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The PML1-WDR5 axis regulates H3K4me3 marks and promotes
stemness of estrogen receptor-positive breast cancer
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The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells
remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is
associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation,
invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to
fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor
suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between
PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved
in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression,
and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters
in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase
(HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in
numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on
these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene
promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene
expression and tumorsphere formation and enhancing fulvestrant’s anticancer activity. Our findings challenge the conventional
understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new
insights into the unique roles of PML isoforms in breast cancer.

Cell Death & Differentiation; https://doi.org/10.1038/s41418-024-01294-6

INTRODUCTION
The PML protein has diverse cellular functions, including
regulating cell-cycle progression, DNA damage responses, and
transcription; it also plays important roles in governing immunity,
metabolism, and tumorigenesis [1–7]. PML protein is primarily
localized in the nucleoplasm and DNA-free sub-nuclear compart-
ments known as PML nuclear bodies (NBs) [8–10], which may
indirectly regulate transcription by sequestering transcription
factors or serving as a platform protein for transcription factor
modification [11, 12]. Several studies have suggested that PML
binds to chromatin, indicating a direct role in transcriptional
regulation [6, 13, 14]. However, a systematic analysis of the global
PML-bound promoters is lacking.
The notion that PML is a tumor suppressor gene was mainly

based on studies of the PML4 isoform [12, 15–17] and earlier
clinical investigations [17]. Recent studies have revealed a more
complex role for PML in cancer. Knockdown of PML inhibits the
proliferation of estrogen receptor-positive (ER+) breast cancer [18]
and ovarian cancer cells [19] and reduces tumor growth in mouse
xenograft models of triple-negative breast cancer (TNBC) [20–22]

and glioblastoma [23]. Interestingly, the PML-reducing agent
arsenic trioxide (ATO), an FDA-approved drug for treating acute
promyelocytic leukemia, is an effective agent in inhibiting tumor
growth of glioblastoma [23, 24] and TNBCs [22]. These paradoxical
findings underscore the need to revisit our understanding of
PML’s role in tumorigenesis.
The PML precursor mRNA undergoes alternative splicing,

resulting in multiple isoforms, and the expression patterns of
different PML isoforms in cancerous tissues and their specific
contribution to tumorigenesis remain unknown. This study
examined the expression profiles of PML isoforms in normal and
malignant breast cells and tissues. We found that PML1 is the most
abundant isoform expressed in ER+ breast tumors and cancer cell
lines, with the increased PML1 mRNA associated with poor
prognosis of luminal breast cancer patients. Significantly, a recent
clinical study revealed that the PML gene is amplified in 14% of ER
+ metastatic breast cancer (MBC) [25]. We also showed that the
loss of PML inhibits the stemness of ER+ breast cancer cells, with
elevated PML1 expression driving breast cancer stemness, tumor
growth, and therapy resistance in xenograft mouse models.
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To further understand the mechanism by which PML1
promotes breast tumorigenesis and stemness, we analyzed
ChIP-seq data. We found that PML, Myc, and ER bind many
common gene promoters, including those encoding breast
cancer stem cell (BCSC)-related genes, such as JAG1 [26], KLF4
[27], YAP1 [28], SNAI1 [29], and MYC [30]. PML1 promotes the
expression of both Myc and ER target genes, thereby increasing
ER+ breast cancer cell stemness. We also discovered that PML1
associates with WDR5 and regulates H3K4 tri-methylation
(H3K4me3), and the inactivation of WDR5 reduces breast cancer
cell stemness and related gene expression and enhances the
anticancer activity of fulvestrant. Mechanistically, PML is essential
for recruiting WDR5, MLL1, and MLL2 to the stemness gene
promoters, thus regulating the H3K4me3 marks at these loci. Our
findings redefine the role of PML, shifting its characterization
from a tumor suppressor to a promoter, and highlight the pivotal
function of the PML1-WDR5 axis in regulating breast cancer cell
stemness and drug resistance.

