Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Protein adaptation: mitotic functions for membrane trafficking proteins

Abstract

Membrane trafficking and mitosis are two essential processes in eukaryotic cells. Surprisingly, many proteins best known for their role in membrane trafficking have additional 'moonlighting' functions in mitosis. Despite having proteins in common, there is insufficient evidence for a specific connection between these two processes. Instead, these phenomena demonstrate the adaptability of the membrane trafficking machinery that allows its repurposing for different cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitotic functions for membrane trafficking proteins.
Figure 2: Rapid inactivation techniques for studying moonlighting roles.

Similar content being viewed by others

References

  1. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Jeffery, C. J. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Jeffery, C. J. Moonlighting proteins: old proteins learning new tricks. Trends Genet. 19, 415–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Copley, S. D. Moonlighting is mainstream: paradigm adjustment required. Bioessays 34, 578–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Royle, S. J. The role of clathrin in mitotic spindle organisation. J. Cell Sci. 125, 19–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Maro, B., Johnson, M. H., Pickering, S. J. & Louvard, D. Changes in the distribution of membranous organelles during mouse early development. J. Embryol. Exp. Morphol. 90, 287–309 (1985).

    CAS  PubMed  Google Scholar 

  8. Okamoto, C. T., McKinney, J. & Jeng, Y. Y. Clathrin in mitotic spindles. Am. J. Physiol. Cell Physiol. 279, C369–C374 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Louvard, D. et al. A monoclonal antibody to the heavy chain of clathrin. EMBO J. 2, 1655–1664 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hepler, P. K., McIntosh, J. R. & Cleland, S. Intermicrotubule bridges in mitotic spindle apparatus. J. Cell Biol. 45, 438–444 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Booth, D. G., Hood, F. E., Prior, I. A. & Royle, S. J. A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging. EMBO J. 30, 906–919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheeseman, L. P., Harry, E. F., McAinsh, A. D., Prior, I. A. & Royle, S. J. Specific removal of TACC3/ch-TOG/clathrin at metaphase deregulates kinetochore fiber tension. J. Cell Sci. 126, 2102–2113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, W. et al. Clathrin recruits phosphorylated TACC3 to spindle poles for bipolar spindle assembly and chromosome alignment. J. Cell Sci. 123, 3645–3651 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, C. H., Hu, C. K. & Shih, H. M. Clathrin heavy chain mediates TACC3 targeting to mitotic spindles to ensure spindle stability. J. Cell Biol. 189, 1097–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hood, F. E. et al. Coordination of adjacent domains mediates TACC3–ch-TOG–clathrin assembly and mitotic spindle binding. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201211127 (2013).

  18. Okamoto, M., Schoch, S. & Sudhof, T. C. EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J. Biol. Chem. 274, 18446–18454 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Pucharcos, C., Estivill, X. & de la Luna, S. Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett. 478, 43–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez-Fraticelli, A. E. et al. The Cdc42 GEF intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J. Cell Biol. 189, 725–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosse, C., L'Hoste, S., Offner, N., Picard, A. & Camonis, J. RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis. J. Biol. Chem. 278, 30597–30604 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Fillatre, J. et al. Dynamics of the subcellular localization of RalBP1/RLIP through the cell cycle: the role of targeting signals and of protein–protein interactions. FASEB J. 26, 2164–2174 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Quaroni, A. & Paul, E. C. Cytocentrin is a Ral-binding protein involved in the assembly and function of the mitotic apparatus. J. Cell Sci. 112, 707–718 (1999).

