Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The enigmatic mossy cell of the dentate gyrus

Key Points

  • Mossy cells are a major subpopulation of dentate gyrus neurons with unique structure and physiological properties.

  • Deletion of both mossy cells and some of the pyramidal cells in area CA3 leads to a transient increase in excitability, anxiety and impaired contextual discrimination, suggesting that mossy cells have a role in excitability and behaviour.

  • Optogenetic activation of mossy cells primarily inhibits granule cells rather than exciting them, supporting the view that mossy cells primarily activate GABAergic interneurons that inhibit granule cells, at least in hippocampal slices.

  • Evidence suggests that mossy cells could also play a part in associative learning, pattern separation, conditional excitation of granule cells and novelty detection.

  • Mossy cells are vulnerable to neurotoxic insults, and damage to these cells may have an important role in the pathophysiology of neurological conditions and psychiatric illness.

  • The vulnerability of mossy cells may arise as a result of the strong input that they receive from granule cells, their pattern of gene expression, their subcellular metabolism and their physiological properties.

Abstract

Mossy cells comprise a large fraction of the cells in the hippocampal dentate gyrus, suggesting that their function in this region is important. They are vulnerable to ischaemia, traumatic brain injury and seizures, and their loss could contribute to dentate gyrus dysfunction in such conditions. Mossy cell function has been unclear because these cells innervate both glutamatergic and GABAergic neurons within the dentate gyrus, contributing to a complex circuitry. It has also been difficult to directly and selectively manipulate mossy cells to study their function. In light of the new data generated using methods to preferentially eliminate or activate mossy cells in mice, it is timely to ask whether mossy cells have become any less enigmatic than they were in the past.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The organization of the dentate gyrus of rodents and primates.
Figure 2: The cell types of the dentate gyrus.
Figure 3: Organization of the mossy cell axon.
Figure 4: Possible roles of mossy cells in dentate gyrus function.

Similar content being viewed by others

References

  1. Jinde, S. et al. Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76, 1189–1200 (2012). This study examined the consequence of ablating mossy cells with the most selective approach to date. Although some CA3 pyramidal cells were also affected, the results showed that mossy cells have an important role in the dentate gyrus network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hsu, T. T., Lee, C. T., Tai, M. H. & Lien, C. C. Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb. Cortex 26, 2715–2727 (2016). This study used optogenetics in hippocampal slices to show that mossy cells could excite or inhibit granule cells; the authors found that the major effect was inhibition.

    Article  PubMed  Google Scholar 

  3. Amaral, D.G., Scharfman, H. E. & Lavenex, P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 163, 3–22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Steward, O. & Scoville, S. A. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol. 169, 347–370 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Witter, M. P. The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog. Brain Res. 163, 43–61 (2007).

    Article  PubMed  Google Scholar 

  6. Ribak, C. E., Seress, L. & Amaral, D. G. The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J. Neurocytol. 14, 835–857 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Scharfman, H. E. & Myers, C. E. Hilar mossy cells of the dentate gyrus: a historical perspective. Front. Neural Circuits 6, 106 (2012).

    PubMed  Google Scholar 

  8. Buckmaster, P. S., Wenzel, H. J., Kunkel, D. D. & Schwartzkroin, P. A. Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J. Comp. Neurol. 366, 271–292 (1996). This paper is an excellent quantitative study of the mossy cell projection in vivo.

    Article  CAS  PubMed  Google Scholar 

  9. Larimer, P. & Strowbridge, B. W. Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat. Neurosci. 13, 213–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Williams, P. A., Larimer, P., Gao, Y. & Strowbridge, B. W. Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J. Neurosci. 27, 13756–13761 (2007). This study was the first to characterize semilunar granule cells with electrophysiology, and it showed their potential importance in the network of the dentate gyrus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scharfman, H. E., Goodman, J. & McCloskey, D. Ectopic granule cells of the rat dentate gyrus. Dev. Neurosci. 29, 14–27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kempermann, G., Song, H. & Gage, F. H. Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Biol. 7, a018812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freund, T. F., Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Halasy, K. & Somogyi, P. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 5, 411–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Han, Z. S., Buhl, E. H., Lorinczi, Z. & Somogyi, P. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 5, 395–410 (1993). References 14 and 15 proposed an organization of the dentate gyrus interneurons according to the location of the cell body and terminal field of the axon.