RESULTS
PML1 is the most abundant isoform in estrogen receptor-
positive (ER+) breast tumors
To better understand the expression patterns of PML isoforms in
breast cancer patients, we interrogated RNA-seq datasets from
normal breast tissues (GTEx) and breast tumors (TCGA). Our
results demonstrate that the total PML transcript expression is
significantly elevated across all breast cancer subtypes compared
to normal tissues (Fig. S1). PML1 mRNA is the predominant
isoform in normal breast tissues and ER+ breast tumors.
Moreover, PML1 abundance shifts dramatically from ~38% in
normal tissues (Fig. 1A) to ~67% in ER+ tumors (Fig. 1B), while
that of PML2 mRNA is expressed at a lower level than PML1 in
both normal (~30%) and malignant breast tissues (~20%). PML4,
which encodes an extensively studied tumor suppressor, is
expressed at a much lower level (~7%). Moreover, higher PML1
mRNA levels are associated with poor prognosis of ER+ breast

cancer patients (Fig. 1C), but there was no correlation between
the expression of other PML isoforms and prognosis (Fig. S2A).
Furthermore, the total PML protein abundance is elevated in ER+
breast tumors (Fig. 1D). We also observed a trend in which higher
PML protein abundance correlates with poor prognosis (Fig. S2B).
PML1 and PML4 proteins share the first 620 amino acids, with
PML4 containing a 13 a.a. unique C-terminus and PML1
possessing an additional 262 a.a (Fig. 1E). To better understand
the role of PML1 in breast cancer, we generated a PML1-specific
antibody. We confirmed that PML1 and PML4 proteins migrate
around 130 kDa and 100 kDa, respectively (Fig. 1F) and that PML1
is the predominant isoform in ER+/HER2− breast cancer cell
lines, including MCF-7, T47D, and ZR-75-1 cells (Fig. 1G). These
findings suggest that PML1 is the most abundant isoform in
breast cancer, and its high expression may be a potential
biomarker for poor prognosis for ER+ breast cancer.

PML1 promotes cancer phenotypes and fulvestrant resistance
Our previous study demonstrated that the ectopic overexpression
of PML4 inhibits the proliferation, migration, and invasion of MCF-
7 cells [18]. We expand our studies by investigating the effects of
PML on another ER+ breast cancer cell line, ZR-75-1. Our results
showed that the knockdown of PML reduces the proliferation
(Fig. 2A), colony formation (Fig. 2D), and invasion (Fig. 2F) of MCF-
7 and ZR-75-1 cells, while PML1 overexpression has the opposite
effect (Fig. 2B, E, and G). Furthermore, MCF-7-HA-PML1 cells, which
express virally transduced HA-PML1, exhibit a significant increase
in the IC50 (4.499e-008M) for fulvestrant, compared to control cells
(1.046e-010M) (Fig. 2H), indicating that higher PML1 expression
promotes fulvestrant resistance. This result is consistent with a
recent clinical study indicating that the PML gene is amplified in
14% of ER+MBC [25] (Fig. S3). Moreover, exogenous PML1
rescues the proliferation of PML knockdown cells (Fig. 2C), but
PML4 does not (Fig. S4A). Additionally, PML2 inhibits the
proliferation and breast cancer cell stemness (Fig. S4B), indicating
that PML2 and PML1 have the opposite effects on breast cancer
cells. These results suggest that PML isoforms play distinct roles in
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breast cancer development and progression and that PML1 may
play a role in fulvestrant resistance.

PML1 binds and positively regulates stemness gene
promoters and promotes breast cancer stem-like cell (BCSC)
populations
The observations that PML1 promotes fulvestrant resistance and
invasion of breast cancer cells prompted us to investigate PML1’s
role in cancer cell stemness. Gene Set Enrichment Analysis (GSEA)
revealed that affected genes in PML knockdown microarray gene
expression study are enriched for genes upregulated in the
Mammary_Stem_Cell_Up signature [31] (Fig. 3A), suggesting
PML’s role in CSC regulation. Analyses of PML ChIP-seq data in
MCF-7 cells revealed that PML binds to more than half of the
BCSC-associated gene promoters (Table S3). Knockdown of PML1
significantly reduced the expression of a subset of BCSC-related

genes (Fig. 3B), while overexpression of PML1 increased their
expression (Fig. 3C). Moreover, PML1 knockdown reduced the
frequency of BCSCs in extreme limiting dilution assays (ELDAs)
(Fig. 3D) and tertiary tumorsphere-formation assays (Figs. 3F, S5),
while PML1 overexpression had the opposite effect (Figs. 3E, G,
and S5). FACS analyses further showed that PML knockdown
reduced the ALDHhigh cell population, while overexpression of
PML1 increased it (Fig. 3H, I). These results suggest that PML1
promotes the stemness of breast cancer cells.

