Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex consisting of antisense DNA and β-glucan promotes internalization into cell through Dectin-1 and hybridizes with target mRNA in cytosol

Abstract

Antisense oligonucleotides (AS-ODNs) hybridize with specific mRNAs, resulting in interference with the splicing mechanism or the regulation of protein translation. We previously demonstrated that the β-glucan schizophyllan (SPG) can form a complex with AS-ODNs with attached dA40 (AS-ODNs/SPG), and this complex can be incorporated into cells, such as macrophages and dendritic cells, expressing the β-glucan receptor Dectin-1. We have achieved efficient gene silencing in animal models, but the uptake mechanism and intracellular distribution are unclear. In this study, we prepared the complex consisting of SPG and AS-ODNs (AS014) for Y-box binding protein-1 (YB-1). After treatment with endocytosis inhibitor Pitstop 2 and small interfering RNA targeting Dectin-1, we found that AS014/SPG complexes are incorporated into cells by Dectin-1-mediated endocytosis and inhibit cell growth in a Dectin-1 expression level-dependent manner. After treatment with AS014/SPG complexes, we separated the cell lysate into endosomal and cytoplasmic components by ultracentrifugation and directly determined the distribution of AS014 by reverse transcription PCR using AS014 ODNs as a template or a reverse transcription primer. In the cytoplasm, AS014 clearly hybridized with YB-1 mRNAs. This is the first demonstration of the distinct distribution of the complex in cells. These results could facilitate the clinical application of the complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res. 2017;45:2262–82.

    Article  CAS  Google Scholar 

  2. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978;75:280–4.

    Article  CAS  Google Scholar 

  3. Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene. 2003;22:9087–96.

    Article  CAS  Google Scholar 

  4. Coppelli FM, Grandis JR. Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond. Curr Pharm Des. 2005;11:2825–40.

    Article  CAS  Google Scholar 

  5. Chan JH, Lim S, Wong WS. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006;33:533–40.

    Article  CAS  Google Scholar 

  6. Roehr B. Fomivirsen approved for CMV retinitis. J Int Assoc Physicians AIDS Care. 1998;4:14–6.

    CAS  PubMed  Google Scholar 

  7. Kapteyn J, Hoyer L, Hecht J, Müller W, Andel A, Verkleij A, et al. The cell wall architecture of Candida albicans wild‐type cells and cell wall‐defective mutants. Mol Microbiol. 2000;35:601–11.

    Article  CAS  Google Scholar 

  8. Kim Y-T, Kim E-H, Cheong C, Williams DL, Kim C-W, Lim S-T. Structural characterization of β-D-(1→3, 1→6)-linked glucans using NMR spectroscopy. Carbohydr Res. 2000;328:331–41.

    Article  CAS  Google Scholar 

  9. Klis F, Groot PD, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Med Mycol. 2001;39:1–8.

    Article  CAS  Google Scholar 

  10. Sakurai K, Mizu M, Shinkai S. Polysaccharide− polynucleotide complexes. 2. Complementary polynucleotide mimic behavior of the natural polysaccharide schizophyllan in the macromolecular complex with single-stranded RNA and DNA. Biomacromolecules. 2001;2:641–50.

    Article  CAS  Google Scholar 

  11. Miyoshi K, Uezu K, Sakurai K, Shinkai S. Proposal of a new hydrogen‐bonding form to maintain curdlan triple helix. Chem Biodivers. 2004;1:916–24.

    Article  CAS  Google Scholar 

  12. Numata M, Asai M, Kaneko K, Bae A-H, Hasegawa T, Sakurai K, et al. Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (β-1, 3-glucans). J Am Chem Soc. 2005;127:5875–84.

    Article  CAS  Google Scholar 

  13. Brown GD, Gordon S. Immune recognition: a new receptor for β-glucans. Nature. 2001;413:36–37.

    Article  CAS  Google Scholar 

  14. Taylor PR, Brown GD, Geldhof AB, Martinez‐Pomares L, Gordon S. Pattern recognition receptors and differentiation antigens define murine myeloid cell heterogeneity ex vivo. Eur J Immunol. 2003;33:2090–7.

    Article  CAS  Google Scholar 

  15. Mochizuki S, Sakurai K. Dectin-1 targeting delivery of TNF-α antisense ODNs complexed with β-1, 3-glucan protects mice from LPS-induced hepatitis. J Control Release. 2011;151:155–61.

    Article  CAS  Google Scholar 

  16. Izumi H, Nagao S, Mochizuki S, Fujiwara N, Sakurai K, Morimoto Y. Optimal sequence of antisense DNA to silence YB-1 in lung cancer by use of a novel polysaccharide drug delivery system. Int J Oncol. 2016;48:2472–8.

    Article  CAS  Google Scholar 

  17. Mochizuki S, Morishita H, Sakurai K. Macrophage specific delivery of TNF-α siRNA complexed with β-1, 3-glucan inhibits LPS-induced cytokine production in a murine acute hepatitis model. Bioorg Med Chem. 2013;21:2535–42.

    Article  CAS  Google Scholar 

  18. Zhang Q, Ichimaru N, Higuchi S, Cai S, Hou J, Fujino M, et al. Permanent acceptance of mouse cardiac allografts with CD40 siRNA to induce regulatory myeloid cells by use of a novel polysaccharide siRNA delivery system. Gene Ther. 2015;22:217–26.

    Article  CAS  Google Scholar 

  19. Takedatsu H, Mitsuyama K, Mochizuki S, Kobayashi T, Sakurai K, Takeda H, et al. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther. 2012;20:1234–41.

    Article  CAS  Google Scholar 

  20. Heyl KA, Klassert TE, Heinrich A, Müller MM, Klaile E, Dienemann H, et al. Dectin-1 is expressed in human lung and mediates the proinflammatory immune response to nontypeable Haemophilus influenzae. mBio. 2014;5:e01492–14.

    Article  CAS  Google Scholar 

  21. Uchiumi T, Fotovati A, Sasaguri T, Shibahara K, Shimada T, Fukuda T, et al. YB-1 Is important for an early stage embryonic development neural tube formation and cell proliferation. J Biol Chem. 2006;281:40440–9.

    Article  CAS  Google Scholar 

  22. Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, et al. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med. 1997;3:447–50.

    Article  CAS  Google Scholar 

  23. Oda Y, Sakamoto A, Shinohara N, Ohga T, Uchiumi T, Kohno K, et al. Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human osteosarcoma. Clin Cancer Res. 1998;4:2273–7.

    CAS  PubMed  Google Scholar 

  24. Shibao K, Takano H, Nakayama Y, Okazaki K, Nagata N, Izumi H, et al. Enhanced coexpression of YB‐1 and DNA topoisomerase II α genes in human colorectal carcinomas. Int J Cancer. 1999;83:732–7.

    Article  CAS  Google Scholar 

  25. Basaki Y, Taguchi K-i, Izumi H, Murakami Y, Kubo T, Hosoi F, et al. Y-box binding protein-1 (YB-1) promotes cell cycle progression through CDC6-dependent pathway in human cancer cells. Eur J Cancer. 2010;46:954–65.

    Article  CAS  Google Scholar 

  26. Shibahara K, Sugio K, Osaki T, Uchiumi T, Maehara Y, Kohno K, et al. Nuclear expression of the Y-box binding protein, YB-1, as a novel marker of disease progression in non-small cell lung cancer. Clin Cancer Res. 2001;7:3151–5.

    CAS  PubMed  Google Scholar 

  27. Kuwano M, Uchiumi T, Hayakawa H, Ono M, Wada M, Izumi H, et al. The basic and clinical implications of ABC transporters, Y‐box‐binding protein‐1 (YB‐1) and angiogenesis‐related factors in human malignancies. Cancer Sci. 2003;94:9–14.

    Article  CAS  Google Scholar 

  28. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, et al. Twist promotes tumor cell growth through YB-1 expression. Cancer Res. 2008;68:98–105.

    Article  CAS  Google Scholar 

  29. von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D, Robertson MJ, et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell. 2011;146:471–84.

    Article  Google Scholar 

  30. McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–33.

    Article  CAS  Google Scholar 

  31. Sanada Y, Matsuzaki T, Mochizuki S, Okobira T, Uezu K, Sakurai K. β-1,3-D-glucan schizophyllan/poly (dA) triple-helical complex in dilute solution. J Phys Chem B. 2011;116:87–94.

    Article  Google Scholar 

  32. Su X, Fricke J, Kavanagh DG, Irvine DJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm. 2011;8:774–87.

    Article  CAS  Google Scholar 

  33. Sershen S, Westcott S, Halas N, West J. Temperature‐sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res A. 2000;51:293–8.

    Article  CAS  Google Scholar 

  34. Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater. 2009;8:935–9.

    Article  CAS  Google Scholar 

  35. Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, Mason AJ, et al. Lipid–peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012;6:9335–46.

    Article  CAS  Google Scholar 

  36. Mochizuki S, Morishita H, Adachi Y, Yamaguchi Y, Sakurai K. Binding assay between murine Dectin-1 and beta-glucan/DNA complex with quartz-crystal microbalance. Carbohydr Res. 2014;391:1–8.

    Article  CAS  Google Scholar 

  37. Adachi Y, Ishii T, Ikeda Y, Hoshino A, Tamura H, Aketagawa J, et al. Characterization of β-glucan recognition site on C-type lectin, dectin 1. Infect Immun. 2004;72:4159–71.

    Article  CAS  Google Scholar 

  38. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–54.

    Article  CAS  Google Scholar 

  39. Raja RH, McGary CT, Weigel PH. Affinity and distribution of surface and intracellular hyaluronic acid receptors in isolated rat liver endothelial cells. J Biol Chem. 1988;263:16661–8.

    CAS  PubMed  Google Scholar 

  40. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  Google Scholar 

  41. Boomer JA, Qualls MM, Inerowicz HD, Haynes RH, Patri VS, Kim JM, et al. Cytoplasmic delivery of liposomal contents mediated by an acid-labile cholesterol-vinyl ether-PEG conjugate. Bioconjug Chem. 2009;20:47–59.

    Article  CAS  Google Scholar 

  42. Minari J, Mochizuki S, Matsuzaki T, Adachi Y, Ohno N, Sakurai K. Enhanced cytokine secretion from primary macrophages due to Dectin-1 mediated uptake of CpG DNA/β-1, 3-glucan complex. Bioconjug Chem. 2010;22:9–15.

    Article  Google Scholar 

  43. Mochizuki S, Morishita H, Sakurai K. Complex consisting of β-glucan and antigenic peptides with cleavage site for glutathione and aminopeptidases induces potent cytotoxic T lymphocytes. Bioconjug Chem. 2017;28:2246–53.

    Article  CAS  Google Scholar 

  44. Mochizuki S, Morishita H, Kobiyama K, Aoshi T, Ishii KJ, Sakurai K, Immunization with antigenic peptides complexed with beta-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs. J Control Release. 2015;220 (Pt A):495–502.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the JST CREST Grant Number JPMJCR1521, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Mochizuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, N., Izumi, H., Morimoto, Y. et al. Complex consisting of antisense DNA and β-glucan promotes internalization into cell through Dectin-1 and hybridizes with target mRNA in cytosol. Cancer Gene Ther 26, 32–40 (2019). https://doi.org/10.1038/s41417-018-0033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0033-2

This article is cited by

Search

Quick links