Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prognostic impact of the conditioning intensity on outcomes after allogeneic transplantation for MDS with low blasts: a nationwide retrospective study by the adult MDS working group of the Japan Society for Transplantation and Cellular Therapy

Abstract

Poor prognostic factors, such as transfusion dependency and chromosomal risk, need to be considered in the indication of allogeneic hematopoietic cell transplantation (allo-HCT) for patients harboring myelodysplastic syndromes with less than 5% marrow blasts (MDS-Lo). We analyzed the post-transplant outcomes of 1229 MDS-Lo patients who received myeloablative (MAC)(n = 651), reduced-intensity (RIC)(n = 397), and non-myeloablative conditioning (NMAC) regimens (n = 181). The multivariate analysis revealed that the RIC group had better chronic graft-versus-host disease (GVHD)- and relapse-free survival (CRFS) (P = 0.021), and GVHD- and relapse-free survival (GRFS) than the MAC group (P = 0.001), while no significant differences were observed between the NMAC and MAC groups. In the subgroup analysis, the MAC group has better overall survival (P = 0.008) than the RIC group among patients with an HCT-comorbidity index (HCT-CI) score of 0, while the RIC group had better overall survival (P = 0.029) than the MAC group among those with an HCT-CI score ≥3. According to the type of conditioning regimen, total body irradiation 12 Gy-based MAC regimen showed better OS and CRFS than the other MAC regimen, and comparable outcomes to the RIC regimen. In conclusion, the RIC and NMAC regimens are promising options for MDS-Lo patients in addition to the MAC regimen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Backgrounds for the indication of allo-HSCT.
Fig. 2: Adjusted OS, CRFS, GRFS, CIR, and NRM by the conditioning intensity.
Fig. 3: A forest plot of overall mortalities.

Similar content being viewed by others

Data availability

All data are available within the article or supplementary files or are available upon request from the corresponding author H.I. (itoman820hide@outlook.jp).

References

  1. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361:1872–85.

    Article  CAS  PubMed  Google Scholar 

  2. Khoury J, Solary E, Abla O, Akkari Y, Alaggio R, Apperley J, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arber D, Orazi A, Hasserjian R, Borowitz M, Calvo K, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140:1200–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    Article  CAS  PubMed  Google Scholar 

  5. Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol. 2007;25:3503–10.

    Article  PubMed  Google Scholar 

  6. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Ossa JA, Nannya Y, et al. Molecular International Prognostic Scoring System for myelodysplastic syndromes. NEJM Evid. 2022; 1. https://doi.org/10.1056/EVIDoa2200008.

  8. Garcia-Manero G, Shan J, Faderl S, Cortes J, Ravandi F, Borthakur G, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22:538–43.

    Article  CAS  PubMed  Google Scholar 

  9. Brunner AM, Leitch HA, van de Loosdrecht AA, Bonadies N. Management of patients with lower-risk myelodysplastic syndromes. Blood Cancer J. 2022;12:166.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Robin M, Porcher R, Zinke-Cerwenka W, van Biezen A, Volin L, Mufti G, et al. Allogeneic haematopoietic stem cell transplant in patients with lower risk myelodysplastic syndrome: a retrospective analysis on behalf of the Chronic Malignancy Working Party of the EBMT. Bone Marrow Transpl. 2017;52:209–15.

    Article  CAS  Google Scholar 

  11. Lim Z, Brand R, Martino R, Biezen A, Finke J, Bacigalupo A, et al. Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia. J Clin Oncol. 2009;28:405–11.

    Article  PubMed  Google Scholar 

  12. Koreth J, Pidala J, Perez W, Deeg H, Garcia-Manero G, Malcovati L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31:2662–70.

    Article  PubMed  PubMed Central  Google Scholar 

  13. DeFilipp Z, Ciurea SO, Cutler C, Robin M, Warlick E, Nakamura R, et al. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transpl Cell Ther. 2023;29:71–81.