PML1 promotes tumor growth and fulvestrant resistance in a
xenograft animal model
Next, we determined the effects of PML1 on the tumor growth of
MCF-7 cells. Our results showed that animals xenografted with
MCF-7-HA-PML1 cells developed significantly larger tumors than
those with control cells (Fig. 4A, B). These findings suggest that
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PML1 plays a crucial role in promoting tumor growth in breast
cancer. HA-PML1 protein expression is confirmed by western blots
in tumors stably express HA-PML1 (Fig. 4C), and HA-PML1-
expressing tumors show elevated BCSC-related gene expression
(Fig. 4D) Lastly, tumors generated with cells expressing MCF-7-HA-
PML1 were resistant to fulvestrant (Fig. 4E). These observations are
consistent with the fact that 14% of ER+MBC have the PML gene
amplification. These findings suggest that PML1 is crucial in
promoting tumor growth and fulvestrant resistance in breast
cancer.

ChIP-seq analyses reveal crosstalk between PML1, ER, and
Myc-bound promoters
Previous reports have shown that the Myc transcription factor
regulates the expression of a subset of stemness genes [32] and
Myc interacts with PML4 [33]. Analyses of ChIP-seq data for PML,
Myc, and ER revealed that most PML-binding sites (~77%) are in
promoter regions, which account for 23% of protein-coding
gene promoters (Fig. 5A and E). In contrast, less than 14% of the
ER-binding sites are in promoter regions, while ~80% are in
intergenic regions or introns (Fig. 5B). Interestingly, most
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Myc-binding sites are in intergenic regions or introns (Fig. 5C).
Focusing on PML-bound promoters (Fig. 5D), we found that PML
and ER bind 1387 common promoters (Fig. 5D, E), which
accounts for ~70% of ER- and ~18% of PML1-bound promoters,
respectively (Figs. 5E, S6A). The top-ranked consensus sequence
among PML1 and ER commonly bound promoters is an
estrogen-response element (ERE) half-site, -AGGTCA- (Fig. S6B).
Myc binds ~94% of PML-bound promoters in MCF-7 cells
(Fig. 5E). In fact, microarray analyses [34] suggest that affected
genes in PML knockdown cells are enriched in Myc-targeted
genes (Fig. S6C). Furthermore, ChIP-seq analyses suggest that
PML1, Myc, and ER bind several BCSC-related gene promoters
(Table S3), including JAG1, KLF4, MYC, SNAI1, and YAP1 (Fig. S7).
Using ChIP-qPCR, we confirmed that PML binds these promoters
but not NANOG (Fig. 5F) and that PML1, not PML4, binds these
promoters (Fig. 5G). These analyses suggest that PML, Myc, and
ER regulate gene expression in BCSCs by binding to common
promoters. Moreover, microarray gene expression analyses [34]
indicate that PML target genes are enriched in estradiol-
responsive genes [35] (Fig. 5H). Proximity ligation assays (PLA)
showed that endogenous PML and ER interact (Fig. S8).
Furthermore, Coimmunoprecipitation demonstrated endogen-
ous and exogenous PML1 and ER interact (Fig. 5I, J), and the
recruitment of PML1 to BCSC-related gene promoters is induced
upon E2 treatment (Fig. 5K), indicating a potential role of PML1
in E2-induced ER-target gene expression. Furthermore, the
knockdown of ESR1 significantly reduces the expression of
stemness-related genes, phenocopying the effects of PML1
knockdown (Fig. 5L). However, the loss of PML1 had little or no
effect on the ER binding to these promoters (Fig. 5M), suggesting
PML1 regulates ER target gene expression without affecting ER
binding to the promoters.

PML1 interacts with WDR5, a core subunit of the histone H3
lysine 4 methyltransferase (H3K4 HMTs) complexes
To investigate the underlying mechanism of how PML1 promotes
ER and Myc transcriptional activity, we utilized an in-silico
approach to screen for PML1-interacting proteins, which identi-
fied several putative PML-interacting proteins involved in histone
modification (Fig. 6A), including proteins involved in histone

H3K4 methylation (Fig. 6B), such as WDR5 [36]. WDR5 is a core
subunit of all four MLL1-4 histone methyltransferase complexes.
These complexes catalyze the methylation of histone H3 lysine 4
(H3K4), with MLL1/2-containing complexes responsible for
H3K4me3 and MLL3/4-containing complexes catalyzing
H3K4me1 [37]. Interestingly, in silico analyses also suggest an
association of PML with MLL1. Using co-immunoprecipitation
(Fig. 6C), GST pulldown assays (Fig. 6D), and PLA (Fig. S8), we
showed that PML1 and WDR5 physically interact. Furthermore,
we analyzed the ChIP-seq database to examine the H3K4me3
status of PML1-, ER-, and Myc-bound promoters. Our analysis
revealed that H3K4me3 marks ~88% of PML-bound promoters,
and ~90% of PML, Myc, and ER commonly-bound promoters are
enriched in H3K4me3 (Fig. 6E). Specifically, several BCSC-related
genes described above are enriched with the H3K4me3 mark
(Fig. 6F, G).
To interrogate the role of PML1 in regulating global H3K4me3

across gene promoters, we performed PML knockdown followed
by ChIP-seq, which showed that PML1 regulates H3K4me3 levels
at numerous gene promoters (Fig. 7A), including gene loci
associated with BCSCs (Fig. 7B). Additionally, the H3K4me3
patterns we observed on these promoters align well with publicly
accessible data (Fig. S7). Importantly, ChIP-qPCR confirmed that
the loss of PML1 significantly reduced the H3K4me3 mark on
BCSC-related gene promoters (Fig. 7C). Because PML1 and PML4
contain the WDR5-interacting domain, we examined whether
PML1 and PML4 can restore the H3K4me3 mark in PML knock-
down cells, and our data demonstrated that PML1, not PML4, re-
establishes the H3K4me3 mark in PML knockdown cells (Fig. 7D).
Furthermore, the loss of PML1 significantly reduced the associa-
tions of WDR5 (Fig. 7E), MLL1 (Fig. 7F), and MLL2 (Fig. 7G) with
stemness gene promoters. We further investigated whether WDR5
is required for PML associations with these promoters and found
that knockdown of WDR5 markedly reduces the expression of the
BCSC-related genes (Fig. 7H) and the H3K4me3 mark (Fig. 7I) but
has little or no effect on PML1 associations with these promoters
(Fig. 7J). These data suggest that PML1 promotes ER and Myc
transcriptional activity through its interaction with WDR5 and the
subsequent enrichment of the H3K4me3 mark at target gene
promoters.
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Inactivation of WDR5 enhances the effectiveness of
fulvestrant in PML1-overexpressing cells
The data presented above suggests that WDR5 and PML may act
together to modulate the expression of stem cell-associated genes
and stemness in breast cancer cells. Our results demonstrate that
the knockdown of WDR5 leads to a significant decrease in BCSCs
population (Figs. 8A and S9) and inhibition of MCF-7 cell
proliferation (Fig. 8B). We also found that the knockdown of
WDR5 significantly enhances the anti-proliferation activity of
fulvestrant against PML1-overexpressing cells, reducing the IC50
from μM to nM (Fig. 8C). We next investigated the effects of
pharmacological inhibitors of WDR5, OICR-9429 and compound 16
(C16), on stemness-related gene expression, cell proliferation, and
the anticancer activity of fulvestrant. Both inhibitors disrupt the
interaction between WDR5 and MLL1 by targeting their interact-
ing sites [38, 39]. Our results demonstrated that both inhibitors
effectively reduced the population of BCSCs (Fig. 8D), inhibited the
expression of stemness-related genes (Fig. 8E), and suppressed
the proliferation of both control and PML1-overexpressing cells
(Fig. 8F, G). Furthermore, both inhibitors enhanced the anti-
growth activity of fulvestrant (Fig. 8H). These results suggest that
the PML1:WDR5 association has functional significance in regulat-
ing breast cancer stemness and fulvestrant resistance.

