Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Use of surfactant beyond respiratory distress syndrome, what is the evidence?

Abstract

Surfactant replacement therapy is currently approved by the United States Food and Drug Administration (FDA) for premature infants with respiratory distress syndrome (RDS) caused by surfactant deficiency due to immaturity. There is strong evidence that surfactant decreases mortality and air leak syndromes in premature infants with RDS. However, surfactant is also used “off-label” for respiratory failure beyond classic RDS. This review discusses current evidence for the use of off-label surfactant therapy for (1) term infants with lung disease such as meconium aspiration syndrome (MAS), pneumonia/sepsis, and congenital diaphragmatic hernia (2) premature infants after 72 h for acute respiratory failure, and (3) the use of surfactant lavage. At last, we briefly describe the use of surfactants for drug delivery and the current evidence on evaluating infants for surfactant deficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Benefits of surfactant and lung recruitment prior to initiation of iNO.
Fig. 2: Evidence and FDA approval behind the use of exogenous surfactant for different diagnoses, for a given gestational age (horizontal axis) and postnatal age in hours (vertical axis).

Similar content being viewed by others

References

  1. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959;97:517–23.

    CAS  PubMed  Google Scholar 

  2. Kallapur SG, Jobe AH Lung Development and Maturation. In: Martin RJ, Fanaroff AAWMC (eds). Fanaroff and Martin’s Neonatal-Perinatal Medicine, 2-Volume Set. Elsevier Inc., 2020, pp 1124-42.

  3. Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1:55–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wrobel S. Bubbles, Babies and Biology: The Story of Surfactant. FASEB J 2004; 18. https://doi.org/10.1096/fj.04-2077bkt.

  5. Polin RA, Carlo WA, Papile L-A, Polin RA, Carlo W, Tan R, et al. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133:156–63.

    Article  PubMed  Google Scholar 

  6. Soll R, Blanco F. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome. In: Soll R (ed). Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD000144 John Wiley & Sons, Ltd: Chichester, UK, 2001.

  7. Moya F, Javier MC. Myth: All surfactants are alike. Semin Fetal Neonatal Med. 2011;16:269–74.

    Article  PubMed  Google Scholar 

  8. Sweet DG, Carnielli VP, Greisen G, Hallman M, Klebermass-Schrehof K, Ozek E, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120:3–23.

    Article  PubMed  Google Scholar 

  9. Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2015;8:CD000144.

    PubMed  Google Scholar 

  10. Katz LA, Klein JM. Repeat surfactant therapy for postsurfactant slump. J Perinatol. 2006;26:414–22.

    Article  CAS  PubMed  Google Scholar 

  11. Greenberg JM, Poindexter BB, Shaw PA, Bellamy SL, Keller RL, Moore PE, et al. Respiratory medication use in extremely premature (<29 weeks) infants during initial NICU hospitalization: Results from the prematurity and respiratory outcomes program. Pediatr Pulmonol. 2020;55:360–8.

    Article  PubMed  Google Scholar 

  12. Ramaswamy VV, Abiramalatha T, Bandyopadhyay T, Boyle E, Roehr CC. Surfactant therapy in late preterm and term neonates with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2022;107:393–7.

    Article  PubMed  Google Scholar 

  13. Roberts D, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. In: Roberts D (ed). Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004454.pub2 John Wiley & Sons, Ltd: Chichester, UK, 2006.

  14. Piper JM, Xenakis EM, Langer O. Delayed appearance of pulmonary maturation markers is associated with poor glucose control in diabetic pregnancies. J Matern Fetal Med. 1998;7:148–53.

    Article  CAS  PubMed  Google Scholar 

  15. Auten RL, Notter RH, Kendig JW, Davis JM, Shapiro DL. Surfactant treatment of full-term newborns with respiratory failure. Pediatrics. 1991;87:101–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hintz SR, Suttner DM, Sheehan AM, Rhine WD, Van Meurs KP. Decreased use of neonatal Extracorporeal Membrane Oxygenation (ECMO): How new treatment modalities have affected ECMO utilization. Pediatrics. 2000;106:1339–43.