    Article  CAS  Google Scholar 

  14. Ishiyama K, Aoki J, Itonaga H, Uchida N, Takahashi S, Ohno Y, et al. Graft-versus-MDS effect after unrelated cord blood transplantation: a retrospective analysis of 752 patients registered at the Japanese Data Center for Hematopoietic Cell Transplantation. Blood Cancer J. 2019;9:31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Itonaga H, Ishiyama K, Aoki K, Ishikawa T, Uchida N, Ohashi K, et al. Increased opportunity for prolonged survival after allogeneic hematopoietic stem cell transplantation in patients aged 60-69 years with myelodysplastic syndrome. Ann Hematol. 2019;98:1367–81.

    Article  CAS  PubMed  Google Scholar 

  16. Konuma T, Itonaga H, Ishiyama K, Hamamura A, Uchida N, Ozawa Y, et al. Progress in survival following three decades of allogeneic hematopoietic cell transplantation for myelodysplastic syndrome: A real-world registry study in Japan. Am J Hematol. 2023;98:E68–E71.

    Article  PubMed  Google Scholar 

  17. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Pérez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85.

    Article  CAS  PubMed  Google Scholar 

  18. Alessandrino EP, Della Porta MG, Malcovati L, Jackson CH, Pascutto C, Bacigalupo A, et al. Optimal timing of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndrome. Am J Hematol. 2013;88:581–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129:1753–62.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saber W, Cutler CS, Nakamura R, Zhang MJ, Atallah E, Rizzo JD, et al. Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS). Blood. 2013;122:1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Itonaga H, Ishiyama K, Aoki K, Aoki J, Ishikawa T, Ohashi K, et al. Clinical impact of the loss of chromosome 7q on outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transpl. 2019;54:1471–81.

    Article  CAS  Google Scholar 

  22. de Witte T, Brand R, van Biezen A, Mufti G, Ruutu T, Finke J, et al. Allogeneic stem cell transplantation for patients with refractory anaemia with matched related and unrelated donors: delay of the transplant is associated with inferior survival. Br J Haematol. 2009;146:627–36.

    Article  PubMed  Google Scholar 

  23. Lee S, Kim Y, Yahng S, Cho B, Eom K, Lee S, et al. Survival benefits from reduced-intensity conditioning in allogeneic stem cell transplantation for young lower-risk MDS patients without significant comorbidities. Eur J Haematol. 2011;87:510–20.

    Article  CAS  PubMed  Google Scholar 

  24. Choi EJ, Lee J, Lee J, Kim D, Park H, Seol M, et al. Non-myeloablative conditioning for lower-risk myelodysplastic syndrome with bone marrow blasts less than 5%-a feasibility study. Ann Hematol. 2016;95:1151–61.

    Article  PubMed  Google Scholar 

  25. Atsuta Y. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016;103:3–10.

    Article  PubMed  Google Scholar 

  26. Kanda J. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation. Int J Hematol. 2016;103:11–19.

    Article  CAS  PubMed  Google Scholar 

  27. Atsuta Y, Suzuki R, Yoshimi A, Gondo H, Tanaka J, Hiraoka A, et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int J Hematol. 2007;86:269–74.

    Article  PubMed  Google Scholar 

  28. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transpl. 2009;15:367–9.

    Article  Google Scholar 

  29. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Bone Marrow Transpl. 2009;15:1628–33.

    Article  Google Scholar 

  30. Holtan SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solh M, Zhang X, Connor K, Brown S, Solomon SR, Morris LE, et al. Factors Predicting Graft-versus-Host Disease-Free, Relapse-Free Survival after Allogeneic Hematopoietic Cell Transplantation: Multivariable Analysis from a Single Center. Biol Blood Marrow Transpl. 2016;22:1403–9.

    Article  Google Scholar 

  32. Xing R, Li C, Gale R, Zhang Y, Xu Z, Qin T, et al. Monosomal karyotype is an independent predictor of survival in patients with higher-risk myelodysplastic syndrome. Am J Hematol. 2014;89:E163–E8.

    Article  PubMed  Google Scholar 

  33. Della Porta MG, Alessandrino E, Bacigalupo A, Lint M, Malcovati L, Pascutto C, et al. Predictive factors for the outcome of allogeneic transplantation in patients with MDS stratified according to the revised IPSS-R. Blood. 2014;123:2333–42.

    Article  PubMed  Google Scholar 

  34. Mehta R, Holtan S, Wang T, Hemmer M, Spellman S, Arora M, et al. Composite GRFS and CRFS Outcomes After Adult Alternative Donor HCT. J Clin Oncol. 2020;38:2062–76.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mehta R, Holtan SG, Wang T, Hemmer M, Spellman S, Arora M, et al. GRFS and CRFS in alternative donor hematopoietic cell transplantation for pediatric patients with acute leukemia. Blood Adv. 2019;3:1441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18:695–706.

    Article  CAS  PubMed  Google Scholar 

  37. Fine JP, Gray RJ. A proportional hazards model for subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  38. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  39. Aoki K, Ishikawa T, Ishiyama K, Aoki J, Itonaga H, Fukuda T, et al. Allogeneic haematopoietic cell transplantation with reduced-intensity conditioning for elderly patients with advanced myelodysplastic syndromes: a nationwide study. Br J Haematol. 2015;168:463–6.

    Article  PubMed  Google Scholar 

  40. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. J Clin Oncol. 2017;35:1154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sibai H, Falcone U, Deotare U, Michelis FV, Uhm J, Gupta V, et al. Myeloablative versus Reduced-Intensity Conditioning in Patients with Myeloid Malignancies: A Propensity Score-Matched Analysis. Biol Blood Marrow Transpl. 2016;22:2270–5.

    Article  Google Scholar 

  42. Martino R, Iacobelli S, Brand R, Jansen T, van Biezen A, Finke J, et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood. 2006;108:836–46.

    Article  CAS  PubMed  Google Scholar 

  43. Shimomura Y, Hara M, Konuma T, Itonaga H, Doki N, Ozawa Y, et al. Allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome in adolescent and young adult patients. Bone Marrow Transpl. 2021;56:2510–7.

    Article  CAS  Google Scholar 

  44. Ringdén O, Labopin M, Ehninger G, Niederwieser D, Olsson R, Basara N, et al. Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J Clin Oncol. 2009;27:4570–7.

    Article  PubMed  Google Scholar 

  45. Yanada M, Kurosawa S, Kobayashi T, Ozawa Y, Kanamori H, Kobayashi N, et al. Reduced-intensity conditioning allogeneic hematopoietic cell transplantation for younger patients with acute myeloid leukemia: a registry-based study. Bone Marrow Transpl. 2017;52:818–24.

    Article  CAS  Google Scholar 

  46. Alyea EP, Kim HT, Ho V, Cutler C, Gribben J, DeAngelo DJ, et al. Comparative outcome of nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation for patients older than 50 years of age. Blood. 2005;105:1810–4.

    Article  CAS  PubMed  Google Scholar 

  47. Nakasone H, Fukuda T, Kanda J, Mori T, Yano S, Kobayashi T, et al. Impact of conditioning intensity and TBI on acute GVHD after hematopoietic cell transplantation. Bone Marrow Transpl. 2015;50:559–65.

    Article  CAS  Google Scholar 

  48. Alatrash G, Kidwell KM, Thall PF, Stasi AD, Chen J, Zope M, et al. Reduced intensity vs. myeloablative conditioning with fludarabine and PK-guided busulfan in allogeneic stem cell transplantation for patients with AML/MDS. Bone Marrow Transpl. 2019;54:1245–53.

    Article  CAS  Google Scholar 

  49. Shimoni A, Hardan I, Shem-Tov N, Yeshurun M, Yerushalmi R, Avigdor A, et al. Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: the role of dose intensity. Leukemia. 2006;20:322–8.

    Article  CAS  PubMed  Google Scholar 

  50. Kurosawa S, Shimomura Y, Itonaga H, Najima Y, Kobayashi T, Ozawa Y, et al. Myeloablative Versus Reduced-Intensity Conditioning With Fludarabine/Busulfan for Myelodysplastic Syndrome: A Propensity Score-Matched Analysis. Transpl Cell Ther. 2022;28:323.e1–e9.

    Article  CAS  Google Scholar 

  51. Fuji S, Hirakawa T, Takano K, Doki N, Sawa M, Kanda Y, et al. Disease-specific impact of anti-thymocyte globulin in allogeneic hematopoietic cell transplantation: a nationwide retrospective study on behalf of the JSTCT, transplant complications working group. Bone Marrow Transpl. 2022;57:479–86.

    Article  CAS  Google Scholar 

  52. Penack O, Abouqateb M, Peczynski C, Boreland W, Kröger N, Stelljes M, et al. ATG or post-transplant cyclophosphamide to prevent GVHD in matched unrelated stem cell transplantation? Leukemia. 2024. https://doi.org/10.1038/s41375-024-02225-7.

  53. Brissot E, Labopin M, Labussière H, Fossard G, Chevallier P, Guillaume T, et al. Post-transplant cyclophosphamide versus anti-thymocyte globulin after reduced intensity peripheral blood allogeneic cell transplantation in recipients of matched sibling or 10/10 HLA matched unrelated donors: final analysis of a randomized, open-label, multicenter, phase 2 trial. Blood Cancer J. 2024. https://doi.org/10.1038/s41408-024-00990-3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Salas M, Eikema DJ, Koster L, Maertens J, Passweg J, Finke J, et al. Impact of post-transplant cyclophosphamide (PTCy)-based prophylaxis in matched sibling donor allogeneic haematopoietic cell transplantation for patients with myelodysplastic syndrome: a retrospective study on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transpl. 2024;59:479–88.

    Article  CAS  Google Scholar 

  55. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa S, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Della Porta MG, Gallì A, Bacigalupo A, Zibellini S, Bernardi M, Rizzo E, et al. Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol. 2016;34:3627–37.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32:2691–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carré M, Porcher R, Finke J, Ehninger G, Koster L, Beelen D, et al. Role of Age and Hematopoietic Cell Transplantation-Specific Comorbidity Index in Myelodysplastic Patients Undergoing an Allotransplant: A Retrospective Study from the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transpl. 2020;26:451–7.

    Article  Google Scholar 

  59. Robin M, Fenaux P. Which lower risk myelodysplastic syndromes should be treated with allogeneic hematopoietic stem cell transplantation? Leukemia. 2020;34:2552–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Takeda Science Foundation and a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (22K08480 [Nagasaki; HI]). The authors would like to thank all the physicians and data managers at the various institutes who contributed valuable data on transplantation to the Japanese Society for Transplantation and Cellular Therapy (JSTCT), all the members of the data management committees of JSTCT, and all the members of “Adult Myelodysplastic Syndromes Working Group of the JSTCT”.

Author information

Authors and Affiliations

Authors

Contributions

HI and YM designed the research, organized the project, and wrote the manuscript. HI, YM, and MF analyzed the data. HI, YM, MF, and KI collected data from TRUMP. HI, YM, MF, JA, ND, TN, TF, NU, YUeda, YUehara, YK, SO, TK, KK, KM, TE, MO, TI, YA, and KI interpreted data and reviewed and approved the final manuscript.

Corresponding author

Correspondence to Hidehiro Itonaga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itonaga, H., Miyazaki, Y., Fujioka, M. et al. Prognostic impact of the conditioning intensity on outcomes after allogeneic transplantation for MDS with low blasts: a nationwide retrospective study by the adult MDS working group of the Japan Society for Transplantation and Cellular Therapy. Bone Marrow Transplant (2024). https://doi.org/10.1038/s41409-024-02297-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41409-024-02297-0

Search

Quick links