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Moving beyond descriptive studies: harnessing metabolomics
to elucidate the molecular mechanisms underpinning
host-microbiome phenotypes
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Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad
transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human
diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical
associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty
stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to
microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that
can provide insights into the molecular mechanisms at work in host–microbiome interactions and to highlight the undeveloped
frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.

Mucosal Immunology (2022) 15:1071–1084; https://doi.org/10.1038/s41385-022-00553-4

INTRODUCTION
Metabolism plays a foundational role in essentially all aspects of
life and disruptions in metabolism can affect a wide range of
basic functions including nutrition, athletic performance,
immune function, pain perception, and the progression of both
chronic and infectious diseases1–7. Although mammalian meta-
bolism has been intensively studied for over a century, it has
primarily been investigated through the lens of host metabolic
function. However, over the last 20 years we have become
increasingly aware of the role that microbial communities play in
modulating the availability of nutrients and how these microbial
modulations can impact homeostasis5. Everything that mammals
eat enters the gastrointestinal (GI) tract, where the metabolism
of the gut microbiome can transform these molecules and
directly influence the complement of nutrients that are passed
along to the host3.
Disruptions in the microbiome caused by antibiotics, diet, and

disease can alter these intricate host-microbiome metabolic
exchanges and affect biological functions throughout the
body1–3,5,6,8–12. A few examples of diseases that are modulated
by microbial metabolism include colitis (e.g., irritable bowel
syndrome (IBS) and Crohn’s disease)10,13–17, immune diseases
(e.g., multiple sclerosis)1,18,19, neurodegenerative diseases (e.g.,
amyotrophic lateral sclerosis and Alzheimer’s disease)20–22, psy-
chological conditions (e.g., depression)8,23, cystic fibrosis24–29,
cancer30–32, and cardiovascular disease33. Microbial metabolism
can also play a role in the pharmacokinetics of drugs9,34,35. These
surprising associations have led researchers to investigate the
microbiome as a vehicle for stimulating specific metabolic
activities21,36–38 and as a tool to modulate inflammation39–41.

The links between microbial metabolism and human diseases
are now well-defined thanks to large-scale efforts, such as the
>15,000 feces samples collected by the American Gut Project42.
These efforts have helped demonstrate links between the
microbiome and diverse conditions including IBS, cystic fibrosis,
diabetes mellitus, and cancer31,43–45. While identifying the specific
molecular mechanisms contributing to these diseases remains
challenging, recent advances in metabolomics technologies allow
us to capture a broad swath of central carbon metabolism and
track the microbial metabolism of carbon chains as they are
passed through networks of over 5000 reactions46–49. Metabo-
lomics technology, when coupled to animal models, isotope
tracing studies, and in vitro organ models allows researchers to
probe the complexities of host-microbiome metabolic dynamics
with a greater degree of experimental control than was previously
possible (Fig. 1, Table 1). The main objective of this review is to
examine the unique challenges encountered in microbiome-
metabolism studies and discuss how these emerging tools and
techniques can provide insights into the molecular mechanisms at
work behind complex host–microbiome interactions. We highlight
examples of how these tools can be used to study host-microbiota
and microbe-microbe interactions, as well as interactions of the
microbiome with diet and pharmaceuticals (Table 1; see
Supplementary Table 1 for more examples).

BIOLOGICAL COMPLEXITIES IN MICROBIOME METABOLIC
STUDIES
Complex microbial ecosystems are found throughout the integu-
ment, GI tract, airways, mucosa, and urogenital tract5. The
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environmental conditions that microbes encounter at these sites
vary dramatically with respect to pH, oxygen, bicarbonate, and
nutrient availability and these site-to-site differences can have a
profound impact on which microbes inhabit the niche50. Since the
metabolic capacity of microbes differs considerably species to
species, these differences in microbial community composition
can have a profound impact on the metabolic capacity of the
overall system51–55. Moreover, the ensemble action of host and
microbial enzymes creates a more complex metabolic network
than exists in any individual species5,6.
Microbiome metabolism is further complicated by the multi-

species pathways that nutrients can take through the microbial
ecosystem. The metabolic waste products of some microbes are
the preferred carbon sources for others. Succinate, for example, is
a primary waste product of Enterobacteriales56 but is also one of
the preferred carbon sources of Pseudomonas aeruginosa57–59.
These differences in nutritional strategies enable microbial cross-
feeding interactions that create multi-species metabolic networks
in the microbiome50,60. Cross-feeding can significantly alter the
metabolic capacity of systems24,25,27,28,52,61 and modulate micro-
bial phenotypes (e.g., their sensitivity to antibiotics)35,53,54. Cross-
feeding interactions also enable some species to survive in
otherwise inhospitable environments23,35,62. For example, a
previously unreported genus of bacteria (KLE1738) was recently
found to depend on γ-aminobutyric acid (GABA)-producing
Bacteroides fragilis for growth23. Cross-feeding interactions are
also thought to play a role in a range of health issues, including
periodontal health62, the clinical progression of pulmonary
infections in cystic fibrosis patents24,25,28,29, and may contribute
to the overgrowth of pathobionts in response to undernutrition63.

Tracking metabolism through multi-species networks
Decoupling the complex flow of molecules organism-to-organism
is a non-trivial challenge and to study cross-feeding, researchers
have employed a variety of methods including genome-scale
metabolic reconstruction28,64, computational modeling with

in vitro data28,65–68, and in vitro checkerboard assays53,54 (Table 1;
Supplementary Table 1). Recently, metabolomics has played a
larger role in dissecting these dynamics, largely via the use of
isotope tracing experiments69–71. Isotope tracing approaches track
the flow of stable isotope-labeled nutrients (typically 13C, 15N or 2H)
through microbial communities and their exchange with the
host23,24,61,72. This strategy has been used to identify microbe-
specific biomarkers23,33,61, demonstrate the exchange of nutrients
from microbes to the host72, and demonstrate syntrophic relation-
ships between microbes that overcome nutrient imbalance in the
diet61. Though powerful, isotope labeling approaches are a serious
analytical undertaking, especially in the context of untargeted and
semi-targeted metabolomics studies. The multi-species metabolic
networks can scramble isotope labeling and make it difficult to
predict which molecules and which isotopologues (i.e., the number
of isotopically labeled atoms present in a molecule) will be
produced from a microbiome-linked processing of a precursor. This
uncertainty can create computational challenges because it
requires all possible metabolites to be screened for all possible
isotopologues. This dramatically increases the search space and
thereby the likelihood of misidentifying metabolites in the context
of untargeted/semi-targeted studies. Although this can be partially
mitigated via high-resolution mass spectrometry73, additional care
must be given to the molecular assignment process since mass
and retention time alone may not be sufficient to unambiguously
identify metabolites in isotopically complex microbiome extracts.

Organ models of microbiome metabolism
In vitro bioreactors and organ models are well-established systems
for reducing the complexity of microbiome analyses and provide a
path for identifying specific molecular interactions between cell
types26,27,74–79. One of the best-established bioreactor systems is
the Simulator of the Human Intestinal Microbial Ecosystem
(SHIME®), which simulates the entire human GI tract74,75. The
SHIME® system simulates digestion by pumping contents into a
series of chambers74. This system can be primed with fecal
suspensions or engineered with specific microbes to enable
specific molecular interactions to be studied under controlled
conditions. This model has been used to elucidate the effects of
diet and pre- or probiotics on organic acid and short-chain fatty
acid (SCFA) production in different GI compartments36,38,80–82.
Other organ models include the Winogradsky column system,
which has been used to study the microbial community
interactions underlying pulmonary infections25–27, and a range
of single compartment chemostat reactors that have been used to
simulate specific microbiome ecosystems (e.g., the human
colon)37,76,77,79,83–86.
Although each of these established in vitro systems enable

detailed molecular studies to be conducted under well-controlled
conditions, they lack human cell interactions87 and thus do a poor
job of simulating the significant host contributions to the
environment, such as the absorption of nutrients associated with
mammalian host cells27,74,83,88. To address this, a range of new
in vitro organ models have been developed. Organoids, organ-on-
a-chip, and related in vitro human biomimetic models allow
researchers to simulate specific compartments of the human body
while manipulating parameters to simulate disease pathogenesis,
host-cell responses, and drug interactions89–91. Organoid culture is
a well-established tool for studying a multitude of organs and
disease models, but most current approaches use a microfluidic
organ-on-a-chip approach to mimic complex interactions between
the microbiome and host or other microbial cells. The human
Colon Chip was used to determine the human microbiome-
associated metabolites that mediated susceptibility to enterohe-
morrhagic E. coli infection, which is not common in mice and
therefore cannot be studied in a murine model92. The human gut-
on-a-chip, comprised of two microfluidic channels which are
separated by a flexible membrane lined with human epithelial

Fig. 1 Established model systems for studying host-microbiome-
related phenomena. Figure created with BioRender, available at
Biorender.com.
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cells, is a useful tool to manipulate different factors in the gut
microbiome, such as the presence of immune cells and
pathogenic microbes, to determine the factors that contribute
most to intestinal inflammation and bacterial overgrowth40,93.
Similarly, the simplified human microbiota (SIHUMIx) model
consists of three parallel bioreactors inoculated with a standard
mix of eight bacterial species that are dominant in human feces
and improves the reproducibility of results from prior bioreactor
systems94.
Newer models are allowing researchers to study more complex

interactions including co-culture and multi-organ systems41,87,89.
The microfluidics-based HuMix (human-microbial crosstalk) model
consists of gaskets divided into three co-laminar microchannels
(medium perfusion microchamber, human epithelial cell culture
chamber, microbial culture microchamber) with cell-covered
membranes used for the extraction of intracellular metabolites87.
This provides a means to continually monitor the effect of co-
culture on individual co-cultured cell contingents. The authors
validated HuMix with human intestinal epithelial cells co-cultured
with Lactobacillus rhamnosus GG grown under anaerobic condi-
tions, which induced the intracellular accumulation of GABA in the
epithelial cells. Another model connected the human gut, liver,
and circulating immune cells (T regulatory and T helper 17 cells) to
simulate ulcerative colitis ex vivo using an integrated co-culture
system of two fluidically communicating human micro-
physiological systems41. In this system, the authors tested the
immune response to microbiome-derived SCFAs, which was
dependent on the involvement of effector CD4 T cells.
Each of these in vitro organ models provides a mechanism for

investigating the molecular underpinnings of host-microbiome
interactions. However, all bioreactors and organ models are
sensitive to subtle changes in pH, temperature, nutrients, and
oxygen levels which can have a dramatic impact the metabolic
phenotypes observed in these model systems27,74,83,95. Although
these platforms provide a controlled environment for testing
metabolic hypotheses about interactions of individual species,
they generally must be combined with metabolic profiling or
in vivo approaches to verify the physiological relevance of the
findings (see Table 1 for examples).

ANIMAL MODEL STRATEGIES FOR INVESTIGATING
MOLECULAR INTERACTIONS
Gnotobiotic animal models, which have been extensively
reviewed elsewhere96–98, are one of the most effective tools for
investigating the molecular underpinnings of host-microbe
molecular interactions99–101. Germ-free mice (and other species)
can be colonized with defined collections of microbes, which
enables direct comparisons between germ-free (GF; free of all
microorganisms), specific pathogen free (SPF; contain a microbiota
that is free of specified pathogens), and monocolonized/poly-
colonized animals. For human studies, microbial communities
linked to specific metabolic phenotypes can be mapped via
metagenomic sequencing102 and the taxonomic structure of
populations can be linked to disease states. These phylogenetic
mapping efforts can be effective when combined with fecal
microbiota transplantation studies to separate host versus
microbiome contributions to complex diseases103.
These model systems present a powerful framework for

integrating hypothesis testing into metabolomics studies of the
microbiome and have been used to investigate diverse biological
processes including aging104, reproduction105,106, and
metabolism13,14,16,107,108. This strategy has been very successful
in providing molecular insights into diverse diseases including
colitis (both IBS and Crohn’s disease)15,17, neurodegenerative
disease20,21, breast cancer32, diabetes109, the biological response
to toxin exposure9,10,34,110–113, and the role that the microbiome
plays in immunity30,114. Though powerful, gnotobiotic models

have some limitations. Human physiology and our microbial
communities differ from those found in model organisms100 and
this can present challenges in translating findings back to human
disease115,116. Furthermore, rodents are coprophagic, a behavior
that is not common in people, and this can have a direct impact
on the metabolic composition of the GI tract, including microbial
catabolites of bile acids115. Despite these shortcomings, gnoto-
biotic models are currently the best tools available for testing
specific microbiome metabolic hypotheses and, if carefully
coupled with in vitro organ models or human studies, provide
the most direct path for unraveling the molecular underpinnings
of host-microbiome metabolic dynamics.

SAMPLING CONSIDERATIONS
Metabolic associations can be established through the analysis of
non-invasive samples (analyses of feces, serum, and urine), but
these samples are indirect reporters of microbial metabolism, are
diluted significantly after they leave their microenvironment, and
can undergo significant biological or chemical degradation before
they can be sampled from these distal sites44,117–122. Although the
obvious solution to this problem is to collect samples directly from
microbial communities, this approach is not always practical (i.e.,
sampling the GI tract in humans is invasive and not all sites can be
reached via endoscopy123). Moreover, the metabolites produced
by microbes in one site can affect a wide range of other
organs11,20,21,113,122,124–127. Microbially-derived trimethylamine N-
oxide and phenylacetylglutamine produced in the gut, for
example, are linked to elevated risks of cardiovascular disease
and pancreatic cancer31,33. In addition, a growing body of
literature has shown that the microbiome influences both local
and systemic immune function2,127. Microbial inosine, for example,
plays a direct role in the activation of antitumor T cells30. Resolving
these indirect modes of action is critical for understanding the
molecular mechanisms that contribute to disease but poses
significant challenges to study designs. At present, the best
strategy is to sample broadly from both the local microbial
communities (wherever possible) and from distal sites around
the body.
The choice of metabolite extraction solvents will also directly

affect the scope of metabolites that can be observed in a study46,121.
The merits of diverse sample preparation methods, the timing of
collection, transport and storage conditions of the samples,
homogenization, and pretreatment strategies (e.g., use of preserva-
tives) have been discussed at length elsewhere117–119,128,129. Briefly,
some general principles that need to be considered are (1) the
extraction solvent must match the downstream analysis (i.e.,
aqueous extractions should be matched with analyses of
hydrophilic molecules and vice versa), (2) metabolism needs to
be quenched to prevent samples from degrading, (3) solvent/
solute ratios should be adjusted according to the target molecules
to maximize extraction efficiencies, (4) freezing samples will cause
some metabolites to precipitate out of solution and can affect
quantification, and (5) every sample extraction method excludes
certain groups of molecules and introduces biases46,121,130.
Consequently, the primary objective of any extraction should be
to capture the target transect of molecules with the least technical
error. With this objective in mind, we have increasingly favored
extractions in 4 °C 50% methanol:H2O (at a 1:50 or 1:20
volume:volume dilution or 50 mg tissue/mL) for general studies
involving central carbon metabolism131–133, extracellular metabo-
lome analyses134–136, and other projects involving the analysis of
polar metabolites137–139 (see Section S1 in the SI file for detailed
extraction protocols). We have shown that this simple extraction,
when coupled with hydrophilic interaction liquid chromatography
(HILIC) mass spectrometry (MS), can reproducibly capture
metabolites over thousands of samples with minimal technical
error (coefficient of variation <0.15 over 1000+ injections)140. We
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find that this method is a good first choice for analyzing polar
compounds when the molecular targets are poorly defined;
however, other methods can be better optimized for specific
compound classes such as SCFAs. Samples containing SCFAs
should be immediately frozen (at −20 °C or preferably −80 °C) and
can then undergo extraction using solvents such as an
acetonitrile:H2O blend or specialized cleanup steps like solid-
phase microextraction141–144. Appropriate sample preparation
steps for the sample matrix and the classes of molecules analyzed
help ensure reproducible and meaningful results in these complex
microbiome-metabolomics studies.

New frontiers in human sampling
Gnotobiotic animals are a powerful platform for studying disease
but will always be imprecise re-creations of human diseases.
Validating these findings requires human studies, which are
generally limited to blood, urine, feces, and other non-invasive
samples. Although some researchers have employed surgical
biopsy145 and mucosal endoscopic lavage17,123, these medical
procedures are difficult to organize for most studies. To address
this, several groups are working to develop ingestible GI sample
collection devices146,147. These new tools allow insights into
physiology that were previously only practical in animal models.
Three examples of this emerging platform are the CapScan®

(Envivo Bio)146, the Ingestible Osmotic Pill147, and the Small
Intestine MicroBiome Aspiration Capsule (SIMBA™) (Small Intestine
MicroBiome Aspiration Capsule (2022) at https://
www.nimblesci.com/technology). The CapScan® consists of a
collapsed collection bladder, capped by a one-way valve inside
a dissolvable capsule with an enteric coating146. Once ingested,
the device moves down the GI tract until it reaches a pre-set pH
level (e.g., pH 7–8 in the ileum), where the enteric coating
dissolves and the collection bladder draws in the luminal contents.
The one-way valve prevents further entrance of liquid into the
capsule, which is later recovered from the stool. These researchers

tested the device on 240 intestinal samples from 15 healthy
patients and found significant differences in microbes and
metabolites present in the intestines compared to the stool and
determined that bile acid profiles varied along the intestines, as
found previously in animal models. Other devices follow similar
principles, although the mechanism of action for the 3D-printed
Osmotic Pill involves a pressure differential created across the
semipermeable membrane, which induces a passive pumping
action as it moves down the GI tract147. The pill is embedded with
a small neodymium magnet, and thus can be held in a precise
location inside the GI tract for sampling of specific locations. These
ingestible sampling devices have just recently been introduced
and their applications into metabolomics have just started to
come online. One consideration in applying this emerging
technology to metabolomics is that samples collected via these
capsules cannot be metabolically quenched until after the capsule
has been collected (potentially a day or more after sampling the
microbiome)46,121,148. Consequently, these tools will be most
amenable to analyzes of metabolic phenotypes that are biologi-
cally and chemically stable.

ANALYTICAL COMPLEXITIES IN MICROBIOME METABOLIC
STUDIES
Microbiome metabolomics studies present significant analytical
challenges because of the exceptional breadth of chemical
diversity and the high degree of metabolic complexity that can
be found in metabolic extracts from microbial communities
(Fig. 2)44,46,47. Complex carbohydrates, lipids, bile acids, SCFAs,
peptides, amino acids, nucleotides, vitamins and cofactors, and a
stunning diversity of secondary metabolites are a few examples of
small molecule classes that are metabolized by the
microbiome1–3,6,8 and can modulate host-microbiome dynamics
(see Table 1 for examples). Unfortunately, no single analytical
technique can capture this full spectrum of molecules in a single

Fig. 2 Analytical challenges associated with microbiome-metabolomics research include the diversity of chemical classes present in local
and systemic regions of the gut microbiome. Figure created with BioRender, available at Biorender.com.
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analysis46,48,49. Consequently, each study must designate a target
range of molecules and select an extraction method and analytical
framework that are compatible with the chemical properties of
the target analytes.
As discussed in “Sampling considerations”, there are dozens of

commonly used sample preparation and analytical workflows for
metabolomics analyses. These have generally consolidated around
methods for the three core instrumentation platforms used in
metabolomics: liquid chromatography-mass spectrometry (LC-
MS)10,13,21,45,142, gas chromatography-mass spectrometry (GC-
MS)110,149,150, and nuclear magnetic resonance (NMR)12,15,120.
Although the general merits and pitfalls of these platforms are
thoroughly described elsewhere46, there are some special
considerations that these platforms have in the context of
microbiome research.
One of the most intensively studied classes of molecules in

microbiome research are SCFAs, which are microbially-derived
compounds that are implicated in a vast range of biological
processes ranging from colitis and immune function to pain
perception10,13,15,21,22,85,110,151,152. Although these molecules can
be detected on any of the three core analytical platforms, they are
surprisingly difficult to accurately quantify. NMR methods can
detect them directly but cannot accurately quantify them without
selective or multidimensional methods130,153. Although SCFAs are
small and polar, they are difficult to resolve by liquid or gas
chromatography without derivatization154. To address this, a
range of specialized SCFA analysis techniques have been
developed10,21,45,142. Of these, we prefer SCFA Quantification
Using Aniline Derivatization, which is an isotope-based LC-MS
strategy that enables robust absolute quantification of SCFAs in
complex samples142.
Another important class of metabolites for microbiome research

are bile acids, which encompass a rich collection of cholesterol-
derived molecules and whose conjugated derivatives are secreted
from the liver into the gut and converted into secondary bile acids
via microbial catabolism1,11,44,113,122,155,156. A selection of con-
jugated and unconjugated bile acids reach the circulatory system,
where they interact with bile acid receptors1,11,113,156,157. These
molecules are primarily detected in the cecum or the feces and
are best detected using reverse-phase LC-MS44,113,158 or via
targeted analyses using chemical labeling kits that are now
commercially available (e.g., Biocrates)11.
Beyond these intensively studied classes of compounds, a range

of aqueous central carbon metabolites, including amino acids
(e.g., neurotransmitters, choline derivatives, and tryptophan
derivatives), nucleotides, and energy intermediates are emerging
as important regulators of the interplay between host and
microbiome1,8,20,21,111,124,159,160. These metabolites are more
commonly associated with systemic effects (i.e., are found in the
bloodstream and tissues such as the brain and
liver)12,20,21,111,124,159, but can also serve as important immune
regulators in the GI tract30,122,161,162. These hydrophilic com-
pounds are most easily analyzed by LC-MS using HILIC140,163–165

but can also be derivatized and analyzed by GC-MS14,109,112. Our
preferred strategy for aqueous analyzes of the GI tract and feces
uses a zwitterionic HILIC (Thermo Fisher Syncronis™) stationary
phase combined with a short linear ammonium formate (aqueous
phase)/ acetonitrile with formic acid (organic phase) gradient to
capture amino acids, carbohydrates, nucleotide derivatives, and
other common compounds that are found outside the cell140. We
have recently shown that the uptake and secretion of these
compounds is a sensitive predictor of microbial taxa56.
Phosphate-containing metabolites (e.g., ATP, NADH, glucose-6P,

and carbamoyl phosphate) and organic acids (e.g., citrate and α-
ketoisovalerate) play a critical role in central carbon metabolism,
energy transfer, and redox166. Although a range of HILIC methods
have been developed to chromatographically resolve these
compounds, they tend to ionize poorly by electrospray ionization.

This problem can be mitigated through the use of ion pairing
agents (e.g., tributylamine; TBA), which improve their chromato-
graphic properties and stabilizes their negative charges167,168. The
TBA-metabolite complexes formed through this method enhance
LC-MS sensitivity by orders of magnitude for these compounds.
One of the most effective of these methods is C18 reverse phase
ion pairing (RPIP) that was developed by the Rabinowitz group169.
This method can be challenging to set up and involves spraying
15mM TBA into an instrument, which is very difficult to clean out of
the system and effectively commits the LC-MS system to negative
mode analyses. For labs with the technical expertise to establish
this method and resources to commit an instrument to this setup,
the RPIP method offers a robust and high-sensitivity mechanism for
quantifying phosphate-containing metabolites and organic acids.
In summary, the vast diversity of microbial metabolites produced

by the microbiome cannot be captured using a single analytical
assay and the selection of analytical method(s) will have a direct
impact on the transect of metabolic pathways that will be
observable for any given study. Thus, the analytical approach must
be tailored to each investigation and multiple methods are
generally required to capture a comprehensive picture of host-
microbiome metabolic dynamics.

DATA NORMALIZATION IN MICROBIOME METABOLIC STUDIES
The variability of microbiome samples (e.g., fecal water content
and variation in urine water content) along with the frequently
large scale of many microbiome studies creates significant
complexities with regards to normalizing metabolomics
datasets31,33,42,43,56,170. Data normalization is a complex task that
is affected by both the analytical platform and sample type.
Whereas NMR data can be normalized post-acquisition, mass
spectrometry data are very challenging to correct post-acquisition
because each molecule follows its own unique ionization proper-
ties that are nonlinearly affected by the composition of the
matrix171–174. Thus, no single normalization constant can be used
to correct for sample-to-sample differences in composition. To
address this, a range of computational strategies have been
proposed including normalization to a constant sum175, probabil-
istic quotient normalization176, metabolic ratio correction171,
median fold change177, and normalization to MS total useful
signal173. However, in our experience, none of these computa-
tional strategies completely control for variability and all of these
mathematical operations contribute to undesirable propagation of
error. Additionally, normalization can produce significant artefacts
—especially in untargeted analyses (partially due to missing
signals in analytes approaching the limit of detection). Conse-
quently, our preferred approach, wherever possible, is to prepare
homogeneous samples or otherwise correct the sample extrac-
tions prior to analysis to minimize the need for post-analysis data
normalization. We employ a range of analytical strategies
depending on the sample type: for tissue and fecal samples we
prefer weighing, for fluids we normalize to initial sample volume,
and for microbial samples and cell cultures we correct to optical
density or colony counts; alternatively, we introduce isotope-
labeled reference metabolites into the extraction mixture142 (see
SI Section S1 for details).
In addition to sample-to-sample variability, metabolomics

studies must also contend with the inherent instability of the
analytical platforms. LC-MS response factors drift day-to-day and
thus preclude the direct comparison of raw signal intensities from
batch-to-batch. This problem can be addressed by collecting a
common reference sample in every batch and expressing
observed intensity relative to the common refence140. This
common sample can be prepared as a mixture of all of the
representative samples (i.e., a “super mix”) which is ideal in
untargeted analyses that may capture unusual metabolites.
Alternatively, a mixture of analytical reference standards in a
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representative sample matrix can be collected along with each
batch of samples140,173. These calibration reference samples can
then be used to compute the absolute concentration of target
metabolites and thereby sidestep the data normalization pitfalls.
Naturally, the standards-based approach limits analysis to
compounds that can be matched to commercial standards and
to signals that are present within the linear range of the
calibration reference mixtures.

DATA ANALYSIS COMPLEXITIES IN MICROBIOME METABOLIC
STUDIES
Untargeted metabolomics studies capture thousands of individual
features from each sample, but conventional experimental
designs involve cohorts of hundreds or fewer subjects178. This
creates an inherent mismatch between data size and biological
replication, which is a recipe for driving false discovery, statistical
overfitting, and a variety of computational problems. Conse-
quently, data processing steps, including removal of noise, peak
detection, identification, quantification, and missing value imputa-
tion can play pivotal role in the quality of the resulting
dataset178–180. Many of these challenges are inherent to all
systems-level analysis and there are well-established statistical
tools such as dimensionality reduction approaches (e.g., principal
component analysis)12,16,32,105,124,181,182, correction for multiple-
testing (e.g., Bonferroni correction)183, the use of linear models
(e.g., ridge regression)184, and data visualization strategies (e.g.,
volcano or Manhattan plots)185 that can identify statistically
significant correlations and avoid common pitfalls related to false
discovery and statistical overfitting. Recently, new computational
approaches have been developed, including machine learning
and mediation analysis, that provide a powerful new approach for
unlocking the molecular underpinnings of host-microbiome
dynamics186–191.

Machine learning strategies for identifying molecular
mechanisms
Microbiome-metabolomics computational approaches must
decipher a complex mix of interactions to reveal the microbial
composition, the interactions between its components, the
interaction with the host, as well as time dependencies in the
sample. In recent years, researchers have increasingly used
machine learning (ML) approaches to resolve these
complexities188,190,192–194. ML techniques compress high-
dimensional data into models via a recursive learning (or fitting)
process. Once trained, these models can then be used to predict,
classify, or transform new data. A branch of ML called
explainable ML focuses on the interpretability of such models
and is useful for microbiome research because of its ability to
model to highly complex functions, and to identify important
combinations of features while simultaneously incorporating
confounding variables189,190,195–197. Some examples of success-
ful applications of ML are high-capacity models (e.g., Random
Forest190 and Gradient Boosting189), deep artificial neural net-
works that can model arbitrarily complex functions196,197, and
the SHAP algorithm that uses concepts from cooperative game
theory to analyze trained models and their predictions195. Each
of these tools can return a human interpretable “importance”
score of the original features and these scores can be used to
help drive research into discrete molecular mechanisms.
Recently, identifying these causal relationships has been taken
a step forward with AutoEncoders, which are neural networks
that were developed to identify causal relationships using a
latent variable model187. Though effective in skilled hands,
neural networks often require expert knowledge to be
implemented effectively and other approaches including media-
tion analysis may provide a means to interpreting complex
relationships in metabolomics data.

Mediation analysis in microbiome studies
Mediation analysis is a valuable tool that can estimate causality in
relationships between study variables191,198. Mediation models
were first employed in the study of psychosocial predictors of
human health in order to identify potential causal relationships by
decomposing the direct effect of a predictor versus a treatment or
outcome or its indirect effect through a mediator199–202. A
mediation model has three types of variables, the predictor (X),
the outcome (Y), and the mediator (M). X could be the state of a
patient (age, gender, comorbidities, etc.), Y the severity of a
disease, and M the clinical interventions. Tests of association often
use another variable called the confounding factor or variable (C),
which does not mediate the association between X and Y but is an
alternate (biasing) explanation for it. The goal is to quantify direct
effects (caused by X) and indirect effects (caused by M) on (Y) and
their statistical significances. Explanations for a potentially-causal
association between a predictor (X) and an outcome (Y) almost
always involve at least one mediator variable (M)203.
More recently, there has been a growing interest in studying the

role of human gut microbiota as a “mediating” biological pathway
in the association between diet, a medical intervention or an
environmental exposure, and adult health200–202. Several publica-
tions have also explored the role of early-life microbiota by testing
the role of gut microbiota during infancy in mediating associations
between a variety of early life exposures such as maternal pre-
pregnancy weight, cesarean section delivery, and household
cleaning product use, and comparing these to future health
outcomes204–206. Mediation analysis can be used to identify
microbiota metabolic pathways for breastfeeding in promoting
gut immunity. For example, γ-Proteobacteria and its metabolite
lactate have been shown experimentally to promote mucosal
immunity and aid maturation of gut microbiota by stimulating
Immunoglobulin A responses and enhancing intestinal cell activity
of dendritic cells207,208.
In a multiple mediator pathway model (Fig. 3), we demonstrate

the effects of two sequential mediators, gut γ-Proteobacteria
(Mediator 1) and lactate levels (Mediator 2), in the pathway
between breastfeeding (BF) status (X) and fecal secretory
Immunoglobulin A (sIgA) levels, a marker of gut immunity, after
3 months of breastfeeding (Y). At this young infant age, breast
milk is the sole source of sIgA and the infant gut only produces
small amounts. In this example, the predictor variable (X) is
divided into two categories, X1 (partially-breastfed infants) and X2
(non-breastfed infants), and compared to the reference category,
exclusively breastfed infants. The mediating path (or indirect
effect) being tested is the γ-Proteobacteria – lactate pathway in
the association between the extent of non-breastfeeding and fecal
sIgA levels. This path shows statistical significance for partial
breastfeeding [Path 3 × 1: −0.05, 95% (−0.10, −0.01)] and no
breastfeeding [Path 3 × 2: −0.06, 95%CI (−0.13, −0.02)], indicating
that limiting breast milk intake can lower infant sIgA levels
through a pathway of reduced abundance of γ-Proteobacteria and
its metabolite lactate. As expected, the model also shows a
substantial direct effect for lack of any breastfeeding in lowering
sIgA levels [X2, −4.34]. Importantly, the microbiota-lactate path is
a separate path to the direct effects of breast milk in supplying
sIgA to the infant, suggesting that reduced availability of fecal
lactate due to limited breastfeeding may lower sIgA production in
the infant gut. Experimentally, it has been shown that lactate
stimulates sIgA production208. By identifying multiple metabolic
paths or consequences of reduced milk intake, this model
underscores the importance of breastfeeding in not only
providing passive IgA immunization to the infant but also its role
in promoting the immuno-stimulatory activity of γ-Proteobacteria
and lactate during early infancy when mucosal immunity is poorly
developed209,210.
Although classical mediation approaches may not model

nonlinear effects well, new approaches including parametric
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models and ML mediation analysis show promising results in
establishing high-dimensional data without pre-selection of
control variables186,191,192,194,211. These exciting new methodolo-
gies will enable researchers to handle the ever-increasing amounts
and complexity of future datasets generated through large-scale
metabolomics studies.

EXAMPLES OF HOST-MICROBIOME DYNAMICS THAT ARE
MODULATED THROUGH METABOLISM
Advances in metabolomics technologies have greatly expanded
our ability to dissect the molecular underpinnings of complex
host-microbiome interactions. Recently, there has been a major
expansion of the literature in this area. Our small selection of
examples provided here (Table 1) can serve as a starting point for
exploring this exciting new body of literature.
Host-microbe metabolic dynamics encompass a wide range of

biological functions including chronic and infectious disease,
immunity, aging, neurology, and physiology10,13,15,18,22,30,33,104,212.

One classic example of these host-microbe dynamics relates to
SCFAs, which are produced by the gut microflora and have
protective effects against colitis and IBS10,13,15. SCFAs also
modulate the maturation of immune cells, including microglia,
and shape the properties of the visceral pain signaling
pathways10,22. Recent studies have shown that SCFAs have
radioprotective effects by stimulating repair processes in the
gastrointestinal tract and by reducing proinflammatory responses
in the host22,110.
Other select examples of host-microbe interactions include the

production of inosine by Bifidobacterium pseudolongum, which
aids in the activation of host responses to colorectal cancer in
immune checkpoint blockade therapy (with anti-CLTA-4 treat-
ment)30. In addition, phenylacetyl-glutamine and phenylacetyl-
glycine, produced by Clostridium sporogenes, are associated with
cardiovascular disease through modulation of G-protein coupled
receptors33. Lactobacillus and Bacteroides microbiome members
are correlated with enhanced neurobiological functions like
improved memory or alleviated depression symptoms23,159.

Fig. 3 Mediation analysis can be used to establish causality in microbiome-metabolomics studies, with an example shown of the
mediating roles of infant γ-Proteobacteria (Mediator 1) and lactate (Mediator 2) on the association between breastfeeding status (causal
agent X) and fecal sIgA levels (presumed effect Y) at 3 months. a We establish the variables in the causal diagram, showing the association
between causal agent X (breastfeeding status) and presumed effect Y (infant fecal sIgA levels at 3 months). b Using a sequential mediation
model, we establish the direct effects of breastfeeding status on fecal sIgA levels, where breastfeeding status is the categorical variable and
exclusive-BF is the reference group. c We then calculate the indirect and total effects in the causal diagram. β-coefficients are shown with 95%
Confidence Intervals (CI) and significant differences (p < 0.05) are indicated in red.
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Bacteroides possess the ability to produce GABA, a key neuro-
transmitter for mood and memory regulation23, while Lactobacillus
spp. enhance GABA production in a lactate-dependent manner159.
Lactobacillus members also metabolize dietary tryptophan into
indole compounds (e.g., indoxyl-3-sulfate, indole 3-propionic acid,
indole 3-aldehyde) which have a protective effect against host
inflammation via the activation of aryl hydrocarbon receptors in
both experimental autoimmune encephalomyelitis (EAE; repre-
sentative of multiple sclerosis)18 and colorectal cancer models212.
Microbiota also participate in microbe-to-microbe interactions

that impact host homeostasis and affect the ability of specific
pathogens to cause infection. In cystic fibrosis infections, a range
of in vitro, computational, and human metabolic profiling
approaches have collectively established that dominance by the
pathogen Pseudomonas aeruginosa is driven by its ability to cross-
feed on amino acids, organic acids, and alcohols produced by
facultative anaerobes in the environment24,25,28,29. Phascolarcto-
bacterium spp. have a protective effect against Clostridium difficile
infections by consuming the succinate needed for Clostridium
difficile growth39 while Bacteroides vulgatus produce SCFAs and
trimethylamines, which have a protective effect against Vibrio
cholerae infections151.
Diet plays a large role in microbiota-mediated effects in the

host. Probiotic and prebiotic (e.g., inulin and stachyose) treat-
ments can be used to stimulate specific strains in the gut
microbiome to produce higher levels of SCFAs21,36–38. Host
nutrition can also be corrected through cross-feeding, where in
flies, Lactobacillus and Acetobacter establish a syntrophic relation-
ship to overcome nutrient scarcity due to an imbalanced diet61.
Diet can also have a negative impact on the host, such as in the
case of Chron’s disease, where catabolism of dietary serine by
blooms of Escherichia coli and Citrobacter rodentium can worsen
inflammatory responses39. Butyrate produced by Firmicutes
members of the microbiome in response to a high carbohydrate
diet is associated with the hyperproliferation of colon epithelial
cells in a colorectal cancer model213. While current technologies
have enabled us to unravel many of these host-microbiome
interactions along multiple axes of interaction, new technologies
will allow us to elucidate even more of the complex interactions
underlying community metabolism, disease pathology, and
dysbiosis at a molecular level.

CONCLUSION
Over the last two decades metabolomics has matured from a
largely descriptive activity into a tool for probing the molecular
underpinnings of biology. Host-microbiome dynamics are some of
the most complex biological systems where these tools have been
applied and the biological, logistical, analytical, and computational
challenges inherent to this field of research make it difficult to
move beyond correlational statistics. However, recent advances in
model systems, experimental strategies, analytics, and computa-
tional tools have opened the door to mechanistic insights into
microbiome-mediated biological phenomena. As these
approaches mature, we anticipate that we will quickly gain
molecular understanding of the myriad mechanisms that the
microbiome uses to modulate the host immune system and other
important phenomena.
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