    CAS  PubMed  Google Scholar 

  24. Ma, M. P. & Chircop, M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J. Cell Sci. 125, 4372–4382 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Hawryluk, M. J. et al. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic 7, 262–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, Z. & Zheng, Y. A requirement for epsin in mitotic membrane and spindle organization. J. Cell Biol. 186, 473–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem. 275, 1365–1370 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol. 79, 336–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Shimizu, H., Nagamori, I., Yabuta, N. & Nojima, H. GAK, a regulator of clathrin-mediated membrane traffic, also controls centrosome integrity and chromosome congression. J. Cell Sci. 122, 3145–3152 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Tanenbaum, M. E. et al. Cyclin G-associated kinase promotes microtubule outgrowth from chromosomes during spindle assembly. Chromosoma 119, 415–424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borner, G. H. et al. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 197, 141–160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Foraker, A. B. et al. Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. J. Cell Biol. 198, 591–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Thompson, H. M., Cao, H., Chen, J., Euteneuer, U. & McNiven, M. A. Dynamin 2 binds γ-tubulin and participates in centrosome cohesion. Nature Cell Biol. 6, 335–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Tanabe, K. & Takei, K. Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot–Marie–Tooth mutant. J. Cell Biol. 185, 939–948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thompson, H. M., Skop, A. R., Euteneuer, U., Meyer, B. J. & McNiven, M. A. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr. Biol. 12, 2111–2117 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Conery, A. R., Sever, S. & Harlow, E. Nucleoside diphosphate kinase Nm23-H1 regulates chromosomal stability by activating the GTPase dynamin during cytokinesis. Proc. Natl Acad. Sci. USA 107, 15461–15466 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. W., Surka, M. C., Schroeter, T., Lukiyanchuk, V. & Schmid, S. L. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol. Biol. Cell 19, 5347–5359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konopka, C. A., Schleede, J. B., Skop, A. R. & Bednarek, S. Y. Dynamin and cytokinesis. Traffic 7, 239–247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joshi, S. et al. The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells. Mol. Cancer Ther. 9, 1995–2006 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Chircop, M. et al. Calcineurin activity is required for the completion of cytokinesis. Cell. Mol. Life Sci. 67, 3725–3737 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Gu, C. et al. Direct dynamin–actin interactions regulate the actin cytoskeleton. EMBO J. 29, 3593–3606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Molla-Herman, A. et al. Targeting of β-arrestin2 to the centrosome and primary cilium: role in cell proliferation control. PLoS ONE 3, e3728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shankar, H. et al. Non-visual arrestins are constitutively associated with the centrosome and regulate centrosome function. J. Biol. Chem. 285, 8316–8329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mishra, S. K., Watkins, S. C. & Traub, L. M. The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc. Natl Acad. Sci. USA 99, 16099–16104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mishra, S. K. et al. Functional dissection of an AP-2 β2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J. Biol. Chem. 280, 19270–19280 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Lehtonen, S. et al. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis. Mol. Biol. Cell 19, 2949–2961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, X. M., Patel, D. D., Acosta, J. C., Gil, J. & Soutar, A. K. Premature senescence in cells from patients with autosomal recessive hypercholesterolemia (ARH): evidence for a role for ARH in mitosis. Arterioscler. Thromb. Vasc. Biol. 31, 2270–2277 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nature Rev. Mol. Cell Biol. 10, 583–596 (2009).

    Article  CAS  Google Scholar 

  51. Smith, C. M. & Chircop, M. Clathrin-mediated endocytic proteins are involved in regulating mitotic progression and completion. Traffic 13, 1628–1641 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Young, J., Menetrey, J. & Goud, B. RAB6C is a retrogene that encodes a centrosomal protein involved in cell cycle progression. J. Mol. Biol. 397, 69–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Kops, G. J. et al. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol. 169, 49–60 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirose, H. et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J. 23, 1267–1278 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Varma, D., Dujardin, D. L., Stehman, S. A. & Vallee, R. B. Role of the kinetochore/cell cycle checkpoint protein ZW10 in interphase cytoplasmic dynein function. J. Cell Biol. 172, 655–662 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miserey-Lenkei, S. et al. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J. 25, 278–289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Warren, G. Membrane partitioning during cell division. Annu. Rev. Biochem. 62, 323–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Fielding, A. B. & Royle, S. J. Mitotic inhibition of clathrin-mediated endocytosis. Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-012-1250-8 (2013).

  61. Puhka, M., Vihinen, H., Joensuu, M. & Jokitalo, E. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 179, 895–909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lucocq, J. M., Berger, E. G. & Warren, G. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J. Cell Biol. 109, 463–474 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. Tooze, J. & Hollinshead, M. Evidence that globular Golgi clusters in mitotic HeLa cells are clustered tubular endosomes. Eur. J. Cell Biol. 58, 228–242 (1992).