    Article  CAS  PubMed  Google Scholar 

  17. Dargaville PA. Respiratory support in meconium aspiration syndrome: a practical guide. Int J Pediatr. 2012;2012:1–9.

    Article  Google Scholar 

  18. Olicker AL, Raffay TM, Ryan RM. Neonatal respiratory distress secondary to meconium aspiration syndrome. Children. 2021;8:246.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sun B, Herting E, Curstedt T, Robertson B. Exogenous surfactant improves lung compliance and oxygenation in adult rats with meconium aspiration. J Appl Physiol. 1994;77:1961–71.

    Article  CAS  PubMed  Google Scholar 

  20. Sun B, Curstedt T, Song G-W, Robertson B. Surfactant improves lung function and morphology in newborn rabbits with meconium aspiration. Neonatology. 1993;63:96–104.

    Article  CAS  Google Scholar 

  21. Moses D, Holm BA, Spitale P, Liu M, Enhorning G. Inhibition of pulmonary surfactant function by meconium. Am J Obstet Gynecol. 1991;164:477–81.

    Article  CAS  PubMed  Google Scholar 

  22. Herting E, Rauprich P, Stichtenoth G, Walter G, Johansson J, Robertson B. Resistance of different surfactant preparations to inactivation by Meconium. Pediatr Res. 2001;50:44–49.

    Article  CAS  PubMed  Google Scholar 

  23. Halliday HL, Speer CP, Robertson B. Treatment of severe meconium aspiration syndrome with porcine surfactant. Eur J Pediatr. 1996;155:1047–51.

    Article  CAS  PubMed  Google Scholar 

  24. Findlay RD, Taeusch HW, Walther FJ. Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics. 1996;97:48–52.

    Article  CAS  PubMed  Google Scholar 

  25. Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. J Pediatr. 1998;132:40–47.

    Article  CAS  PubMed  Google Scholar 

  26. Chinese Collaborative Study Group for Neonatal Respiratory Diseases. Treatment of severe meconium aspiration syndrome with porcine surfactant: a multicentre, randomized, controlled trial. Acta Paediatr. 2005;94:896–902.

    Article  Google Scholar 

  27. Konduri GG, Lakshminrusimha S. Surf early to higher tides: surfactant therapy to optimize tidal volume, lung recruitment, and iNO response. J Perinatol. 2021;41:1–3.

    Article  CAS  PubMed  Google Scholar 

  28. El Shahed AI, Dargaville PA, Ohlsson A, Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst Rev. 2014;2014:CD002054.

    PubMed  PubMed Central  Google Scholar 

  29. Mosca F, Colnaghi M, Castoldi F. Lung lavage with a saline volume similar to functional residual capacity followed by surfactant administration in newborns with severe meconium aspiration syndrome. Intensive Care Med. 1996;22:1412–3.

    Article  CAS  PubMed  Google Scholar 

  30. Wiswell TE, Knight GR, Finer NN, Donn SM, Desai H, Walsh WF, et al. A multicenter, randomized, controlled trial comparing Surfaxin (Lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics. 2002;109:1081–7.

    Article  PubMed  Google Scholar 

  31. Dargaville PA, Copnell B, Mills JF, Haron I, Lee JKF, Tingay DG, et al. Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr 2011; 158. https://doi.org/10.1016/j.jpeds.2010.08.044.

  32. Dargaville PA. Innovation in surfactant therapy I: Surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques. Neonatology 2012;101:326–36.

    Article  CAS  PubMed  Google Scholar 

  33. Arayici S, Sari FN, Kadioglu Simsek G, Yarci E, Alyamac Dizdar E, Uras N, et al. Lung lavage with dilute surfactant vs. bolus surfactant for meconium aspiration syndrome. J Trop Pediatr. 2019;65:491–7.

    Article  PubMed  Google Scholar 

  34. Fuchimukai T, Fujiwara T, Takahashi A, Enhorning G. Artificial pulmonary surfactant inhibited by proteins. J Appl Physiol. 1987;62:429–37.

    Article  CAS  PubMed  Google Scholar 

  35. Herting E, Gefeller O, Land M, van Sonderen L, Harms K, Robertson B. Surfactant treatment of neonates with respiratory failure and Group B Streptococcal infection. Pediatrics. 2000;106:957–64.

    Article  CAS  PubMed  Google Scholar 

  36. Deshpande S. Surfactant therapy for early onset pneumonia in late preterm and term neonates needing mechanical ventilation. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2017/28523.10520 2017.

  37. Rong Z, Mo L, Pan R, Zhu X, Cheng H, Li M, et al. Bovine surfactant in the treatment of pneumonia-induced–neonatal acute respiratory distress syndrome (NARDS) in neonates beyond 34 weeks of gestation: a multicentre, randomized, assessor-blinded, placebo-controlled trial. Eur J Pediatr. 2021;180:1107–15.

    Article  CAS  PubMed  Google Scholar 

  38. González A, Bancalari A, Osorio W, Luco M, González A, Pérez H, et al. Early use of combined exogenous surfactant and inhaled nitric oxide reduces treatment failure in persistent pulmonary hypertension of the newborn: a randomized controlled trial. J Perinatol. 2021;41:32–38.

    Article  PubMed  Google Scholar 

  39. Hansmann G, Koestenberger M, Alastalo T-P, Apitz C, Austin ED, Bonnet D, et al. 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. J Heart Lung Transplant. 2019;38:879–901.

    Article  PubMed  Google Scholar 

  40. Willson DF, Truwit JD, Conaway MR, Traul CS, Egan EE. The adult calfactant in acute respiratory distress syndrome trial. Chest. 2015;148:356–64.

    Article  PubMed  Google Scholar 

  41. Spragg RG, Lewis JF, Walmrath H-D, Johannigman J, Bellingan G, Laterre P-F, et al. Effect of recombinant surfactant protein C–based surfactant on the acute respiratory distress syndrome. N. Engl J Med. 2004;351:884–92.

    Article  CAS  PubMed  Google Scholar 

  42. Meng S-S, Chang W, Lu Z-H, Xie J-F, Qiu H-B, Yang Y, et al. Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2019;19:9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Spragg RG, Taut FJH, Lewis JF, Schenk P, Ruppert C, Dean N, et al. Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am J Respir Crit Care Med. 2011;183:1055–61.

    Article  CAS  PubMed  Google Scholar 

  44. Wilcox DT, Glick PL, Karamanoukian H, Rossman J, Morin FC, Holm BA. Pathophysiology of congenital diaphragmatic hernia. V. Effect of exogenous surfactant therapy on gas exchange and lung mechanics in the lamb congenital diaphragmatic hernia model. J Pediatr. 1994;124:289–93.

    Article  CAS  PubMed  Google Scholar 

  45. Glick PL, Stannard VA, Leach CL, Rossman J, Hosada Y, Morin FC, et al. Pathophysiology of congenital diaphragmatic hernia II: the fetal lamb CDH model is surfactant deficient. J Pediatr Surg. 1992;27:382–7.

    Article  CAS  PubMed  Google Scholar 

  46. Bae CW, Jang CK, Chung SJ, Choi YM, Oh SM, Lee TS, et al. Exogenous pulmonary surfactant replacement therapy in a neonate with pulmonary hypoplasia accompanying congenital diaphragmatic hernia–a case report. J Korean Med Sci. 1996;11:265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lotze A, Knight GR, Anderson KD, Hull WM, Whitsett JA, O’Donnell RM, et al. Surfactant (beractant) therapy for infants with congenital diaphragmatic hernia on ECMO: Evidence of persistent surfactant deficiency. J Pediatr Surg. 1994;29:407–12.

    Article  CAS  PubMed  Google Scholar 

  48. Van Meurs K. Is surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia? J Pediatr. 2004;145:312–6.

    Article  PubMed  Google Scholar 

  49. Sobel DB, Carroll A. Postsurfactant slump: early prediction of neonatal chronic lung disease? J Perinatol. 1994;14:268–74.

    CAS  PubMed  Google Scholar 

  50. Attar MA, Donn SM. Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol. 2002;7:353–60.

    Article  PubMed  Google Scholar 

  51. Laughon M, Bose C, Moya F, Aschner J, Donn SM, Morabito C, et al. A pilot randomized, controlled trial of later treatment with a peptide-containing, synthetic surfactant for the prevention of bronchopulmonary dysplasia. Pediatrics. 2009;123:89–96.

    Article  PubMed  Google Scholar 

  52. Hascoët J-M, Picaud J-C, Ligi I, Blanc T, Moreau F, Pinturier M-F, et al. Late surfactant administration in very preterm neonates with prolonged respiratory distress and pulmonary outcome at 1 year of age. JAMA Pediatr. 2016;170:365.

    Article  PubMed  Google Scholar 

  53. Ballard RA, Keller RL, Black DM, Ballard PL, Merrill JD, Eichenwald EC, et al. Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J Pediatrics. 2016;168:23–29.e4.

    Article  CAS  Google Scholar 

  54. Pandit PB, Dunn MS, Kelly EN, Perlman M. Surfactant replacement in neonates with early chronic lung disease. Pediatrics. 1995;95:851–4.

    Article  CAS  PubMed  Google Scholar 

  55. Lane MD, Kishnani S, Udemadu O, Danquah SE, Treadway RM, Langman A, et al. Comparative efficacy and safety of late surfactant preparations: a retrospective study. J Perinatol. 2021;41:2639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keller RL, Eichenwald EC, Hibbs AM, Rogers EE, Wai KC, Black DM, et al. The randomized, controlled trial of late surfactant: effects on respiratory outcomes at 1-year corrected age. J Pediatr. 2017;183:19–25.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keller RL, Merrill JD, Black DM, Steinhorn RH, Eichenwald EC, Durand DJ, et al. Late administration of surfactant replacement therapy increases surfactant protein-B content: a randomized pilot study. Pediatr Res. 2012;72:613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Merrill JD, Ballard RA, Cnaan A, Hibbs AM, Godinez RI, Godinez MH, et al. Dysfunction of pulmonary surfactant in chronically ventilated premature infants. Pediatr Res. 2004;56:918–26.

    Article  CAS  PubMed  Google Scholar 

  59. Beauchene MS, Cunningham AM, Stanford AH, Bischoff AR, Dagle JM, Rios DR, et al. Patent ductus arteriosus (PDA) and response to late surfactant treatment in premature infants. J Perinatol. 2023;43:1245–51.

    Article  CAS  PubMed  Google Scholar 

  60. O’Brodovich HM, Weitz JI, Possmayer F. Effect of Fibrinogen degradation products and lung ground substance on surfactant function. Neonatology. 1990;57:325–33.

    Article  Google Scholar 

  61. Holm BA, Notter RH. Effects of hemoglobin and cell membrane lipids on pulmonary surfactant activity. J Appl Physiol. 1987;63:1434–42.

    Article  CAS  PubMed  Google Scholar 

  62. Aziz A, Ohlsson A. Surfactant for pulmonary haemorrhage in neonates. Cochrane Database Syst Rev. 2020;2:CD005254.

    PubMed  Google Scholar 

  63. Pandit PB, Dunn MS, Colucci EA. Surfactant therapy in neonates with respiratory deterioration due to pulmonary hemorrhage. Pediatrics. 1995;95:32–6.

    Article  CAS  PubMed  Google Scholar 

  64. Amizuka T, Shimizu H, Niida Y, Ogawa Y. Surfactant therapy in neonates with respiratory failure due to haemorrhagic pulmonary oedema. Eur J Pediatr. 2003;162:697–702.

    Article  CAS  PubMed  Google Scholar 

  65. Thébaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH, et al. Bronchopulmonary dysplasia. Nat Rev Dis Prim. 2019;5:78.

    Article  PubMed  Google Scholar 

  66. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014;165:1258–60.

    Article  CAS  PubMed  Google Scholar 

  67. Watterberg KL. American Academy of Pediatrics. Committee on Fetus and Newborn. Policy statement–postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics. 2010;126:800–8.

    Article  PubMed  Google Scholar 

  68. Yeh TF, Chen CM, Wu SY, Husan Z, Li TC, Hsieh WS, et al. Intratracheal administration of Budesonide/surfactant to prevent Bronchopulmonary Dysplasia. Am J Respir Crit Care Med. 2016;193:86–95.

    Article  CAS  PubMed  Google Scholar 

  69. Kothe TB, Sadiq FH, Burleyson N, Williams HL, Anderson C, Hillman NH. Surfactant and budesonide for respiratory distress syndrome: an observational study. Pediatr Res. 2020;87:940–5.

    Article  CAS  PubMed  Google Scholar 

  70. Manley BJ, Kamlin COF, Donath S, Huang L, Birch P, Cheong JLY, et al. Intratracheal budesonide mixed with surfactant to increase survival free of bronchopulmonary dysplasia in extremely preterm infants: study protocol for the international, multicenter, randomized PLUSS trial. https://doi.org/10.1186/s13063-023-07257-5 2023.

  71. Bhandari V, Black R, Gandhi B, Hogue S, Kakkilaya V, Mikhael M, et al. RDS-NExT workshop: consensus statements for the use of surfactant in preterm neonates with RDS. J Perinatol. 2023;43:982–90.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Taylor G, Jackson W, Hornik CP, Koss A, Mantena S, Homsley K, et al. Surfactant administration in preterm infants: drug development opportunities. J Pediatr. 2019;208:163–8.

    Article  CAS  PubMed  Google Scholar 

  73. Fiori HH, Henn R, Baldisserotto M, Bica IGO, Fiori RM. Evaluation of surfactant function at birth determined by the stable microbubble test in term and near term infants with respiratory distress. Eur J Pediatr. 2004;163:443–8.

    Article  PubMed  Google Scholar 

  74. Teeratakulpisarn J, Taksaphan S, Pengsaa K, Wiangnon S, Kosuwon W. Prediction of idiopathic respiratory distress syndrome by the stable microbubble test on gastric aspirate. Pediatr Pulmonol. 1998;25:383–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bhuta T, Kent-Biggs J, Jeffery HE. Prediction of surfactant dysfunction in term infants by the click test. Pediatr Pulmonol. 1997;23:287–91.

    Article  CAS  PubMed  Google Scholar 

  76. Verder H, Ebbesen F, Linderholm B, Robertson B, Eschen C, Arrøe M, et al. Prediction of respiratory distress syndrome by the microbubble stability test on gastric aspirates in newborns of less than 32 weeks’ gestation. Acta Paediatr. 2003;92:728–33.

    Article  CAS  PubMed  Google Scholar 

  77. Autilio C, Echaide M, Benachi A, Marfaing-Koka A, Capoluongo ED, Pérez-Gil J, et al. A noninvasive surfactant adsorption test predicting the need for surfactant therapy in preterm infants treated with continuous positive airway pressure. J Pediatr. 2017;182:66–73.e1.

    Article  PubMed  Google Scholar 

  78. Ravasio A, Cruz A, Pérez-Gil J, Haller T. High-throughput evaluation of pulmonary surfactant adsorption and surface film formation. J Lipid Res. 2008;49:2479–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare no external funding.

Author information

Authors and Affiliations

Authors

Contributions

RMR provided the leadership, senior directorship, and the review outline and concept. HA, RKD and SL contributed to the drafting, reviewing, and revision of the manuscript. All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work. SL contributed the figures.

Corresponding author

Correspondence to Riddhi K. Desai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, R.K., Yildiz Atar, H., Lakshminrusimha, S. et al. Use of surfactant beyond respiratory distress syndrome, what is the evidence?. J Perinatol 44, 478–487 (2024). https://doi.org/10.1038/s41372-024-01921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-024-01921-7

Search

Quick links