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Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after rhegmatogenous retinal detachment surgery and
open-globe traumatic injury. Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) δ. While PI3Kδ is primarily expressed
in leukocytes, its expression is also considerably high in retinal pigment epithelial (RPE) cells, which play a crucial part in the PVR
pathogenesis. Herein we show that GeoMx Digital Spatial Profiling uncovered strong expression of fibronectin in RPE cells within
epiretinal membranes from patients with PVR, and that idelalisib (10 μM) inhibited Akt activation, fibronectin expression and
collagen gel contraction induced by transforming growth factor (TGF)-β2 in human RPE cells. Furthermore, we discovered that
idelalisib at a vitreal concentration of 10 μM, a non-toxic dose to the retina, prevented experimental PVR induced by intravitreally
injected RPE cells in rabbits assessed by experienced ophthalmologists using an indirect ophthalmoscope plus a+ 30 D fundus
lens, electroretinography, optical coherence tomography and histological analysis. These data suggested idelalisib could be
harnessed for preventing patients from PVR.

Laboratory Investigation (2022) 102:1296–1303; https://doi.org/10.1038/s41374-022-00822-7

INTRODUCTION
Proliferative vitreoretinopathy (PVR) develops after rhegmatogen-
ous retinal detachment (RRD) surgery and open-globe traumatic
injury and is responsible for 5–10% of all retinal detachment1–5.
The main feature of PVR is the formation of epi- or sub retinal
membranes (ERMs) consisting of extracellular matrix and a variety
of cells that include retinal pigment epithelial (RPE) cells, Muller’s
glia cells, fibroblasts, and macrophages1,4,6. Among these cell
types RPE cells are the crucial player in the pathogenesis of
PVR1,4,7. When the retina is detached or tears, some retinal cells
(e.g. RPE cells) are activated by numerous factors such as growth
factors, cytokines to undergo a variety of changes including
synthesis of proteins (e.g., collagen, fibronectin), cell proliferation,
epithelial mesenchymal transition (EMT), as well as cell migration.
Consequently ERMs form and their contraction leads to retinal
detachment4,6,8–12.
Phosphoinositide (PI) 3-kinases (PI3Ks) play a critical part13,14 in

the pathogenesis of PVR. PI3Ks activated by receptor tyrosine
kinases, G-protein coupled receptors or other factors can
phosphorylate the 3-hydroxyl group of the PI’s inositol ring. The
resulting phosphorylation provides a docking site for a variety of
signaling enzymes with PH (Pleckstrin Homology) domains
including the serine/threonine protein kinase B (PKB, Akt). Akt
plays a crucial role in cell survival and cell growth15,16. In the family
of PI3K there are eight isoforms classified into three classes (I, II
and III)15,16. PI3Kα, -β and -δ consisting of a regulatory p85 subunit
and a catalytic subunit (p110α, -β and -δ, respectively) belong to
the PI3K class IA, and they are regulated by the cell surface

receptors including receptor tyrosine kinases16,17. Noticeably,
while PI3Kδ is primarily expressed in leukocytes18, its expression
is considerably high in RPE cells, and it is essential for vitreous-
induced Akt activation as well as proliferation, migration and
contraction of RPE cells2,19.
Idelalisib is a small molecule, which is a competitive inhibitor of

the ATP binding site of p110δ20,21. It has clinically been used for
treating certain cancers (e.g., chronic lymphocytic leukemia)21–24

and blocks vitreous-induced Akt activation and proliferation of
RPE cells2. Currently there is no approved medicine for preventing
PVR even though huge efforts have been made on developing
such drugs6,10–12,25–29. Surgery to restore the retinal position is still
the only option for treating PVR27,30,31, but the visual outcome of
the operation is poor as repeated detachment after surgery causes
the retinal damage26. Therefore, development of a pharmacolo-
gical approach is urgent for preventing PVR.
We herein showed that idelalisib selectively inhibited trans-

forming growth factor (TGF) -β2 -stimulated Akt activation,
fibronectin expression and collagen gel contraction in human
RPE cells and prevented experimental PVR in rabbits induced by
intravitreally injected RPE cells, indicative of idelalisib as a
promising medicine for treating PVR.

MATERIALS AND METHODS
Major reagents
Primary antibodies against p-Akt, Akt, and fibronectin were purchased
from Cell Signaling Technology (Danvers, MA), and the antibody against
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β-Actin was from Santa Cruz Biotechnology (Santa Cruz, CA). Horseradish
peroxidase-conjugated secondary antibodies of mouse anti-rabbit IgG, and
goat anti-mouse IgG were purchased from Santa Cruz Biotechnology.
Enhanced chemiluminescent substrate to detect horseradish peroxidase
was ordered from Thermo Scientific (Waltham, MA). Idelalisib was
purchased from APExBIO (Houston, TX).
ARPE-19 cells are human RPE cells that were purchased from American

Type Culture Collection (Manassas, VA), and RPEM cells were RPE cells
derived from an ERM of a patient with grade C PVR as described
previously2,32. Both were cultured in Dulbecco’s modified Eagle’s medium/
nutrient mixture (DMEM/F12, Gibco, Grand Island, NY) supplemented with
10% fetal bovine serum (FBS).

GeoMx digital spatial profiling
GeoMx Immune Cell Profiling Panel Human Protein Core for nCounter kit,
GeoMx Hyb Code Pack Protein kit, GeoMx Nuclear Stain Morphology Kit,
GeoMx Protein Slide Prep Kit, GeoMx Hyb Buffer, GeoMx DSP Collection
Plates 96, GeoMx DSP Instrument Buffer Kit and nCounter Master Kit were
purchased from Nanostring (Nanostring Technologies, WA).
This experiment was performed as described previously33,34. Briefly,

formalin-fixed OCT-embedded ERM and normal breast epithelial tissue
slides were washed thrice for 5 min, and the slides with the samples in 1 x
citric acid buffer were transferred into a pressure cooker to be steamed for
15min. Subsequently, the slides were cooled down at room temperature
naturally within 30–60min, and then washed once in Tris-based solution
with 0.01% triton (TBST). The slides were then stained with fluorescently
labeled morphology markers (CD45, Pan-cytokeratin) for 1 h and then
washed twice in TBST. Finally, an antibody mix (GeoMx Immune Cell
Profiling Panel) was added to slides and incubated at 4 °C overnight. SYTO
staining (GeoMx Nuclear Stain Morphology Kit) was used for staining
nuclei. Slides were loaded on the GeoMx microscope for imaging and
barcode acquisition, following the manufacturer supplied protocol. ROIs
were segmented into PanCK-positive and CD45-positive areas of interest.
ROI into 96-well plate (GeoMx DSP Collection Plates) was collected and
transferred to n-counter to read. The data were analyzed by a DSP
machine.

Western blot
Western blot was conducted as described in previous reports2,13,35–37.
Briefly, when cells were grown to 90% confluence in 24-well plates, they
were serum starved for 24 h, and then treated with TGF-β2 (10 ng/ml, R& D
systems, Minneapolis, MN) in the presence or absence of idelalisib (10 μM)
for additional 48 h. Proteins from treated cells were extracted in an
extraction buffer and separated by 10% SDS-polyacrylamide gel electro-
phoresis. The proteins in the gel were then transferred to polyvinylidene
difluoride membranes for analysis using desired antibodies2,35,38–40.

Collagen gel contraction assay
This assay was conducted as described in previous reports2,13,35–37. Briefly,
when cells grew to 90% confluence, they were collected and re-suspended
at a density of 1 × 106 in 1.5 mg/ml of neutralized PureCol type I bovine
collagen solution (Advanced BioMatrix, San Diego, CA) (pH 7.2) on ice. The
mixture of the cells with the collagen was then transferred into 24-well
tissue culture plates (300 μl/well). After incubated at 37 °C for 90min,
0.5 ml DMEM/F12 or in DMEM/F12 with 10 ng/ml TGF-β2 plus or minus
idelalisib (10 μM) was added on the top of polymerized collagen gel in the
24-well plate, which was then photographed on day 3. The gel diameter
was then measured, and the gel area was calculated using the formula 3.14
× r2 for further statistic analyses.

Experimental PVR in rabbits
As previously described6,35,36,41,42, PVR was induced in the right eyes of 8-
weeks-old Dutch Belted rabbits (Covance, Denver, PA). Briefly, a gas
vitrectomy was performed by injecting 0.1 ml of perfluoropropane (C3F8)
(Alcon, Fort Worth, TX) into the vitreous cavity 4 mm posterior to the
corneal limbus. One week later, all 20 rabbits were injected with platelet-
rich plasma (0.1 ml) and 3.0 × 105 cells of RPEM cells with idelalisib (final
10 μM) or its vehicle DMSO (final 0.01%) under an operative microscope.
The retinal status was examined with an indirect ophthalmoscope plus
a+ 30 D fundus lens on days 1, 3, 5, 7, 14, 21 and 28 by two masked
ophthalmologists. PVR was graded according to the Fastenberg classifica-
tion from 0 through 535,42,43.

On day 28, 4 representative rabbits from stages 1 and 5 were in the dark
for 1 h. The rabbits were deeply anesthetized with intramuscular
anesthesia consisting of ketamine (30–50mg/kg), xylazine (5–10mg/kg)
and acepromazine (1 mg/kg). Depth of anesthesia was verified by the
absence of the toe pinch withdrawal reflex. The pupils were dilated with
topical 1% tropicamide to view the fundus. Electroretinogram (ERG)
analysis was performed as previously described35. Following ERG, optical
coherence tomography (OCT) was taken using spectral domain (SD)-OCT
system (Bioptigen Inc., Durham, NC). The animals were then sacrificed, the
eyes were enucleated, and representative eyeballs were fixed with 10%
formalin for histology analysis. This animal experiment was conducted at
the animal facility of the Schepens Eye Research Institute (Boston, MA).
The protocol for the use of animals was approved by the Schepens Eye

Research Institute Animal Care and Use Committee (Boston, MA), and all
animal surgeries adhered to the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research.

Statistics
Data were analyzed as described previously2,44. Briefly, data from at least
three independent experiments were analyzed using ordinary one-way
ANOVA followed by the Tukey honest significant difference (HSD) post
hoc-test. Animal experimental data were analyzed using a Mann–Whitney
test6,35,36,42. p less than 0.05 was considered a significant difference.

RESULTS
Fibronectin is upregulated in the RPE cells within ERMs from
patients with PVR
The GeoMx Digital Spatial Profiling (DSP) integrates with current
histology methods to have quickly, robust and reproducible spatial
omics data34. To better understand the PVR pathogenesis, we used
GeoMx DSP to analyze the protein expression of different tissues and
cell types in ERMs from patients with PVR. The results showed that in
comparison of the normal control tissue CD68 and fibronectin were
significantly up-regulated in the ERMs (Fig. 1A, B). Notably, CD45 is a
marker of all hematopoietic cells, whereas CD68 is indicative of
macrophage activation and able to promote NF-κB nuclear
translocation and inflammation, indicating that there is infiltration
of activated immune cells in the ERMs from patients with PVR.
DSP also showed that in comparison of CD45-positive cells in the

RPE cells within the ERMs, fibronectin, α-smooth muscle actin, and
pan-cytokeratin were significantly up-regulated, but CTLA-4 (cytotoxic
T-lymphocyte-associated protein 4 or CD152) and PD-L1 (pro-
grammed death-ligand 1) functioning as immune checkpoints and
down-regulate immune responses were down-regulated (Fig. 1A, C).
The heatmap and PCA analysis indicated that there was

significant difference in cells related to cell migration and
inflammation between the ERMs and control tissues (Fig. 1D, E,
F and G). In agreement with previous studies4,8,40,45,46, these DSP
results further demonstrate that inflammation and EMT play an
important role in the pathogenesis of PVR.

Idelalisib inhibits TGF-β2-induced Akt activation and
fibronectin expression
Levels of TGF-β2 in the vitreous are elevated in eyes with
intraocular fibrosis including PVR47, and PI3Kδ plays an essential
role in vitreous-induced Akt activation and cellular responses
intrinsic to PVR2,19. In addition, TGF-β2 is a prominent cytokine to
induce expression of fibronectin, one of the protein markers for
EMT playing an important role in the development of PVR12,47.
While the receptor serine/threonine kinases activated by TGF-β2
operate mainly through the Smad (e.g., phosphorylating Smad2)
to regulate gene expression, they can also stimulate the PI3K-Akt
signaling pathway. Thereby we hypothesized that inhibition of
PI3Kδ with its specific inhibitor idelalisib was able to prevent TGF-
β2-induced fibronectin expression and Akt activation in RPE cells.
As shown in Fig. 2, western blot analysis showed that TGF-β2
treatment for 48 h indeed induced Akt activation (5.1 ± 0.6 fold) as
well as fibronectin expression (7.8 ± 0.8 fold) in human RPE cells
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Fig. 1 GeoMx Digital Spatial Profiling of ERMs from patients with PVR. A Corresponding regions of interest (ERM: epiretinal membranes
from patients with PVR, Control: breast epithelial tissue) were captured for DSP analysis based on immunofluorescent staining for CK (pan-
keratin, Green), CD45 (Red) and DAPI (Blue). Scale bar: 500 μm. B, C Volcano Plot: The X-axis of the figure is the protein difference multiple
(take log2), and the Y-axis is the corresponding -log10 (P value). In the figure, the red points are significantly up-regulated proteins, the green
points are significantly down-regulated proteins, and the gray points are proteins that have no significant changes. B Control tissue versus PVR
membrane; C Epithelial cells versus immune cells in the ERMs from patients with PVR. SMA: smooth muscle actin, CK: pan cytokeratin, CTLA-4
(cytotoxic T-lymphocyte-associated protein 4 or CD152) and PD-L1 (programmed death-ligand 1). D, E Assessment of IgG as normalizers.
Clustered heatmap of relative expression of proteins per ROI. Ward D2 clustering was applied, followed by K-means clustering to delineate
differences between expression profiles among compartments. CTL: control (normal tissue); ERM: PVR membranes. D: CD68, Fibronectin, S6,
SMA, PD-L1, C56, CD11c, HLA-DR, CTLA4, CD45, CD4, CD6, GZMB, Histone H3, PanCK, RbIG, Mslog2a, Ki-67, beta-2-microglobulin, PD-1, CD20,
CD3, Ms IgG1, GADPH; E: SMA, GADPH, Fibronectin, PanCK, CD56, CD8, Histon H3, PD-1, S6, Rb IgG, CD45, CTLA4, CD11c, MsIg2a, CD3, PD-L1,
beta-2-microglobulin, CD4, GZMB, CD20, Ki67, CD68, HLA-DR, MsIgG1; E: (F, G) Principal Component Analysis (PCA). The X-axis is the first
principal component and the Y-axis is the second principal component.
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(ARPE-19), and that idelalisib abrogated these actions induced by
TGF-β2 in human RPE cells.

Idelalisib suppresses TGF-β2 -induced collagen gel contraction
In the PVR pathogenesis, the contraction of the ERMs eventually
causes retinal detachment7,48,49. To mimic this process, an in vitro
assay of collagen gel contraction has been developed2,35,42. This
assay can be employed for evaluation of a drug’s potential
capabilities of inhibiting PVR in vitro. To examine if idelalisib could
inhibit TGF-β2-induced cell contraction, RPEM cells derived from
an ERM from a patient with PVR were mixed with collagen solution
to form a collagen gel, and media on the top of this collagen gel
were treated with TGF-β2 in the presence or absence of idelalisib.
The results showed (Fig. 3) that while TGF-β2 treatment for 48 h
stimulated the contraction of the mixture of collagen with RPEM
cells from 168.5 ± 8.1 mm2 to 78.0 ± 12.8 mm2, idelalisib signifi-
cantly blocked this TGF-β2-induced cellular event, that is, the
collagen gel area was 131.2 ± 5.9 mm2. These results indicate that
idelalisib has high potential to inhibiting PVR in vivo.

Idelalisib prevents experimental PVR in rabbits
As inactivation of PI3Kδ attenuated PVR-related signaling events
(e.g., Akt activation) and cellular responses (e.g., collagen gel
contraction) induced by vitreous2,19 and TGF-β2 (Figs. 2–3), we
next sought to clarify whether inhibition of PI3Kδ could prevent
experimental PVR. The animal model of experimental PVR that
most researchers use is to intravitreally inject cells into the rabbit
eyes because the lens of rabbits is relatively small and this
advantage can maximally limit the changes to the lens and retina
when performing intravitreal injections. In this experimental
model of PVR the rabbits are examined for the formation of
cellular membranes in the vitreous because their contraction can
lead to retinal detachment6,35,36,41,42,50.
We firstly evaluated the toxicity of idelalisib to the rabbit retina.

We identified the minimum effective dose (1 μM) and maximum
20 μM tolerated dose of idelalisib to RPE cells derived from
patients with PVR (defined as RPEM cells)2, and we sought to
establish the maximum dose of idelalisib that could be injected
into the vitreous without overt retinal toxicity. We chose RPEM
cells for these studies because they were most relevant to
human PVR.
To this end, we intravitreally injected a total of 0.1 ml idelalisib

to achieve a final vitreal concentration of 10 or 20 μM after a gas
vitrectomy in 6 rabbits. Examination of rabbit eyes with an indirect
ophthalmoscope plus a+ 30 D fundus lens on days 1, 3, 5, 7 by

two ophthalmologists did not reveal any toxicity to the injected
eyes. To confirm this observation, on day 7 electroretinography
(ERG) was harnessed to monitor the retinal function. As shown in
Fig. 4A, in comparison with the left un-injected eyes, there were
no obvious changes in the a-waves and b-waves in the idelalisib-
injected eyes. Examination with optical coherence tomography
(OCT) also showed that there were not significant changes in
retinal thickness, indicating that these two doses (10 and 20 μM)
of idelalisib to rabbit retinas were well-tolerated (Fig. 4B). In
addition, histological analysis further demonstrated that there was

Fig. 2 Idelalisib inhibited Akt activation induced by TGF-β2 in human RPE cells. A Serum-starved ARPE-19 cells were treated with TGF-β2
(10 ng/ml) or in addition to idelalisib (10 μM) for 24 h and 48 h. Their lysates were subjected to western blotting analysis using indicated
antibodies. Shown is a representative of at least three independent experiments. B The bar graphs are mean ± SD of three independent
experiments. The data of the intensity of bands was analyzed using one-way ANOVA followed by the Tukey HSD post hoc-test. ***P < 0.001.

Fig. 3 Idelalisib blocked TGF-β2 induced collagen gel contraction.
RPEM cells were re-suspended in 1.5 mg/ml of neutralized collagen I
(pH 7.2) at a density of 1 × 106 cells/ml and seeded into wells of a 24-
well plate that had been pre-incubated overnight with 5mg/ml
(BSA/PBS). The collagen was solidified by incubation at 37 °C for
90min. The polymerized gels were overlaid with DMEM/F12 alone
(–) or TGF-β2 (10 ng/ml) supplemented with idelalisib (10 μM) or its
vehicle as indicated. 48 h later, the gel diameter was measured and
the gel area calculated using the formula: 3.14 × r2. The bar graphs
represent the mean ± SD of the three independent experiments; ***
denotes p < 0.001 using one-way ANOVA followed by the Tukey HSD
post hoc-test. A photograph of the representative experiment in (A)
is shown at the bottom of the bar graphs.
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no significant change in the retinal structure after intravitreal
injection of idelalisib into the right eyes in comparison with the
un-injected left eyes (Fig. 4C). Furthermore, our previous experi-
mental results also demonstrated that idelalisib at 10 μM did not
cause obvious adverse effects in mouse eyes examined by ERG,
OCT and histological analysis of the retinas51. Consequently, we
chose the 10 μM dose for the subsequent experiments.
To determine whether idelalisib could prevent PVR, after a gas

vitrectomy we intravitreally injected platelet-rich plasma, RPEM
cells, and then either idelalisib (10 μM) or its solvent DMSO (0.01%)
as a negative control35,42. As shown in Fig. 5A, on day 28 there
were 7 injected eyes (87.5%) being retinal detachment (PVR stages
4–5) among the 8 control-injected rabbits, and there was only one
injected eye (11.1%) being retinal detachment (PVR stage 3)
among the 9 idelalisib-injected rabbits evaluated by two
ophthalmologists with an indirect ophthalmoscope plus a+ 30
D fundus lens. These results indicated that severe PVR stages were
significantly reduced in rabbits injected with idelalsib, but there
were 7 (77.8%) among the 9 idelalisib-treated rabbits developing
epi-retinal membranes (PVR stages 1–2) (Fig. 5A).
To confirm the PVR stages evaluated by the ophthalmologists

with an indirect ophthalmoscope (Fig. 5A), the PVR status of 4
rabbits with stage 1 or 5 was further evaluated by ERG (Fig. 5B)
indicating that (1) the injected right eyes with PVR did not affect
the un-injected left ones, (2) minor vitreous fibrosis (PVR stage 1)
did not significantly affect retinal function; and (3) the retinal
detachment caused retinal dysfunction in the eye with PVR stage
5. OCT analysis of 6 eyes with 2 normal eyes as a control

confirmed that (1) there were fibrotic tissues attaching the retina
in the eye with PVR stage 2 (1 eye); (2) the fibrotic tissues attached
the retina causing the retinal detachment in the eye with PVR
stage 3 (1 eye); the retina got total detachment from its original
position with PVR stage 5 (2 eyes) (Fig. 5C). Histological analysis
further verified the fibrosis in PVR stages 2, 3 and 5 evaluated with
an indirect ophthalmoscope and OCT (Fig. 5D). These studies
demonstrate that idelalisib effectively protects rabbits from
developing the severe stages (stages 4 and 5) of PVR, suggesting
this pharmacological intervention could be further tested for
protecting patients from developing PVR.

DISCUSSION
In the present study, fibronectin was identified by the advanced
technology of the GeoMx DSP to be strongly expressed in RPE
cells within the ERMs from patients with PVR (Fig. 1). This result is
consistent with previous findings52–54. Subsequently, we discov-
ered that idelalisib inhibited TGF-β2-induced Akt activation,
fibronectin expression and collagen gel contraction (Figs. 2–3),
and these signaling events and cellular responses are related to
PVR. PVR is still a major obstacle to successfully correct retinal
detachment despite gradual improvements in surgical success
rates over the past decades; in particular, there are over 75% of
postsurgical re-detachments in developing PVR55. However, there
is still no effective medicine for this blinding disease. Thereby we
evaluated the potential of the FDA approved medicine idelalisib
for preventing PVR and found that this drug significantly inhibited

Fig. 4 Examination of idelalisib toxicity in rabbit eyes. Idelalisib was injected into the rabbit vitreous to achieve a final vitreal concentration
of 10 or 20 μM (2 rabbits per dose). This day was considered day 0. The rabbits underwent fundus examinations by experienced
ophthalmologists on days 1, 3, 5, and 7. On day 7, the rabbit eyes were examined by electroretinogram (ERG, dark adaption) (A) and optical
coherence tomography (OCT) (B). Subsequently, the eyeballs from the euthanized rabbits were subjected to histological analysis by
hematoxylin & eosin stain (C). Arrows in B point to retinas. Representative data are presented in each panel for the indicated concentration.
Scale bar: 200 μm.
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experimental PVR in an intravitreal cell injection rabbit model
(Figs. 4–5). In this animal experiment, we intravitreally injected RPE
cells (3 × 106 cells /eye) derived from an ERM from a patient with
PVR32 into Dutch belted rabbits, leading to severe PVR with retinal
detachment (Stages 3-5) in seven of 8 eyes by day 28 (Fig. 5).
Whereas other investigators reported that these RPEM cells
induced less severe PVR in New Zealand albino rabbits, that is,
by day 28 there was only one eye developed extensive tractional
retinal detachment among the 24 experimental eyes injected with
1 × 10e6 cells/eye32. The different results of these two experiments
might be due to using different species of rabbits and cell
numbers. In addition, in our current experiment, rabbits were of a
younger age (8 weeks) than those we used previously
(16–24 weeks), so the younger rabbits might be easier to develop
severer PVR in this cell injection model based on our unpublished
observation. In general, RPE cells have less potential to induce
experimental PVR in rabbits compared to fibroblasts based on our
previous experimental results6,35,36,39,41,42,56.

In order to develop therapeutic approaches to PVR, so far there
are a lot of medical treatments tested including antineoplastic
drugs e.g., 5-fluorouracil, cisplatin57, methotrexate58, tyrosine
kinase inhibitors (e.g., dasatinib)59, protein kinase C inhibitors
(e.g., herbimycin A)60, TGF-β receptor inhibitors (e.g., LY-364947)61,
p53 inhibitors (e.g., nutlin-3)42, scavengers of reactive oxygen
species (e.g., N-acetyl-cysteine)35, and other drugs55. In spite of
these considerable efforts, clinical success is still unreached.
Inactivation of PI3Kδ in mice failed to show any detectable
phenotypes in their embryos and adult eyes, but its expression is
enhanced in pathological conditions51. Given the hardly detect-
able expression of PI3Kδ in mouse photoreceptor cells51, it is likely
that its activity in these cells is not essential. These findings
indicate that PI3Kδ is a promising target for PVR therapy.
In this report, we demonstrate that idelalisib, an FDA approved

specific inhibitor for PI3Kδ, inhibits experimental PVR in a rabbit
model, uncovering the potential of this agent as a potential PVR
prophylactic, addressing a currently unmet clinical need62.

Fig. 5 Idelalisib prevented experimental PVR in rabbits. PVR was induced in the right eyes of 8-weeks-old Dutch Belted pigmented rabbits.
Briefly, one week after gas vitrectomy, rabbits were injected intravitreally with platelet-rich plasma (PRP, 0.1 ml) and RPEM cells (3.0 × 105 cells)
supplemented with either idelalisib (10 μM, 9 rabbits) or its vehicle (0.01% DMSO, 8 rabbits). A The eyes of the rabbits were examined at the
indicated times by two masked ophthalmologists using a double blind approach, and the PVR status for each rabbit was plotted. Each symbol
denotes a rabbit injected intravitreally with drug vehicle (triangle, 8 rabbits in total) and idelalisib (solid circle, 9 rabbits). The numbers in the
Y-Axis denote PVR stages (0–5). PVR stage 0: the eye is normal; stage 1: there were some fibrosis in the vitreous and intravitreal membranes
formation in the eye; stage 2: there were more fibrosis in the vitreous and more intravitreal membranes than those in the stage 1, and there
were focal traction and localized ocular changes, hyperemia, engorgement and dilation; stage 3: the intravitreal membrane caused localized
detachment of retinal and medullary ray; stage 4: there were extensive retinal detachment (total medullary ray detachment and peripapillary
retinal detachment); stage 5: the retina got total detached from its original position and there were retinal folds and holes. The days in the
X-Axis indicate the observation time starting from the day 1 after the intravitreal cell injection. Statistical significance was assessed by Mann-
Whitney analysis. A subset of rabbits was examined on day 28 by (B) ERG (4 rabbits): L stands for left eyes without injection and R stands for
right eyes injected with idelalisib or its vehicle; (C) OCT (6 rabbits): PVR stage 0 (2 rabbits): without fibrosis; stage 2 (1 rabbit): a fibrotic band
attached retina (double arrows); stage 3 (1 rabbit): fibrotic bands attached retina and drew the retinal detachment; stage 5 (2 rabbits): the
retina got total detached. A single arrow points to the retina and double arrows point to cellular membranes; (D) histology (6 eyeballs). The
rabbit eyeballs were from stage 0 (2 eyeballs), stage 2 (1 eyeball), stage 3 (1 eyeball) and stage 5 (2 eyeballs). The histological eyeball sections
were stained with hematoxylin and eosin; arrowhead and double arrows point to cellular membranes.
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