    CAS  PubMed  Google Scholar 

  64. Waterman-Storer, C. M., Sanger, J. W. & Sanger, J. M. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions. Cell. Motil. Cytoskeleton 26, 19–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Niswonger, M. L. & O'Halloran, T. J. A novel role for clathrin in cytokinesis. Proc. Natl Acad. Sci. USA 94, 8575–8578 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Radulescu, A. E. & Shields, D. Clathrin is required for postmitotic Golgi reassembly. FASEB J. 26, 129–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robinson, M. S., Sahlender, D. A. & Foster, S. D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev. Cell 18, 324–331 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holland, A. J., Fachinetti, D., Han, J. S. & Cleveland, D. W. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc. Natl Acad. Sci. USA 109, E3350–E3357 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Platani, M. et al. The Nup107–160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol. Biol. Cell 20, 5260–5275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zuccolo, M. et al. The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21, 4–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Boettner, D. R., Chi, R. J. & Lemmon, S. K. Lessons from yeast for clathrin-mediated endocytosis. Nature Cell Biol. 14, 2–10 (2012).

    Article  CAS  Google Scholar 

  75. Kakui, Y., Sato, M., Okada, N., Toda, T. & Yamamoto, M. Microtubules and Alp7–Alp14 (TACC–TOG) reposition chromosomes before meiotic segregation. Nature Cell Biol. 15, 786–796 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Scita, G. & Di Fiore, P. P. The endocytic matrix. Nature 463, 464–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Sigismund, S. et al. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol. Rev. 92, 273–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Drechsler, H. & McAinsh, A. D. Exotic mitotic mechanisms. Open Biol. 2, 120140 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wilson, K. L. & Dawson, S. C. Evolution: functional evolution of nuclear structure. J. Cell Biol. 195, 171–181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gudise, S., Figueroa, R. A., Lindberg, R., Larsson, V. & Hallberg, E. Samp1 is functionally associated with the LINC complex and A-type lamina networks. J. Cell Sci. 124, 2077–2085 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Patel, H. et al. Kindlin-1 regulates mitotic spindle formation by interacting with integrins and Plk-1. Nature Commun. 4, 2056 (2013).

    Article  CAS  Google Scholar 

  82. Kim, M. L., Sorg, I. & Arrieumerlou, C. Endocytosis-independent function of clathrin heavy chain in the control of basal NF-κB activation. PLoS ONE 6, e17158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Enari, M., Ohmori, K., Kitabayashi, I. & Taya, Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev. 20, 1087–1099 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ybe, J. A. et al. Nuclear localization of clathrin involves a labile helix outside the trimerization domain. FEBS Lett. 587, 142–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Hupalowska, A. & Miaczynska, M. The new faces of endocytosis in signaling. Traffic 13, 9–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Vecchi, M. et al. Nucleocytoplasmic shuttling of endocytic proteins. J. Cell Biol. 153, 1511–1517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fielding, A. B., Willox, A. K., Okeke, E. & Royle, S. J. Clathrin-mediated endocytosis is inhibited during mitosis. Proc. Natl Acad. Sci. USA 109, 6572–6577 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schweitzer, J. K., Burke, E. E., Goodson, H. V. & D'Souza-Schorey, C. Endocytosis resumes during late mitosis and is required for cytokinesis. J. Biol. Chem. 280, 41628–41635 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doxsey, S. J., Brodsky, F. M., Blank, G. S. & Helenius, A. Inhibition of endocytosis by anti-clathrin antibodies. Cell 50, 453–463 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Goud, B., Huet, C. & Louvard, D. Assembled and unassembled pools of clathrin: a quantitative study using an enzyme immunoassay. J. Cell Biol. 100, 521–527 (1985).

    Article  CAS  PubMed  Google Scholar 

  92. Brodsky, F. M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol. 28, 309–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Chircop, M. et al. Phosphorylation of dynamin II at serine-764 is associated with cytokinesis. Biochim. Biophys. Acta 1813, 1689–1699 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, D. W., Zhao, X., Yim, Y. I., Eisenberg, E. & Greene, L. E. Essential role of cyclin-G-associated kinase (auxilin-2) in developing and mature mice. Mol. Biol. Cell 19, 2766–2776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks L. Wood for useful comments and his colleagues in Liverpool and at Warwick Medical School for interesting discussions on moonlighting functions. He is supported by a Senior Cancer Research Fellowship from Cancer Research UK (C25425/A15182) and a project grant from the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/H015582/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Royle.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royle, S. Protein adaptation: mitotic functions for membrane trafficking proteins. Nat Rev Mol Cell Biol 14, 592–599 (2013). https://doi.org/10.1038/nrm3641

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing