Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Hypoxia-inducible factor 3α1 increases epithelial-to-mesenchymal transition and iron uptake to drive colorectal cancer liver metastasis

Abstract

Background/objectives

Hypoxia-inducible factor (HIF)-3α1’s role in colorectal cancer (CRC) cells, especially its effects on epithelial-mesenchymal transition (EMT), zinc finger E-box binding homeobox 2 (ZEB2) gene expression, and iron metabolism, remains largely unstudied. This research sought to elucidate these relationships.

Methods

RNA-seq was conducted to investigate the impact of HIF-3α1 overexpression in CRC cells. Dual-luciferase reporter assays assessed the direct targeting of ZEB2 by HIF-3α1. Scratch assays measured changes in cell migration following HIF-3α1 overexpression and ZEB2 knockdown. The effects of HIF-3α1 overexpression on colon tumour growth and liver metastasis were examined in vivo. Iron chelation was used to explore the role of iron metabolism in HIF-3α1-mediated EMT and tumour growth.

Results

HIF-3α1 overexpression induced EMT and upregulated ZEB2 expression, enhancing cancer cell migration. ZEB2 knockdown reduced mesenchymal markers and cell migration. HIF-3α1 promoted colon tumour growth and liver metastasis, increased transferrin receptor (TFRC) expression and cellular iron levels, and downregulated HIF-1α, HIF-2α, and NDRG1. Iron chelation mitigated HIF-3α1-mediated EMT, tumour growth, and survival.

Conclusions

HIF-3α1 plays a critical role in colon cancer progression by promoting EMT, iron accumulation, and metastasis through ZEB2 and TFRC regulation, suggesting potential therapeutic targets in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of HIF3A1 in colon cancer cells promotes expression of EMT signature genes.
Fig. 2: Validation of RNA-Seq results by qRT-PCR and western blot analysis.
Fig. 3: HIF3A is increased in CRC liver metastasis than primary tumour and is correlated with ZEB2 expression.
Fig. 4: HIF3A1 induces ZEB2 transcription in an HRE-dependent manner.
Fig. 5: HIF3A1 increases CRC liver metastasis in mice.
Fig. 6: HIF3A1 induces TFRC expression and increases iron content of CRC cells.
Fig. 7: Dp44mT reduces mesenchymal markers, cell migration and tumour growth in HIF3A1 overexpressing cells.

Similar content being viewed by others

Data availability

For original data, please contact xxue@salud.unm.edu.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  2. Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, et al. Colorectal cancer liver metastasis: evolving paradigms and future directions. Cell Mol Gastroenterol Hepatol 2017;3:163–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manfredi S, Lepage C, Hatem C, Coatmeyr O, Faivre J, Bouvier A. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 2006;244:254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leith JT, Padfield G, Faulkner L, Michelson S. Hypoxic fractions in xenografted human colon tumors. Cancer Res. 1991;51:5139–43.

    CAS  PubMed  Google Scholar 

  5. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  7. De Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 2011;8:393.

    Article  PubMed  Google Scholar 

  8. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Investig 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90:4304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ravenna L, Salvatori L, Russo MA. HIF3α: the little we know. FEBS J. 2016;283:993–1003.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  13. Imamura T, Kikuchi H, Herraiz M, Park D, Mizukami Y, Mino-Kenduson M, et al. HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int J Cancer. 2009;124:763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1α: Its role in colorectal carcinogenesis and metastasis. Cancer Lett. 2015;366:11–18.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, He X, Xia W, Huang Q, Zhang Z, Ye J, et al. Prognostic value and clinicopathological differences of HIFs in colorectal cancer: evidence from meta-analysis. PLoS ONE. 2013;8:e80337.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H, Rokavec M, Jiang L, Horst D, Hermeking H. Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology. 2017;153:505–20.

    Article  CAS  PubMed  Google Scholar 

  17. Xue X, Taylor M, Anderson E, Hao C, Qu A, Greenson JK, et al. Hypoxia-inducible factor-2alpha activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 2012;72:2285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue X, Ramakrishnan SK, Shah YM. Activation of HIF-1α does not increase intestinal tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2014;307:G187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xue X, Jungles K, Onder G, Samhoun J, Győrffy B, Hardiman K. HIF-3α1 promotes colorectal tumor cell growth by activation of JAK-STAT3 signaling. Oncotarget. 2016;7:11567–79.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Morales M, Xue X. Targeting iron metabolism in cancer therapy. Theranostics. 2021;11:8412–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim H, Villareal LB, Liu Z, Haneef M, Falcon DM, Martin DR, et al. Transferrin receptor-mediated iron uptake promotes colon tumorigenesis. Adv Sci. 2023;10:2207693.

    Article  CAS  Google Scholar 

  22. Schwartz AJ, Goyert JW, Solanki S, Kerk SA, Chen B, Castillo C, et al. Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial function in colorectal cancer epithelial cells. Nat Metab 2021;3:969–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mehta KJ, Sharp PA. Iron elevates mesenchymal and metastatic biomarkers in HepG2 cells. Sci Rep. 2020;10:21926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue X, Ramakrishnan S, Weisz K, Triner D, Xie L, Győrffy B, et al. Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 2016;24:447–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Triner D, Xue X, Schwartz AJ, Jung I, Colacino JA, Shah YM. Epithelial hypoxia-inducible factor 2α facilitates the progression of colon tumors through recruiting neutrophils. Mol Cell Biol. 2017;37:e00481–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yin K, Lee J, Liu Z, Kim H, Martin DR, Wu D, et al. Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. Cell Death Differ. 2021;28:2421–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 2008;22:756–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM, Spence JR, et al. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology. 2013;145:831–41.