    Article  CAS  PubMed  Google Scholar 

  16. Hosp, J. A. et al. Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24, 189–203 (2014). This paper suggested an alternative nomenclature to the organization of interneurons proposed in references 14 and 15 that reconciled discrepancies in the literature.

    Article  CAS  PubMed  Google Scholar 

  17. Scharfman, H. E. Electrophysiological diversity of pyramidal-shaped neurons at the granule cell layer/hilus border of the rat dentate gyrus recorded in vitro. Hippocampus 5, 287–305 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seay-Lowe, S. L. & Claiborne, B. J. Morphology of intracellularly labeled interneurons in the dentate gyrus of the immature rat. J. Comp. Neurol. 324, 23–36 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Sloviter, R. S. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235, 73–76 (1987). This paper showed that mossy cells were vulnerable to seizures but that many GABAergic neurons were not, which was surprising because a loss of GABAergic neurons was considered to be a cause of epilepsy.

    Article  CAS  PubMed  Google Scholar 

  20. Sloviter, R. S. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol. 280, 183–196 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Schwarzer, C., Williamson, J. M., Lothman, E. W., Vezzani, A. & Sperk, G. Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience 69, 831–845 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Houser, C. R. Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog. Brain Res. 163, 217–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Goodman, J. H. & Sloviter, R. S. Evidence for commissurally projecting parvalbumin-immunoreactive basket cells in the dentate gyrus of the rat. Hippocampus 2, 13–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Deller, T., Nitsch, R. & Frotscher, M. Phaseolus vulgaris–leucoagglutinin tracing of commissural fibers to the rat dentate gyrus: evidence for a previously unknown commissural projection to the outer molecular layer. J. Comp. Neurol. 352, 55–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Amaral, D. G. A golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol. 15, 851–914 (1978). This paper provided the first detailed description of hilar cells and mossy cells.

    Article  Google Scholar 

  26. Frotscher, M., Seress, L., Schwerdtfeger, W. K. & Buhl, E. The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp. Neurol. 312, 145–163 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Scharfman, H. E. Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci. 11, 1660–1673 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Blackstad, J. B. et al. Observations on hippocampal mossy cells in mink (neovison vison) with special reference to dendrites ascending to the granular and molecular layers. Hippocampus 26, 229–245 (2016).

    Article  PubMed  Google Scholar 

  29. Chicurel, M. E. & Harris, K. M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Blackstad, T. W. & Kjaerheim, A. Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J. Comp. Neurol. 117, 133–159 (1961).

    Article  CAS  PubMed  Google Scholar 

  31. Henze, D. A., Urban, N. N. & Barrionuevo, G. The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98, 407–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Laatsch, R. H. & Cowan, W. M. Electron microscopic studies of the dentate gyrus of the rat. I. Normal structure with special reference to synaptic organization. J. Comp. Neurol. 128, 359–395 (1966).

    Article  CAS  PubMed  Google Scholar 

  33. Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Acsady, L., Kamondi, A., Sik, A., Freund, T. & Buzsaki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998). Using quantitative anatomical methods, this paper identified that mossy fibre synapses on GABAergic neurons outnumber those on CA3 pyramidal cells, suggesting that the pathway has strong inhibitory effects.

    Article  CAS  PubMed  Google Scholar 

  35. Scharfman, H. E. & Schwartzkroin, P. A. Electrophysiology of morphologically identified mossy cells of the dentate hilus recorded in guinea pig hippocampal slices. J. Neurosci. 8, 3812–3821 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Scharfman, H. E. Characteristics of spontaneous and evoked EPSPs recorded from dentate spiny hilar cells in rat hippocampal slices. J. Neurophysiol. 70, 742–757 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seress, L., Abraham, H., Doczi, T., Lazar, G. & Kozicz, T. Cocaine- and amphetamine-regulated transcript peptide (CART) is a selective marker of rat granule cells and of human mossy cells in the hippocampal dentate gyrus. Neuroscience 125, 13–24 (2004). This paper showed that there are important exceptions to the idea that mossy cells are always lost in TLE.

