NEUROTRANSMITTER RECEPTORS

Another trick up GABA_BR's sleeve

Metabotropic GABA

(γ-aminobutyric acid) type B receptors (GABA_BRs) play an important part in the regulation of synaptic transmission as they inhibit presynaptic release and activate postsynaptic K⁺ channels. Now, Chalifoux and Carter show that GABA_BRs also suppress postsynaptic Ca²⁺ signals mediated by NMDARs (*N*-methyl-D-aspartate receptors) and inhibit multivesicular release at individual spines.

The authors used two-photon optical quantal analysis to study synaptic transmission at individual

spines on the dendrites of layer 2-3 pyramidal neurons from acute prefrontal cortical slices. They found that the GABA, R agonist baclofen decreased both the probability of release and the synaptic potency (the amplitude of successful release events). Inhibiting signalling downstream of postsynaptic GABA, Rs with the non-hydrolysable GDP analogue guanosine-5'-(β -thio) diphosphate (GDP-BS) did not prevent the decrease in synaptic potency. As this effect of baclofen was no longer evident under conditions of low extracellular Ca2+ concentration, these results suggest that GABA, R signalling regulates multivesicular release at the presynaptic terminal.

To study the effects of GABA_BR activation on postsynaptic NMDARdependent Ca²⁺ signals, the authors used two-photon glutamate uncaging. GDP- β S prevented the inhibition of NMDAR-dependent Ca²⁺ signals by baclofen in individual spines, showing that modulation of the postsynaptic Ca²⁺ signal by GABA_BR requires G protein activation. Similar results were obtained using the protein kinase A (PKA) antagonist H89 and the PKA-inhibiting peptide PKI, implicating the PKA pathway in the postsynaptic effects of GABA_BR activation. Finally, GABA_BR activation had no effect on overall synaptic currents mediated either by NMDAR or AMPA (α -amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptors. Together, these results suggest that GABA_BRs selectively regulate the Ca²⁺ permeability of NMDARs.

By taking advantage of a combination of optical tools, this study identifies novel presynaptic and postsynaptic mechanisms by which $GABA_BRs$ influence synaptic transmission at individual spines. As NMDAR-dependent Ca^{2+} signals in neuronal spines are particularly important for synaptic plasticity and spine excitability, their regulation by $GABA_BRs$ is likely to have wide implications for our understanding of neuronal physiology.

Cristian Bodo

ORIGINAL RESEARCH PAPER Chalifoux, J. R. & Carter, A. G. GABA_b receptors modulate NMDA receptor calcium signals in dendritic spines. *Neuron* **66**, 101–113 (2010)