    Article  CAS  PubMed  Google Scholar 

  29. Jędroszka D, Orzechowska M, Hamouz R, Górniak K, Bednarek AK. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer. PLoS ONE. 2017;12:e0188842.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to mesenchymal transition. J Clin Investig 2007;117:3810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, et al. HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE. 2015;10:e0129603.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021;22:2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soares KC, Foley K, Olino K, Leubner A, Mayo SC, Jain A, et al. A preclinical murine model of hepatic metastases. J Vis Exp. 2014; https://doi.org/10.3791/51677.

  34. Wang Y, Yu L, Ding J, Chen Y. Iron metabolism in cancer. Int J Mol Sci. 2018;20:95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bhutia YD, Ogura J, Grippo PJ, Torres C, Sato T, Wachtel M, et al. Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer. Asian J Pharm Sci. 2020;15:237–51.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bianchi L, Tacchini L, Cairo G. HIF-1-mediated activation of transferrin receptor gene transcription by iron chelation. Nucleic Acids Res. 1999;27:4223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang H-Y, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood. 2009;114:844–59.

    Article  CAS  PubMed  Google Scholar 

  38. Fong G-H, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15:635–41.

    Article  CAS  PubMed  Google Scholar 

  39. Whitnall M, Howard J, Ponka P, Richardson DR. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci USA. 2006;103:14901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Li L-H, Gao G-D, Wang G, Qu L, Li J-G, et al. HIF-1α up-regulated NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Mol Biol Rep. 2013;40:3723–9.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Z, Zhang D, Yue F, Zheng M, Kovacevic Z, Richardson DR. The iron chelators Dp44mT and DFO inhibit TGF-β-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J Biol Chem. 2012;287:17016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miess H, Dankworth B, Gouw AM, Rosenfeldt M, Schmitz W, Jiang M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene. 2018;37:5435–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10:1617.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gutierrez E, Richardson DR, Jansson PJ. The anticancer agent Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms. J Biol Chem. 2014;289:33568–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khatri VP, Petrelli NJ, Belghiti J. Extending the frontiers of surgical therapy for hepatic colorectal metastases: is there a limit? J Clin Oncol 2005;23:8490–9.

    Article  PubMed  Google Scholar 

  46. Tsikitis VL, Larson DL, Wolff BG, Kennedy G, Diehl N, Qin R, et al. Survival in stage III colon cancer is independent of the total number of lymph nodes retrieved. J Am Coll Surg 2009;208:42–47.

    Article  PubMed  Google Scholar 

  47. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, et al. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood. 2000;95:189–97.

    Article  CAS  PubMed  Google Scholar 

  48. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005:re12.

    Article  PubMed  Google Scholar 

  49. Hu C-J, Wang L-Y, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang P, Yao Q, Lu L, Li Y, Chen P-J, Duan C, et al. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 2014;6:1110–21.

    Article  CAS  PubMed  Google Scholar 

  51. Mi L, Zhu F, Yang X, Lu J, Zheng Y, Zhao Q, et al. The metastatic suppressor NDRG1 inhibits EMT, migration and invasion through interaction and promotion of caveolin-1 ubiquitylation in human colorectal cancer cells. Oncogene. 2017;36:4323–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang S-L, Wu C, Xiong Z-F, Fang X. Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (Review). Mol Med Rep. 2015;12:2411–6.

    Article  CAS  PubMed  Google Scholar 

  53. Vivinetto AL, Kim I-D, Goldberg DC, Fones L, Brown E, Tarabykin VS, et al. Zeb2 is a regulator of astrogliosis and functional recovery after CNS injury. Cell Rep. 2020;31:107834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao L-L, Liu H, Yue Z, Liu L, Pei L, Gu J, et al. Iron chelation inhibits cancer cell growth and modulates global histone methylation status in colorectal cancer. Biometals. 2018;31:797–805.

    Article  CAS  PubMed  Google Scholar 

  55. Wang W, Tabu K, Aimaitijiang A, Taga T. Therapy-resistant nature of cancer stem cells in view of iron metabolism. Inflamm Regen. 2022;42:34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

XX was supported by the National Institutes of Health (P20 GM130422, K01DK114390), a Research Scholar Grant from the American Cancer Society (RSG-18-050-01-NEC), Environmental Health and Toxicology Pilot Awards from UNM Center for Native Environmental Health Equity Research (P50 MD015706) and New Mexico Integrative Science Program Incorporating Research in Environmental Sciences (1P30ES032755), Shared Resources and Research Program Support Pilot Project Awards from UNM comprehensive cancer center (P30CA118100), a Cardiovascular and Metabolic Disease Research Program Pilot Project Grant from UNMHSC Office of Research Signature Programs and the Dedicated Health Research Funds from Research Allocation Committee at the University of New Mexico School of Medicine. LV was partially supported by a Predoctoral Fellowship from the NIAID-funded Biology of Infectious Disease and Inflammation program (T32AI007538). DMF was supported by Academic Science Education and Research Training (ASERT) from NIGMS (K12-GM088021).

Author information

Authors and Affiliations

Authors

Contributions

XX designed the research, LBV and DMF performed the research, LX contributed vital analytical tools, and LBV and XX wrote the paper.

Corresponding author

Correspondence to Xiang Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal studies were carried out in accordance with the Institute of Laboratory Animal Resources guidelines and approved by the University Committee on the Use and Care of Animals at the University of New Mexico (Protocol# 20-201060-HSC).

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villareal, L.B., Falcon, D.M., Xie, L. et al. Hypoxia-inducible factor 3α1 increases epithelial-to-mesenchymal transition and iron uptake to drive colorectal cancer liver metastasis. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02699-3

Search

Quick links