    Article  CAS  PubMed  Google Scholar 

  38. Blasco-Ibanez, J. M. & Freund, T. F. Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 7, 307–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Fujise, N., Liu, Y., Hori, N. & Kosaka, T. Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity. Neuroscience 82, 181–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Zimmer, J. Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation. J. Comp. Neurol. 142, 393–416 (1971).

    Article  CAS  PubMed  Google Scholar 

  41. Berger, T. W., Semple-Rowland, S. & Bassett, J. L. Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus. Brain Res. 224, 329–336 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Buckmaster, P. S., Strowbridge, B. W., Kunkel, D. D., Schmiege, D. L. & Schwartzkroin, P. A. Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2, 349–362 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Sahay, A., Drew, M. R. & Hen, R. Dentate gyrus neurogenesis and depression. Prog. Brain Res. 163, 697–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Kesner, R. P. A behavioral analysis of dentate gyrus function. Prog. Brain Res. 163, 567–576 (2007).

    Article  PubMed  Google Scholar 

  47. Rolls, E. T. Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol. Learn. Mem. 129, 4–28 (2016).

    Article  PubMed  Google Scholar 

  48. Yassa, M. A. & Stark, C. E. Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Myers, C. E. & Scharfman, H. E. Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21, 1190–1215 (2011).

    Article  PubMed  Google Scholar 

  50. Myers, C. E. & Scharfman, H. E. A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19, 321–337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Buzsaki, G. & Eidelberg, E. Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230, 346–350 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Douglas, R. M., McNaughton, B. L. & Goddard, G. V. Commissural inhibition and facilitation of granule cell discharge in fascia dentata. J. Comp. Neurol. 219, 285–294 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Soriano, E. & Frotscher, M. Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus 4, 65–69 (1994). This paper provided the first evidence that mossy cells were glutamatergic.

    Article  CAS  PubMed  Google Scholar 

  54. Scharfman, H. E. Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J. Neurophysiol. 74, 179–194 (1995). This paper showed that mossy cells directly excite granule cells and dentate gyrus interneurons.

    Article  CAS  PubMed  Google Scholar 

  55. Larimer, P. & Strowbridge, B. W. Nonrandom local circuits in the dentate gyrus. J. Neurosci. 28, 12212–12223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ratzliff, A. d. H., Howard, A. L., Santhakumar, V., Osapay, I. & Soltesz, I. Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J. Neurosci. 24, 2259–2269 (2004). This paper used a method to delete mossy cells in a hippocampal slice and did not find any evidence for hyperexcitability, thus arguingagainst the idea that mossy cells normally activate interneurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jackson, M. B. & Scharfman, H. E. Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J. Neurophysiol. 76, 601–616 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Wright, B. J. & Jackson, M. B. Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus. J. Neurosci. 34, 9743–9753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gangarossa, G. et al. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22, 2199–2207 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Puighermanal, E. et al. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine D2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus 25, 858–875 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Jinde, S., Zsiros, V. & Nakazawa, K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front. Neural Circuits 7, 14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chancey, J. H., Poulsen, D. J., Wadiche, J. I. & Overstreet-Wadiche, L. Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J. Neurosci. 34, 2349–2354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lysetskiy, M., Foldy, C. & Soltesz, I. Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15, 691–696 (2005).

    Article  PubMed  Google Scholar 

  64. Hetherington, P. A., Austin, K. B. & Shapiro, M. L. Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate–dependent long-term potentiation. Hippocampus 4, 422–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Kleschevnikov, A. M. & Routtenberg, A. Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus. Eur. J. Neurosci. 17, 2690–2702 (2003).

    Article  PubMed  Google Scholar 

  66. Alvarez-Salvado, E., Pallares, V., Moreno, A. & Canals, S. Functional MRI of long-term potentiation: imaging network plasticity. Phil. Trans. R. Soc. B 369, 20130152 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Chiu, C. Q. & Castillo, P. E. Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. Neuropharmacology 54, 68–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Hofmann, M. E., Nahir, B. & Frazier, C. J. Endocannabinoid-mediated depolarization-induced suppression of inhibition in hilar mossy cells of the rat dentate gyrus. J. Neurophysiol. 96, 2501–2512 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Schurmans, S. et al. Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc. Natl Acad. Sci. USA 94, 10415–10420 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Tóth, K. & Maglóczky, Z. The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front. Neuroanat. 8, 100 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Namgung, U., Matsuyama, S. & Routtenberg, A. Long-term potentiation activates the GAP-43 promoter: selective participation of hippocampal mossy cells. Proc. Natl Acad. Sci. USA 94, 11675–11680 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Buzsaki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Soltesz, I., Bourassa, J. & Deschenes, M. The behavior of mossy cells of the rat dentate gyrus during theta oscillations in vivo. Neuroscience 57, 555–564 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Henze, D. A. & Buzsáki, G. Hilar mossy cells: functional identification and activity in vivo. Prog. Brain Res. 163, 199–216 (2007).

    Article  PubMed  Google Scholar 

  75. Buckmaster, P. S. & Schwartzkroin, P. A. Hippocampal mossy cell function: a speculative view. Hippocampus 4, 393–402 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Brown, R. A., Walling, S. G., Milway, J. S. & Harley, C. W. Locus ceruleus activation suppresses feedforward interneurons and reduces β-γ electroencephalogram frequencies while it enhances θ frequencies in rat dentate gyrus. J. Neurosci. 25, 1985–1991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sahay, A., Wilson, D. A. & Hen, R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70, 582–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aimone, J. B., Deng, W. & Gage, F. H. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70, 589–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alme, C. B. et al. Hippocampal granule cells opt for early retirement. Hippocampus 20, 1109–1123 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Scharfman, H. E. The CA 3 “backprojection” to the dentate gyrus. Prog. Brain Res. 163, 627–637 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li, X., Somogyi, P., Ylinen, A. & Buzsáki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990). References 81 and 82 showed that there was a pattern of innervation 'back' to the dentate gyrus, opposite to the direction of the trisynaptic circuitry.

    Article  CAS  PubMed  Google Scholar 

  83. Scharfman, H. E. EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar “mossy” cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices. J. Neurosci. 14, 6041–6057 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Scharfman, H. E. Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J. Neurophysiol. 72, 2167–2180 (1994). References 83 and 84 showed the physiological effects that supported the idea that pyramidal cells innervate hilar neurons such as mossy cells.

    Article  CAS  PubMed  Google Scholar 

  85. Kneisler, T. B. & Dingledine, R. Synaptic input from CA3 pyramidal cells to dentate basket cells in rat hippocampus. J. Physiol. 487, 125–146 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lisman, J. E., Talamini, L. M. & Raffone, A. Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Netw. 18, 1191–1201 (2005).

    Article  PubMed  Google Scholar 

  87. Penttonen, M., Kamondi, A., Sik, A., Acsady, L. & Buzsaki, G. Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. Hippocampus 7, 437–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Hunsaker, M. R., Rosenberg, J. S. & Kesner, R. P. The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18, 1064–1073 (2008).

    Article  PubMed  Google Scholar 

  89. Aggleton, J. P., Brown, M. W. & Albasser, M. M. Contrasting brain activity patterns for item recognition memory and associative recognition memory: insights from immediate-early gene functional imaging. Neuropsychologia 50, 3141–3155 (2013).

    Article  Google Scholar 

  90. Buckmaster, P. S. & Amaral, D. G. Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. J. Comp. Neurol. 430, 264–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Amaral, D. G. & Campbell, M. J. Transmitter systems in the primate dentate gyrus. Hum. Neurobiol. 5, 169–180 (1986).

    CAS  PubMed  Google Scholar 

  92. Swanson, L. W., Kohler, C. & Bjorklund, A. in Handbook of Chemical Neuroanatomy Vol. 5 (eds Hokfelt, T., Bjorklund, A. & Swanson, L. W.) 125–277 (Elsevier, 1987).

    Google Scholar 

  93. Deller, T., Katona, I., Cozzari, C., Frotscher, M. & Freund, T. F. Cholinergic innervation of mossy cells in the rat fascia dentata. Hippocampus 9, 314–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Hofmann, M. E. & Frazier, C. J. Muscarinic receptor activation modulates the excitability of hilar mossy cells through the induction of an afterdepolarization. Brain Res. 1318, 42–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Duffy, A. M., Schaner, M. J., Chin, J. & Scharfman, H. E. Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23, 649–655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiao, Y. & Nadler, J. V. Stereological analysis of GluR2-immunoreactive hilar neurons in the pilocarpine model of temporal lobe epilepsy: correlation of cell loss with mossy fiber sprouting. Exp. Neurol. 205, 569–582 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buckmaster, P. S. & Jongen-Relo, A. L. Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J. Neurosci. 19, 9519–9529 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Volz, F. et al. Stereologic estimation of hippocampal GluR2/3- and calretinin-immunoreactive hilar neurons (presumptive mossy cells) in two mouse models of temporal lobe epilepsy. Epilepsia 52, 1579–1589 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Bannerman, D. M. et al. Ventral hippocampal lesions affect anxiety but not spatial learning. Behav. Brain Res. 139, 197–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Margerison, J. & Corsellis, J. Epilepsy and the temporal lobes: a clinical, electrographic and neuropathological study of the brain in epilepsy with particular reference to the temporal lobes. Brain 89, 499–530 (1966).

    Article  CAS  PubMed  Google Scholar 

  101. de Lanerolle, N. C., Lee, T. S. & Spencer, D. D. in Jasper's Basic Mechanisms of the Epilepsies 4th edn (eds Noebels, J. L., Avoli, M., Rogawski, M. A., Olsen, R. W. & Delgado-Escueta, A. V.) 387–404 (Oxford Univ. Press, 2012)

    Book  Google Scholar 

  102. Crain, B. J., Westerkam, W. D., Harrison, A. H. & Nadler, J. V. Selective neuronal death after transient forebrain ischemia in the mongolian gerbil: a silver impregnation study. Neuroscience 27, 387–402 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Kotti, T., Tapiola, T., Riekkinen, P. J. Sr. & Miettinen, R. The calretinin-containing mossy cells survive excitotoxic insult in the gerbil dentate gyrus. Comparison of excitotoxicity-induced neuropathological changes in the gerbil and rat. Eur. J. Neurosci. 8, 2371–2378 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Lowenstein, D. H., Thomas, M. J., Smith, D. H. & McIntosh, T. K. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J. Neurosci. 12, 4846–4853 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Santhakumar, V. et al. Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. J. Physiol. 524, 117–134 (2000). This paper showed that after head trauma there is hyperexcitability in the dentate gyrus and that mossy cells may contribute to the hyperexcitability because they become activated or 'irritable' and therefore excite granule cells more than normal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sloviter, R. S. The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann. Neurol. 35, 640–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Scharfman, H. E. The role of nonprincipal cells in dentate gyrus excitability and its relevance to animal models of epilepsy and temporal lobe epilepsy. Adv. Neurol. 79, 805–820 (1999).

    CAS  PubMed  Google Scholar 

  108. Tsankova, N. M., Kumar, A. & Nestler, E. J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 24, 5603–5610 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schwartzkroin, P. A. et al. Possible mechanisms of seizure-related cell damage in the dentate hilus. Epilepsy Res. Suppl. 12, 317–324 (1996).

    CAS  PubMed  Google Scholar 

  110. Hsu, D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog. Brain Res. 163, 601–613 (2007).

    Article  PubMed  Google Scholar 

  111. Ratzliff, A., Santhakumar, V., Howard, A. & Soltesz, I. Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci. 25, 140–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Sloviter, R. S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1, 41–66 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, W. & Buckmaster, P. S. Dysfunction of the dentate basket cell circuit in a rat model of temporal lobe epilepsy. J. Neurosci. 29, 7846–7856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y. & Coulter, D. A. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat. Med. 4, 1166–1172 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Coulter, D. A. Epilepsy-associated plasticity in γ-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int. Rev. Neurobiol. 45, 237–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Sperk, G., Furtinger, S., Schwarzer, C. & Pirker, S. GABA and its receptors in epilepsy. Adv. Exp. Med. Biol. 548, 92–103 (2004). References 113–116 describe complex changes to GABAergic inhibition in the dentate gyrus in models of TLE and that one mechanism, such as a loss of mossy cell input to interneurons, is unlikely to explain the pathophysiology of TLE.

    Article  CAS  PubMed  Google Scholar 

  117. Iyengar, S. S. et al. Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp. Neurol. 264, 135–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Scharfman, H. E. & Bernstein, H. L. Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells of the dentate gyrus. Front. Syst. Neurosci. 9, 112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oh, Y. S. et al. SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 152, 831–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, H. et al. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J. Biol. Chem. 289, 29060–29072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Anderson, R. W. & Strowbridge, B. W. α-Band oscillations in intracellular membrane potentials of dentate gyrus neurons in awake rodents. Learn. Mem. 21, 656–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tang, Q., Brecht, M. & Burgalossi, A. Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat. Protoc. 9, 2369–2381 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Barretto, R. P. & Schnitzer, M. J. In vivo microendoscopy of the hippocampus. Cold Spring Harb. Protoc. 2012, 1092–1099 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Scharfman, H. E. in Synaptic Plasticity and Transsynaptic Signalling (eds Stanton, P. K., Bramham, C. R. & Scharfman, H. E.) 201–220 (Springer, 2005).

    Book  Google Scholar 

  126. Freund, T. F., Buzsaki, G., Leon, A., Baimbridge, K. G. & Somogyi, P. Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp. Brain Res. 83, 55–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  127. Bouilleret, V., Schwaller, B., Schurmans, S., Celio, M. R. & Fritschy, J. M. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 97, 47–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Choi, Y. S. et al. Status epilepticus-induced somatostatinergic hilar interneuron degeneration is regulated by striatal enriched protein tyrosine phosphatase. J. Neurosci. 27, 2999–3009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tong, X. et al. Ectopic expression of α6 and δ GABAA receptor subunits in hilar somatostatin neurons increases tonic inhibition and alters network activity in the dentate gyrus. J. Neurosci. 35, 16142–16158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yuan, Y., Wang, H., Wei, Z. & Li, W. Impaired autophagy in hilar mossy cells of the dentate gyrus and its implication in schizophrenia. J. Genet. Genom. 42, 1–8 (2015).

    Article  CAS  Google Scholar 

  131. Staley, K. J., Otis, T. S. & Mody, I. Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol. 67, 1346–1358 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Etter, G. & Krezel, W. Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus 24, 725–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Leranth, C. & Frotscher, M. Cholinergic innervation of hippocampal GAD- and somatostatin-immunoreactive commissural neurons. J. Comp. Neurol. 261, 33–47 (1987).

    Article  CAS  PubMed  Google Scholar 

  134. Ribak, C. E. Local circuitry of GABAergic basket cells in the dentate gyrus. Epilepsy Res. Suppl. 7, 29–47 (1992).

    CAS  PubMed  Google Scholar 

  135. Armstrong, C., Szabadics, J., Tamas, G. & Soltesz, I. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal-hippocampal interplay. J. Comp. Neurol. 519, 1476–1491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gulyas, A. I., Hajos, N. & Freund, T. F. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J. Neurosci. 16, 3397–3411 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Freund, T. F. GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus. Epilepsy Res. Suppl. 7, 79–91 (1992).

    CAS  PubMed  Google Scholar 

  138. Leranth, C. & Hajszan, T. Extrinsic afferent systems to the dentate gyrus. Prog. Brain Res. 163, 63–84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wyss, J. M., Swanson, L. W. & Cowan, W. M. Evidence for an input to the molecular layer and the stratum granulosum of the dentate gyrus from the supramammillary region of the hypothalamus. Anat. Embryol. (Berl.) 156, 165–176 (1979).

    Article  CAS  Google Scholar 

  140. Toni, N. et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brandt, M. D. et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci. 24, 603–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Leranth, C., Szeidemann, Z., Hsu, M. & Buzsáki, G. AMPA receptors in the rat and primate hippocampus: a possible absence of GluR2/3 subunits in most interneurons. Neuroscience 70, 631–652 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, Y., Fujise, N. & Kosaka, T. Distribution of calretinin immunoreactivity in the mouse dentate gyrus. I. General description. Exp. Brain Res. 108, 389–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Freund, T. F., Hajos, N., Acsady, L., Gorcs, T. J. & Katona, I. Mossy cells of the rat dentate gyrus are immunoreactive for calcitonin gene-related peptide (CGRP). Eur. J. Neurosci. 9, 1815–1830 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Patel, A. & Bulloch, K. Type II glucocorticoid receptor immunoreactivity in the mossy cells of the rat and the mouse hippocampus. Hippocampus 13, 59–66 (2003).

    Article  PubMed  Google Scholar 

  146. Lubke, J., Frotscher, M. & Spruston, N. Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J. Neurophysiol. 79, 1518–1534 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Buckmaster, P. S., Strowbridge, B. W. & Schwartzkroin, P. A. A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. J. Neurophysiol. 70, 1281–1299 (1993).

    Article  CAS  PubMed  Google Scholar 

  148. Livsey, C. T. & Vicini, S. Slower spontaneous excitatory postsynaptic currents in spiny versus aspiny hilar neurons. Neuron 8, 745–755 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Strowbridge, B. W., Buckmaster, P. S. & Schwartzkroin, P. A. Potentiation of spontaneous synaptic activity in rat mossy cells. Neurosci. Lett. 142, 205–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Scharfman, H. E. & Schwartzkroin, P. A. Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 246, 257–260 (1989).

    Article  CAS  PubMed  Google Scholar 

  151. Scharfman, H. E. & Schwartzkroin, P. A. Responses of cells of the rat fascia dentata to prolonged stimulation of the perforant path: sensitivity of hilar cells and changes in granule cell excitability. Neuroscience 35, 491–504 (1990).

    Article  CAS  PubMed  Google Scholar 

  152. Li, G. et al. Hilar mossy cells share developmental influences with dentate granule neurons. Dev. Neurosci. 30, 255–261 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Institutes of Health, the Alzheimer's Association and the New York State Office of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen E. Scharfman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Golgi technique

A method established by Camillo Golgi that stains many neurons almost completely (except for their axons) so they can be visualized in detail.

Optogenetics

The use of light to activate opsins (located in the plasma membrane), which open channels for cations or anions to flow. After opsins are expressed in one cell type, they can be activated selectively by light. Targeting opsins to specific cell types is done after identifying unique genes in the cell type, so the combination of light (opto-) and genetics (optogenetics) is fundamental to the approach.

Electron microscopy

The use of microscopes with very high (nanometre) resolution, made possible by accelerating the electrons through a specialized microscope. Electron microscopy can be used with very thin brain sections, allowing parts of neurons (such as synapses) to be detected.

Contextual fear conditioning

A behavioural test that examines the response to an environment or context after a prior exposure to the context and a painful stimulus.

Cre recombinase

(Cre). Part of a site-specific recombination system derived from Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre recombinase enzyme catalyses the recombination between the loxP sites, leading to excision of the intervening sequence.

Disinhibition

A decrease in inhibition (usually GABAergic). For example, blockade of the release of GABA from GABAergic neurons would result in a decrease in inhibition of the neuron that is postsynaptic to the GABAergic neuron.

Long-term potentiation

(LTP). A lasting increase in synaptic transmission. LTP is often elicited by a brief period of high-frequency presynaptic firing. However, other types of stimulation can elicit LTP, such as exposure to neuromodulators.

Field potentials

The changes in the extracellular potential that reflect changes in the flow of cations and anions in the extracellular space.

Retrograde signalling

The changes induced in a presynaptic terminal, usually mediated by a neuromodulator acting on its presynaptic receptors, which are evoked by release of the neuromodulator from the postsynaptic site.

Voltage imaging

The identification of neuronal activity by capturing changes in fluorescence that are proportional to changes in membrane potential. Typically, a voltage-sensitive dye is applied to the preparation of neurons so that voltage imaging can be conducted.

Electroencephalogram

(EEG). Recordings of the electrical activity of the brain with electrodes that are not inside the neurons (intracellular), but outside (extracellular) or remote (on the brain surface or skull).

Oscillations

The intermittent activity of neurons that is sufficiently synchronous to induce rhythmic fluctuations in the extracellular potential.

Recurrent collaterals

The branches of the axons of a population of neurons that innervate the dendrites of the same population of neurons. In area CA3, the pyramidal cells do not innervate their own dendrites but the dendrites of other CA3 pyramidal neurons.

Afterdepolarization

A depolarization occurring after an event, typically after an action potential.

Spike frequency adaptation

(SFA). A reduction in frequency of action potential discharge during a constant depolarizing input. Most neurons have a high firing frequency after the beginning of a strong depolarization, and the firing frequency decays if the depolarization continues.

Contextual discrimination

A behavioural task that tests the ability to distinguish two environments or contexts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharfman, H. The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci 17, 562–575 (2016). https://doi.org/10.1038/nrn.2016.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing