Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone 3 lysine 9 acetylation-specific reprogramming regulates esophageal squamous cell carcinoma progression and metastasis

Abstract

Dysregulation of histone acetylation is widely implicated in tumorigenesis, yet its specific roles in the progression and metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we profiled the genome-wide landscapes of H3K9ac for paired adjacent normal (Nor), primary ESCC (EC) and metastatic lymph node (LNC) esophageal tissues from three ESCC patients. Compared to H3K27ac, we identified a distinct epigenetic reprogramming specific to H3K9ac in EC and LNC samples relative to Nor samples. This H3K9ac-related reprogramming contributed to the transcriptomic aberration of targeting genes, which were functionally associated with tumorigenesis and metastasis. Notably, genes with gained H3K9ac signals in both primary and metastatic lymph node samples (common-gained gene) were significantly enriched in oncogenes. Single-cell RNA-seq analysis further revealed that the corresponding top 15 common-gained genes preferred to be enriched in mesenchymal cells with high metastatic potential. Additionally, in vitro experiment demonstrated that the removal of H3K9ac from the common-gained gene MSI1 significantly downregulated its transcription, resulting in deficiencies in ESCC cell proliferation and migration. Together, our findings revealed the distinct characteristics of H3K9ac in esophageal squamous cell carcinogenesis and metastasis, and highlighted the potential therapeutic avenue for intervening ESCC through epigenetic modulation via H3K9ac.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H3K9ac occupied a set of specific regions different from H3K27ac.
Fig. 2: Dysregulations of H3K9ac-specific occupancy characterize esophageal carcinogenesis and metastasis.
Fig. 3: H3K9ac reprogramming were associated with aberrant transcriptional activity.
Fig. 4: Targets of H3K9ac-specific reprogramming were associated with tumorigenesis and metastasis.
Fig. 5: Characterization of cellular heterogeneity via distinct gene panels defined by H3K9ac-specific alterations.
Fig. 6: H3K9ac-mediated MSI1 was involved in ESCC cell proliferation and migration.

Similar content being viewed by others

Data availability

The ChIP-seq data generated in this study have been deposited in GEO (GSE234346).

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  2. Huang J, Koulaouzidis A, Marlicz W, Lok V, Chu C, Ngai CH, et al. Global Burden, Risk Factors, and Trends of Esophageal Cancer: An Analysis of Cancer Registries from 48 Countries. Cancers Multidiscip Digit Publ Inst. 2021;13:141.

    Google Scholar 

  3. Abnet CC, Arnold M, Wei W-Q. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology. 2018;154:360–73.

    Article  PubMed  Google Scholar 

  4. Dinh HQ, Pan F, Wang G, Huang Q-F, Olingy CE, Wu Z-Y, et al. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. Nat Commun. 2021;12:7335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Codipilly D, Qin Y, Dawsey SM, Kisiel J, Topazian M, Ahlquist D, et al. Screening for Esophageal Squamous Cell Carcinoma: Recent Advances. Gastrointest Endosc. 2018;88:413–26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ye B, Fan D, Xiong W, Li M, Yuan J, Jiang Q, et al. Oncogenic enhancers drive esophageal squamous cell carcinogenesis and metastasis. Nat Commun. 2021;12:4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hosch SB, Stoecklein NH, Pichlmeier U, Rehders A, Scheunemann P, Niendorf A, et al. Esophageal Cancer: The Mode of Lymphatic Tumor Cell Spread and Its Prognostic Significance.

  8. Xu J, Chen T, Liao L, Chen T, Li Q, Xu J, et al. NETO2 promotes esophageal cancer progression by inducing proliferation and metastasis via PI3K/AKT and ERK pathway. Int J Biol Sci. 2021;17:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu Y, Chan Y-T, Tan H-Y, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19:79.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao W, Lee H, Wu W, Zaman A, McCorkle S, Yan M, et al. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat Commun Nat Publ Group. 2020;11:3675.

    Article  CAS  Google Scholar 

  11. Gao Y-B, Chen Z-L, Li J-G, Hu X-D, Shi X-J, Sun Z-M, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102.

    Article  CAS  PubMed  Google Scholar 

  12. Lin D-C, Hao J-J, Nagata Y, Xu L, Shang L, Meng X, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet Nat Publ Group. 2021;53:1553–63.

    Article  CAS  Google Scholar 

  14. Jiang Y-Y, Jiang Y, Li C-Q, Zhang Y, Dakle P, Kaur H, et al. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology. 2020;159:1311–.e19.

    Article  CAS  PubMed  Google Scholar 

  15. Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.

    Article  CAS  PubMed  Google Scholar 

  16. Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenet. 2019;11:81.

    Article  Google Scholar 

  17. Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, et al. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 2020;30:902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ge F, Li Z, Hu J, Pu Y, Zhao F, Kong L. METTL3/m6A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma. Front Pharm. 2022;13:1002565.

    Article  CAS  Google Scholar 

  19. Yuan J. Loss of grand histone H3 lysine 27 trimethylation domains mediated transcriptional activation in esophageal squamous cell carcinoma. npj Genom Med. 2021;11:65.

    Article  Google Scholar 

  20. Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell Elsevier. 1993;72:73–84.

    Article  CAS  Google Scholar 

  21. Liu B, Cheng J, Zhang X, Wang R, Zhang W, Lin H, et al. Global Histone Modification Patterns as Prognostic Markers to Classify Glioma Patients. Cancer Epidemiol, Biomark Prev 2010;19:2888–96.

    Article  CAS  Google Scholar 

  22. Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, et al. Histone H3 Acetyl K9 and Histone H3 Tri Methyl K4 as Prognostic Markers for Patients with Cervical Cancer. Int J Mol Sci. 2017;18:477.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Webber LP, Wagner VP, Curra M, Vargas PA, Meurer L, Carrard VC, et al. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology. 2017;71:278–86.

    Article  PubMed  Google Scholar 

  24. Berger L, Kolben T, Meister S, Kolben TM, Schmoeckel E, Mayr D, et al. Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol. 2020;146:2017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramsey SA, Knijnenburg TA, Kennedy KA, Zak DE, Gilchrist M, Gold ES, et al. Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites. Bioinformatics. 2010;26:2071–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su J, Huang Y-H, Cui X, Wang X, Zhang X, Lei Y, et al. Homeobox oncogene activation by pan-cancer DNA hypermethylation. Genome Biol. 2018;19:108.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deckard CE, Banerjee DR, Sczepanski JT. Chromatin Structure and the Pioneering Transcription Factor FOXA1 Regulate TDG-Mediated Removal of 5-Formylcytosine from DNA. J Am Chem Soc. 2019;141:14110–4.

    Article  CAS  PubMed  Google Scholar 

  28. Izadpanah MH, Abbaszadegan MR, Fahim Y, Forghanifard MM. Ectopic expression of TWIST1 upregulates the stemness marker OCT4 in the esophageal squamous cell carcinoma cell line KYSE30. Cell Mol Biol Lett. 2017;22:33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Otsubo T, Yamada K, Hagiwara T, Oshima K, Iida K, Nishikata K, et al. DNA hypermethyation and silencing of PITX1 correlated with advanced stage and poor postoperative prognosis of esophageal squamous cell carcinoma. Oncotarget. 2017;8:84434–48.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Okita Y, Kimura M, Xie R, Chen C, Shen LT-W, Kojima Y, et al. The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Sci Signal. 2017;10:eaak9397.

    Article  PubMed  Google Scholar 

  31. Hussain S, Bharti AC, Salam I, Bhat MA, Mir MM, Hedau S, et al. Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection. BMC Cancer. 2009;9:329.

    Article  PubMed  PubMed Central  Google Scholar 

  32. He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, et al. NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest. 2013;123:4821–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ooi WF, Xing M, Xu C, Yao X, Ramlee MK, Lim MC, et al. Epigenomic profiling of primary gastric adenocarcinoma reveals super-enhancer heterogeneity. Nat Commun. 2016;7:12983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao X, Tan J, Lim KJ, Koh J, Ooi WF, Li Z, et al. VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. Cancer Discov. 2017;7:1284–305.

    Article  CAS  PubMed  Google Scholar 

  35. Kawauchi T. Cell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis. Int J Mol Sci. 2012;13:4564–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Li J, Ren Y, Liu P. DLG5 in Cell Polarity Maintenance and Cancer Development. Int J Biol Sci. 2014;10:543–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu X-S, Liu J-M, Chen Y-J, Li F-Y, Wu R-M, Tan F, et al. Comprehensive Analysis of Hexokinase 2 Immune Infiltrates and m6A Related Genes in Human Esophageal Carcinoma. Front Cell Dev Biol. 2021;9:715883.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Sun J, Zhao M. ONGene: A literature-based database for human oncogenes. J Genet Genom. 2017;44:119–21.

    Article  Google Scholar 

  39. Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44:D1023–1031.

    Article  CAS  PubMed  Google Scholar 

  40. Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 2018;20:1349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Jin J, Bai F. Cancer biology deciphered by single-cell transcriptomic sequencing. Protein Cell. 2022;13:167–79.

    Article  PubMed  Google Scholar 

  42. Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer. 2019;19:553–67.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun Nat Publ Group. 2021;12:1–17.

    Google Scholar 

  44. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556:463–8.

    Article  CAS  PubMed  Google Scholar 

  45. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19:279–90.

    Article  CAS  PubMed  Google Scholar 

  46. Jin Q, Yu L-R, Wang L, Zhang Z, Kasper LH, Lee J-E, et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 2011;30:249–62.

    Article  CAS  PubMed  Google Scholar 

  47. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun Nat Publ Group. 2019;10:1930.

    Article  Google Scholar 

  48. Yang Y-M, Hong P, Xu WW, He Q-Y, Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther. 2020;5:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Igolkina AA, Zinkevich A, Karandasheva KO, Popov AA, Selifanova MV, Nikolaeva D, et al. H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks. Cells. 2019;8:1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bates SE. Epigenetic Therapies for Cancer. Longo DL, editor. N Engl J Med. 2020;383:650–63.

  51. Lai T-H, Ozer HG, Gasparini P, Nigita G, Distefano R, Yu L, et al. HDAC1 regulates the chromatin landscape to control transcriptional dependencies in chronic lymphocytic leukemia. Blood Adv. 2022.

  52. Mi W, Guan H, Lyu J, Zhao D, Xi Y, Jiang S, et al. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nat Commun. 2017;8:1088.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aseem SO, Jalan-Sakrikar N, Chi C, Navarro-Corcuera A, De Assuncao TM, Hamdan FH, et al. Epigenomic Evaluation of Cholangiocyte TGFβ Signaling Identifies a Selective Role for Histone 3 Lysine 9 Acetylation in Biliary Fibrosis. Gastroenterology. 2021;160:889–905.e10.

    Article  CAS  PubMed  Google Scholar 

  54. Wu K, Fan D, Zhao H, Liu Z, Hou Z, Tao W, et al. Dynamics of histone acetylation during human early embryogenesis. Cell Discov. 2023;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ji R, Chen J, Xie Y, Dou X, Qing B, Liu Z, et al. Multi-omics profiling of cholangiocytes reveals sex-specific chromatin state dynamics during hepatic cystogenesis in polycystic liver disease. J Hepatol. 2023;78:754–69.

    Article  CAS  PubMed  Google Scholar 

  56. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  57. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell. 2017;171:1611–.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev. 2015;44:2963–97.

    Article  CAS  PubMed  Google Scholar 

  59. Xiao Q, Zhang F, Xu L, Yue L, Kon OL, Zhu Y, et al. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev. 2021;176:113844.

    Article  CAS  PubMed  Google Scholar 

  60. Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017;23:2143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qin G, Lian J, Yue D, Chen X, Nan S, Qi Y, et al. Musashi1, a potential prognostic marker in esophageal squamous cell carcinoma. Oncol Rep. 2017;38:1724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moghbeli M, Sadrizadeh A, Forghanifard MM, Mozaffari HM, Golmakani E, Abbaszadegan MR. Role of Msi1 and PYGO2 in esophageal squamous cell carcinoma depth of invasion. J Cell Commun Signal. 2016;10:49–53.

    Article  PubMed  Google Scholar 

  63. Lin J-C, Tsai J-T, Chao T-Y, Ma H-I, Chien C-S, Liu W-H. MSI1 associates glioblastoma radioresistance via homologous recombination repair, tumor invasion and cancer stem-like cell properties. Radiotherapy and Oncology. 129. Elsevier; 2018. p. 352–63.

    Google Scholar 

  64. Pötschke R, Haase J, Glaß M, Simmermacher S, Misiak C, Penalva LOF, et al. MSI1 Promotes the Expression of the GBM Stem Cell Marker CD44 by Impairing miRNA-Dependent Degradation. Cancers Multidiscip Digit Publ Inst. 2020;12:3654.

    Google Scholar 

  65. Bi X, Lou P, Song Y, Sheng X, Liu R, Deng M, et al. Msi1 promotes breast cancer metastasis by regulating invadopodia-mediated extracellular matrix degradation via the Timp3–Mmp9 pathway. Oncogene. 2021;40:4832–45.

    Article  CAS  PubMed  Google Scholar 

  66. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–165.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.

    Article  PubMed  Google Scholar 

  71. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  75. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  76. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFC2501005), the National Natural Science Foundation of China (82172882), the Zhejiang Provincial Natural Science Foundation of China (LQ23H160051 and LTGY23H180010).

Author information

Authors and Affiliations

Authors

Contributions

JS, ZC, and YY conceived and designed the study. YQ and GC contributed to the acquisition of samples and clinical data. ZC and YZ performed the ChIP-seq and in vitro functional experiments. CL and PL performed the bioinformatic analysis. ZC, CL, YY, and JS wrote the manuscripts. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Yinghao Yao or Jianzhong Su.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, C., Zhou, Y. et al. Histone 3 lysine 9 acetylation-specific reprogramming regulates esophageal squamous cell carcinoma progression and metastasis. Cancer Gene Ther 31, 612–626 (2024). https://doi.org/10.1038/s41417-024-00738-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-024-00738-y

Search

Quick links