DISCUSSION
Our study provides compelling evidence that PML1 promotes the
proliferation, migration, and tumor growth of ER+ breast cancer
cells. We demonstrated that PML1 is the most abundant isoform
expressed in ER+ breast tumors and plays a critical role in
promoting cancer cell stemness and resistance to fulvestrant. In
support of our conclusions, a recent clinical study reported that
the PML gene is amplified in 14% of ER+MBC cases [25],

suggesting that elevated PML1 protein promotes metastasis.
These observations affirm the notion that rather than functioning
as a tumor suppressor, the PML1 isoform promotes breast
tumorigenesis and metastasis. Moreover, we showed that PML1,
not PML4, rescues the proliferation and restores H3K4me3 of PML
knockdown cells. Our findings fill the knowledge gap and help to
explain the conflicting data regarding the role of PML’s role in
tumorigenesis, which we attribute to the limited understanding of
the distinct roles and abundance of different PML spliced isoforms.
Importantly, our study elucidates the underlying molecular
mechanism by which PML1 promotes the proliferation and
stemness of ER+ breast cancer cells by regulating the stemness
gene expression through the recruitment of WDR5 and establish-
ing the H3K4me3 mark.
Despite the lack of statistical significance, we observed the

trend of the effect of fulvestrant on MCF-vector tumors (Fig. 4E).
The lack of statistical significance could be due to temporal
changes in tumor response. We found that tumor growth in the
MCF7 vector group was significantly inhibited during the first few
weeks of fulvestrant treatment. However, some tumors showed
accelerated growth in the weeks before tumor harvest, which may
be due to fulvestrant treatment selecting specific cell populations
within the tumor that overcome the cytotoxic effects of
fulvestrant. Additionally, sustained E2 release throughout fulves-
trant treatments may reduce the efficacy of fulvestrant in
inhibiting tumor growth.
Contrasting to previous reports that PML4 interacts and inhibits

Myc transcription activity [40], our data showed that PML1
positively regulates MYC expression and that Myc protein binds
to ~94% of PML-bound promoters, underscoring the critical role of
Myc in recruiting PML to promoters and promoting cancer cell
stemness. A retrospective study of ER+ breast tumors also
suggested that the MYC gene amplification might contribute to
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endocrine therapy resistance [41–43]. These observations suggest
that PML1 and Myc work together to promote endocrine therapy
resistance and highlight the potential of targeting the PML1-Myc
axis as a therapeutic strategy for overcoming endocrine therapy
resistance in ER+ breast cancer. Future research is needed to
elucidate additional mechanisms by which PML1 promotes
endocrine therapy resistance, including identifying other potential
players.
Our study raises several important questions that warrant

further investigation. For example, it is unclear how alternative
splicing controls the abundance of different PML isoforms and
whether this regulation is a general mechanism that operates
across different cancer types. Furthermore, our findings suggest
that alternative splicing is a critical mechanism regulating
tumorigenesis, highlighting the need for further research and a
potential strategy to treat breast cancer by targeting aberrant
alternative splicing. These findings provide important insights into
the complex regulation of PML isoforms and their role in breast
cancer and lay the groundwork for future investigations into the
molecular mechanisms that drive tumorigenesis.
Our study highlights the importance of nucleoplasmic PML,

including chromatin-bound PML, in regulating transcription. By
interrogating and combining public datasets, we identified over
12,000 PML-binding sites, primarily found in gene promoters.
Moreover, PML proteins associate with more than 70% of ER-
bound promoters, and loss of PML had little or no effect on ER
associations with the promoters, suggesting that PML is recruited
to chromatin by sequence-specific transcription factors, such as
Myc and ER.
Our data also demonstrate that PML1 promotes transcriptional

activation, as evidenced by its requirement for the enrichment of
H3K4me3 (~88%) and the recruitment of WDR5, MLL1, and MLL2
on PML-bound promoters. It is worth noting that Myc binds WDR5

[44], and ER interacts with MLL2 [45], implying that WDR5 may
have a broader role in regulating transcriptional activation beyond
breast tumors. Previous reports suggest that WDR5 expression is a
prognostic factor in breast cancer outcomes [46] and a potential
therapeutic target [47]. Recent investigations have also linked
WDR5 to GBM stemness [48], indicating that it may be a potential
target for treating this type of cancer. Overall, our study highlights
the importance of WDR5 in PML1-mediated gene expression to
promote breast tumor growth and stemness and suggests that
targeting the PML1-WDR5 axis may be a promising therapeutic
strategy for various cancers.

MATERIALS AND METHODS
Cell culture
The HEK293T and MCF-7 cell lines were procured from the American Type
Culture Collection (ATCC) and cultured on tissue culture plastic, employing
Dulbecco’s Modified Eagle’s medium (DMEM) enriched with 10% fetal
bovine serum (FBS) and 50 units/ml Penicillin-Streptomycin Solution (P/S).
T47D and ZR-75-1 cells (also from ATCC) were nurtured in RPMI-1640
medium supplemented with 10% FBS and 50 units/ml P/S. In the case of
T47D cells, an additional 5 μg/ml insulin was introduced into the medium.
Mouse embryonic fibroblast (MEF) cells were generated in-house and
cultured in DMEM supplemented with 10% FBS and 50 units/ml P/S. All cell
lines were maintained at 37 °C in a 5% CO2 incubator. Transient
transfections were performed using Lipofectamine 2000 (Thermo Fisher,
#11668019) following the manufacturer’s instructions.

Flow cytometry
MCF-7 and ZR-75-1 cells were dissociated, labeled with antibodies (1–2 μg
per 10^6 cells for 1 h), and subsequently resuspended in 1X phosphate-
buffered saline (PBS) according to established procedures [49]. The
ALDEFLUOR assay was conducted in adherence to the manufacturer’s
guidelines, followed by flow cytometry using a BD Accuri C6 Plus Flow
Cytometer (BD Biosciences). Electronic gating was configured based on
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Fig. 8 Inactivation of WDR5 by knockdown or WDR5i inhibits stemness and proliferation of MCF-7 cells and promotes fulvestrant’s
anticancer activity. Knockdown of WDR5 reduces stem cell populations (A) and the proliferation (B), and fulvestrant’s IC50 (C) in MCF-7 cells.
OICR-9429 and C16 treatments reduce stem cell population (D) and stemness-related gene expression (E) of MCF-7 cells. PML1 rescues the
proliferation of OICR-9429- (F) and C16-treated cells (G). OICR-9429 and C16 significantly enhance fulvestrant’s anticancer activity of
PML1 stably expressing MCF-7 cells (H). IC50 for Ful, Ful plus OICR9429, and Ful plus C16 are 2.511e-008, 1.120e-010, and 1.447e-009,
respectively. The IC20 of OICR9429 (2.5 μM) or C16 (1.25 μM) was used in combination with fulvestrant. Most experiments were analyzed using
Two-way ANOVA, whereas IC50 data were analyzed using Prism 9 for dose-response curve fitting and calculation of IC50 values. Each
experiment was performed with N= 3 in each group.
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cells stained with the corresponding control (DEAB). Details of the
antibodies used are provided in Supplementary Table 1.

Statistical analysis
The difference in continuous measurements among groups will be
determined using a t-test (two groups) assuming unequal variance or
ANOVA (more than two groups) followed by Tukey pair-wise comparison
procedure. Differences between groups were considered statistically
significant at values of p ≤ 0.05. Data were depicted as the mean ± SD,
using ***p < 0.001 as significance criteria. p < 0.05 and p < 0.01 are
designated by * and **, respectively. The likelihood ratio test and Chi-
square test were used to assess the significance.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
in the GSE255018.
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