clusters mature, whereas ectopic non-innervated AChR clusters remain simplified and are not extinguished in Musk-H mice.
Figure 6: The Musk-L transgene is sufficient to initiate but not to maintain muscle prepatterning.
Figure 7: Ectopic MuSK promotes synapse formation and stabilization in the absence of Agrin.

Similar content being viewed by others

Change history

  • 11 January 2008

    In the version of this article initially published online, several items were omitted from the text. On page 20, left column, the sentence “To determine whether this restricted pattern…regulatory region of the human skeletal α-actin (HAS; Fig. 1e)” should read “To determine whether this restricted pattern…regulatory region of the human skeletal α-actin gene (HAS; Fig. 1e)”. On page 25, left column, the sentence “Muscle is pre-specialized in the central, prospective synaptic region before and independently of innervation, and have led to a revised model of the steps and mechanisms that regulate neuromuscular synapse formation” should read “Muscle is pre-specialized in the central, prospective synaptic region before and independently of innervation, and these findings have led to a revised model of the steps and mechanisms that regulate neuromuscular synapse formation.” Finally, on page 19, left column, the sentence “This organizational feature of neurons is essential for forming synapses on appropriate target cells and establishing functional neuronal circuits” should read “This organizational feature of neurons is critical for forming synapses on appropriate target cells and establishing functional neuronal circuits.” These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Burden, S.J. The formation of neuromuscular synapses. Genes Dev. 12, 133–148 (1998).

    Article  CAS  Google Scholar 

  2. Sanes, J.R. & Lichtman, J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  3. Sanes, J.R. & Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  Google Scholar 

  4. Bennett, M.R. & Pettigrew, A.G. The formation of synapses in striated muscle during development. J. Physiol. (Lond.) 241, 515–545 (1974).

    Article  CAS  Google Scholar 

  5. Bennett, M.R. & Pettigrew, A.G. The formation of neuromuscular synapses. Cold Spring Harb. Symp. Quant. Biol. 40, 409–424 (1976).

    Article  CAS  Google Scholar 

  6. Kandel, E.R., Schwartz, J.H. & Jessell, T.M. Principles of Neural Science (McGraw-Hill, Health Professions Division, New York, 2000).

    Google Scholar 

  7. Schaeffer, L., de Kerchove d' Exaerde, A. & Changeux, J.P. Targeting transcription to the neuromuscular synapse. Neuron 31, 15–22 (2001).

    Article  CAS  Google Scholar 

  8. Valenzuela, D.M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).

    Article  CAS  Google Scholar 

  9. Glass, D.J. et al. Agrin acts via a MuSK receptor complex. Cell 85, 513–523 (1996).

    Article  CAS  Google Scholar 

  10. Glass, D.J. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation and is a functional receptor for agrin. Cold Spring Harb. Symp. Quant. Biol. 61, 435–444 (1996).

    Article  CAS  Google Scholar 

  11. Glass, D.J. & Yancopoulos, G.D. Sequential roles of agrin, MuSK and rapsyn during neuromuscular junction formation. Curr. Opin. Neurobiol. 7, 379–384 (1997).

    Article  CAS  Google Scholar 

  12. Yang, X., Li, W., Prescott, E.D., Burden, S.J. & Wang, J.C. DNA topoisomerase IIβ and neural development. Science 287, 131–134 (2000).

    Article  CAS  Google Scholar 

  13. Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001).

    Article  CAS  Google Scholar 

  14. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).

    Article  CAS  Google Scholar 

  15. Lin, W. et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46, 569–579 (2005).

    Article  CAS  Google Scholar 

  16. Misgeld, T., Kummer, T.T., Lichtman, J.W. & Sanes, J.R. Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc. Natl. Acad. Sci. USA 102, 11088–11093 (2005).

    Article  CAS  Google Scholar 

  17. Flanagan-Steet, H., Fox, M.A., Meyer, D. & Sanes, J.R. Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132, 4471–4481 (2005).

    Article  CAS  Google Scholar 

  18. Panzer, J.A., Song, Y. & Balice-Gordon, R.J. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J. Neurosci. 26, 934–947 (2006).

    Article  CAS  Google Scholar 

  19. DeChiara, T.M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).

    Article  CAS  Google Scholar 

  20. Strochlic, L., Cartaud, A. & Cartaud, J. The synaptic muscle-specific kinase (MuSK) complex: new partners, new functions. BioEssays 27, 1129–1135 (2005).

    Article  CAS  Google Scholar 

  21. Slater, C.R. Neural influence on the postnatal changes in acetylcholine receptor distribution at nerve-muscle junctions in the mouse. Dev. Biol. 94, 23–30 (1982).

    Article  CAS  Google Scholar 

  22. Slater, C.R. Postnatal maturation of nerve-muscle junctions in hindlimb muscles of the mouse. Dev. Biol. 94, 11–22 (1982).

    Article  CAS  Google Scholar 

  23. Nguyen, Q.T. & Lichtman, J.W. Mechanism of synapse disassembly at the developing neuromuscular junction. Curr. Opin. Neurobiol. 6, 104–112 (1996).

    Article  CAS  Google Scholar 

  24. Williams, P.E. & Goldspink, G. Longitudinal growth of striated muscle fibres. J. Cell Sci. 9, 751–767 (1971).

    CAS  PubMed  Google Scholar 

  25. Zhang, M. & McLennan, I.S. During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends. Dev. Dyn. 204, 168–177 (1995).

    Article  CAS  Google Scholar 

  26. Jones, G., Moore, C., Hashemolhosseini, S. & Brenner, H.R. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J. Neurosci. 19, 3376–3383 (1999).

    Article  CAS  Google Scholar 

  27. Moore, C., Leu, M., Muller, U. & Brenner, H.R. Induction of multiple signaling loops by MuSK during neuromuscular synapse formation. Proc. Natl. Acad. Sci. USA 98, 14655–14660 (2001).

    Article  CAS  Google Scholar 

  28. Sander, A., Hesser, B.A. & Witzemann, V. MuSK induces in vivo acetylcholine receptor clusters in a ligand-independent manner. J. Cell Biol. 155, 1287–1296 (2001).

    Article  CAS  Google Scholar 

  29. Lacazette, E., Le Calvez, S., Gajendran, N. & Brenner, H.R. A novel pathway for MuSK to induce key genes in neuromuscular synapse formation. J. Cell Biol. 161, 727–736 (2003).

    Article  CAS  Google Scholar 

  30. Arber, S., Burden, S.J. & Harris, A.J. Patterning of skeletal muscle. Curr. Opin. Neurobiol. 12, 100–103 (2002).

    Article  CAS  Google Scholar 

  31. Minty, A.J., Alonso, S., Caravatti, M. & Buckingham, M.E. A fetal skeletal muscle actin mRNA in the mouse and its identity with cardiac actin mRNA. Cell 30, 185–192 (1982).

    Article  CAS  Google Scholar 

  32. Brennan, K.J. & Hardeman, E.C. Quantitative analysis of the human α-skeletal actin gene in transgenic mice. J. Biol. Chem. 268, 719–725 (1993).

    CAS  PubMed  Google Scholar 

  33. Fontaine, B., Sassoon, D., Buckingham, M. & Changeux, J.P. Detection of the nicotinic acetylcholine receptor α-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 7, 603–609 (1988).

    Article  CAS  Google Scholar 

  34. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    Article  CAS  Google Scholar 

  35. Hesser, B.A., Sander, A. & Witzemann, V. Identification and characterization of a novel splice variant of MuSK. FEBS Lett. 442, 133–137 (1999).

    Article  CAS  Google Scholar 

  36. Fu, A.K., Cheung, J., Smith, F.D., Ip, F.C. & Ip, N.Y. Overexpression of muscle specific kinase increases the transcription and aggregation of acetylcholine receptors in Xenopus embryos. Brain Res. Mol. Brain Res. 96, 21–29 (2001).

    Article  CAS  Google Scholar 

  37. Misgeld, T. et al. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36, 635–648 (2002).

    Article  CAS  Google Scholar 

  38. Brandon, E.P. et al. Aberrant patterning of neuromuscular synapses in choline acetyltransferase–deficient mice. J. Neurosci. 23, 539–549 (2003).

    Article  CAS  Google Scholar 

  39. Watty, A. et al. The in vitro and in vivo phosphotyrosine map of activated MuSK. Proc. Natl. Acad. Sci. USA 97, 4585–4590 (2000).

    Article  CAS  Google Scholar 

  40. Campagna, J.A., Ruegg, M.A. & Bixby, J.L. Agrin is a differentiation-inducing 'stop signal' for motoneurons in vitro. Neuron 15, 1365–1374 (1995).

    Article  CAS  Google Scholar 

  41. Dimitropoulou, A. & Bixby, J.L. Motor neurite outgrowth is selectively inhibited by cell surface MuSK and agrin. Mol. Cell. Neurosci. 28, 292–302 (2005).

    Article  CAS  Google Scholar 

  42. Herbst, R., Avetisova, E. & Burden, S.J. Restoration of synapse formation in Musk mutant mice expressing a Musk/Trk chimeric receptor. Development 129, 5449–5460 (2002).

    Article  CAS  Google Scholar 

  43. Jaworski, A. & Burden, S.J. Neuromuscular synapse formation in mice lacking motor neuron– and skeletal muscle–derived Neuregulin-1. J. Neurosci. 26, 655–661 (2006).

    Article  CAS  Google Scholar 

  44. Shefer, G. & Yablonka-Reuveni, Z. Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol. Biol. 290, 281–304 (2005).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Jessell for antibodies to Isl1/Isl2, and HB9cre and Isl2DTA mice, J. Sanes for AgrnΔZ and Agrn-null mice, E. Hardeman for pHSA2000CAT, J. Fan for technical assistance, and M. Raff, J. Dasen, W. Gan, R. Lehmann and D. Littman for comments on the manuscript. This work was supported with funds from the US National Institutes of Health (NS36193) and the Robert Packard Center for ALS Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J Burden.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Methods (PDF 4473 kb)

Supplementary Video 1 (AVI 9113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, N., Burden, S. MuSK controls where motor axons grow and form synapses. Nat Neurosci 11, 19–27 (2008). https://doi.org/10.1038/nn2026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing