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Light-driven high-precision cell adhesion kinetics

Zhiyuan Zhang' and Daniel Ahmed®'™

Abstract

Existing single-cell adhesion kinetics methods are performed under conditions highly unlike the physiological cell
adhesion conditions. Now, researchers have developed a new optical technique for high-precision measurement of

cell lateral adhesion kinetics in complex clinical samples.

Cell adhesion is highly involved in many biological pro-
cesses, such as cell communication’, tissue development™”,
virus invasion*®, and cancer metastasis®’. A variety of single-
cell adhesion methods have been developed based on atomic
force microscopy (AFM)EHO, optical tweezers' 1713, magnetic
tweezers'*'®, acoustic tweezers'’™'’, micro-needle manip-
ulation®’, and biomembrane force probes®'. These methods
all depend on repeatedly rupturing the adhesive contact in
the normal direction of the cell interface so as to measure the
normal tensile force”>**; however, different methods can still
yield measurement results that differ by several orders of
magnitude. These discrepancies stem from dynamic changes
in sample interactions and a lack of consideration for lateral
adhesion kinetics™*,

Preliminary studies have shown that in vivo cell adhesion
under physiological flow is more complex, and that lateral
adhesion kinetics play a significant role in the dynamic
modulation to withstand changing flow”*, Currently, there
exist microfluidic techniques for analyzing the lateral force
along the tangential direction®>'; however, these methods
face limitations in terms of time required for measurement,
cell interaction distance, and measurement resolution. High-
precision and high-speed in situ measurement of lateral
adhesion kinetics remains an open challenge.

In this issue of eLight, Yuebing Zheng’s research team at
the University of Texas at Austin in USA presents a new
optical technique, termed the single-cell rotational adhesion
frequency assay (scRAFA). This method integrates optical
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trapping, rotation, imaging, and spectroscopy on a single
platform. SCRAFA exploits a microfluidic platform integrated
with versatile optothermal manipulation and optical imaging
capabilities to stably trap and rotate any specific single cell,
continuously monitor the complete cell adhesion process
from initiation of bonding with the substrate to formation of
permanent attachment (response time <0.1's), and precisely
control the interaction distance between substrate ligands
and cell receptors (resolution +0.1 nm), which control cannot
be achieved in a conventional flow chamber assay’>. More
specifically, a focused 785 nm laser beam was first applied to
trap the cell with optical force, then the temperature gradient
field produced by a focused 532 nm laser beam was used to
rotate the cell. Subsequently, Zheng’s team retrieved the
time-dependent light intensity signals from collected images
to quantify the cell’s adhesion behaviors. By testing the lateral
cellular interactions caused by flow-induced shear stress, they
were able to successfully measure the adhesion strength of
yeast cells in human urine and obtain more accurate dis-
sociation constants, which is ~10 times more accurate than
previous measurements.

Different from many of the existing adhesion measure-
ment methods, the proposed light-driven scRAFA can
reveal the shear-force-dependent adhesion behaviors of
individual cells while in physiological fluids with various
surface conditions. With its superior performance and
general applicability, scRAFA will be a valuable tool in a
wide range of fields, from cell biology to immunotherapy,
biomedicine, and engineering.
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