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BclXL (Bcl2l1) gene therapy lessens retinal ganglion cell soma
loss but not axonal degeneration after acute axonal injury
Olivia J. Marola1,2,3, Sarah E. R. Yablonski1,3,4, Peter G. Shrager4, Robert W. Nickells 5 and Richard T. Libby 1,3,6✉

© The Author(s) 2022

Cell Death Discovery           (2022) 8:331 ; https://doi.org/10.1038/s41420-022-01111-4

Glaucoma, a leading cause of irreversible blindness, is character-
ized by loss of retinal ganglion cells (RGCs). In glaucoma, RGCs are
thought to sustain axonal injury at the glial lamina [1]. This injury
triggers molecularly distinct cell death pathways governing
degeneration of the RGC soma and the distal axon. Much work
has elucidated the mechanisms controlling degenerative pro-
cesses in both RGC compartments [2]. In ocular hypertensive DBA/
2J mice and after acute mechanical RGC axonal injury (controlled
optic nerve crush, CONC), the apoptotic molecule BAX was shown
to be required for degeneration of the soma, but not distal
Wallerian degeneration of the axon [3]. In contrast, manipulation
of molecules important for axonal degeneration (e.g. expression of
WldS) lessened death of the entire RGC in DBA/2J glaucoma [1]. Of
note, after CONC (which allows independent analysis of the RGC
somal and axonal compartments), WldS expression significantly
delayed axonal degeneration but did not lessen RGC somal
degeneration [4]—suggesting WLDS’s activity is restricted to the
RGC axon. Taken together, these data suggest axon-localized
degenerative pathways ultimately drive degeneration of both RGC
compartments in glaucoma. In contrast, there is evidence that
effectors originating from the soma are important in initiating
axonal degeneration after neurodegenerative injury [5], suggest-
ing that the factor(s) governing both somal and axonal
degeneration in glaucoma may be initially triggered in the soma.
Elucidating the inciting mechanism(s) driving both somal and
axonal degeneration after glaucoma-relevant injury will be
important in the development of neuroprotective therapies.
Recently, it was shown that overexpression of BclXL protected

the entire RGC in DBA/2J glaucoma [6]. BCLXL inhibits BAX
induction and is the principal pro-survival family member of the
Bcl2 gene family expressed in RGCs [7]. BclXL deletion significantly
increased RGC death after CONC, suggesting BCLXL activity
protects RGCs after glaucoma-relevant injury [8]. BCLXL was
shown to localize to both somas and axons in dorsal root
ganglion neurons [5]. Given this, it is possible that loss of BCLXL
activity from the RGC soma, axon, or from both compartments,
drives RGC degeneration after glaucoma-relevant injury. Locating
BCLXL’s protective effect will aid in understanding the role of
somal and axonal contributions to RGC degeneration in glaucoma.
Here, we utilize CONC to investigate the protective effect of BclXL
overexpression in the RGC soma and axon compartments
independently.

To study the compartment-specific effects of BclXL overexpres-
sion after CONC, BclXL was overexpressed (BclXL

AAV) in the retinas
of C57BL/6J mice (aged 3–7 months) by bilateral intravitreal
delivery of AAV2.2-Pgk-mCherry-BclXL vector, performed as
previously described [6]. Control animals (WT) were bilaterally
intravitreally injected with volume-matched PBS. Mice were
randomly selected to receive intravitreal AAV2.2-Pgk-mCherry-
BclXL or PBS. Mice were fed chow and water ad libitum and
housed on a 12-hour light-to-dark cycle. All experiments were
conducted in adherence with the Association for Research in
Vision and Ophthalmology’s statement on the use of animals in
ophthalmic and vision research and were approved by the
University of Rochester’s University Committee on Animal
Resources. A priori exclusionary criteria included abnormal eye
phenotypes (e.g. shrunken eye, cataracts, displaced pupil, lens
damage). CONC (performed as previously described [9]) was done
no earlier than 28 days after intravitreal injection to allow for
sufficient transduction. To determine gross physiological function
of RGC somas, pattern electroretinography (PERG) was performed
using the Celeris Diagnosys system according to manufacturer’s
instructions. To assess physiological function of RGC axons,
compound action potentials (CAPs) were recorded as previously
described [4, 9] with peak amplitudes measured at 37 °C.
Immunohistochemistry and imaging for retinal flat mounts and
optic nerve longitudinal sections were performed as previously
described [9] using antibodies against RBPMS (Genetex,
GTX118619, 1:250), RFP (Chromotek, 5f8-100, 1:1000), cCASP3
(R&D, AF835, 1:1000), and Neurofilament (Millipore, AB5539SP,
1:1000). RBPMS+ cell counts and soma size measurements were
performed using Image J. In all cases, experimenters were masked
to experimental group and condition. Experimental groups had
roughly equal numbers of males and females, were sex- and age-
matched, and littermates were used wherever possible. Power
analyses were performed a priori to determine appropriate sample
sizes. Data are reported as mean ± standard error of the mean, and
in all cases, data sets being compared had similar variances and
met the assumptions of each statistical test used.
To determine the compartment-specific effect of BclXL over-

expression after mechanical axonal injury, CONC was performed on
BclXL

AAV and WT control mice. Of note, as assessed by the
percentage of mCherry+ RBPMS+ cells, AAV2.2-Pgk-mCherry-BclXL
transduced ~76% of RGCs (Fig. 1A), consistent with previously
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published results [6]. Five days post-CONC, BclXL
AAV retinas had

significantly fewer dying (cCASP3+) RGCs (Fig. 1B), and 14 days
post-CONC, had significantly improved RGC survival compared to
WT controls (Fig. 1C). Therefore, consistent with previous reports
[6, 10], BclXL overexpression improved RGC somal survival after

axonal injury. These data suggest loss of BCLXL activity in the soma
contributes to RGC somal degeneration in glaucoma and could also
possibly contribute to degeneration of the axonal compartment.
Strikingly, despite improved somal survival in BclXL

AAV retinas,
surviving BclXL

AAV RGC somas were significantly shrunken 14 days
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post-CONC compared to Sham controls (Fig. 1D), suggesting injury or
metabolic stress [11, 12]. This somal shrinkage was also observed in
Bax deficient RGCs after CONC [13]. In addition, BclXL overexpression
was not sufficient to prevent a decrease in PERG amplitude (which is
thought to be reflective of RGC activity [14]) 14 days after CONC (Fig.
1E). Thus, while BclXL overexpression improved RGC soma survival
after CONC, RGC somas did not appear to retain normal function.
These data imply the separable nature of the mechanisms governing
RGC somal survival and retention of physiological function.
Given that BclXL overexpression protected RGC axons and

somas in a model of ocular hypertension [6], it remained
important to distinguish whether somal BCLXL confers protection
to the RGC axon, or if axonal BCLXL affords this protection. To
investigate this, axonal degeneration of BclXL

AAV and WT optic
nerves was assessed after CONC. Of note, the BCLXL fusion protein
(mCherry) prominently co-localized to RGC axons in the optic
nerve (Fig. 1F), as was shown previously [6]. Axonal health was
assessed histologically (labeling for neurofilament-H) and electro-
physiologically by measuring CAPs. BclXL overexpression did not
lessen histological hallmarks of RGC axonal degeneration (Fig. 1G),
nor prevent CAP amplitude decline after CONC (Fig. 1H). Thus,
BclXL overexpression did not appear to elicit neuroprotective
effects by acting in the RGC axon after glaucoma-relevant injury.
Taken together, these data suggest that the detrimental effect

of BCLXL loss may be localized to the soma in the context of
glaucomatous injury. This implicates the importance of degen-
erative mechanisms initiated in the RGC soma in ultimately driving
death of the entire RGC. Future work should elucidate the
mechanisms by which loss of somal BCLXL activity initiates axonal
degenerative activity to further uncover the earliest drivers of
glaucomatous neurodegeneration.

DATA AVAILABILITY
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on reasonable request.
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Fig. 1 BclXL overexpression improved RGC somal survival but not axonal degeneration after CONC. A Transduction efficiency of AAV2.2-
Pgk-mCherry-BclXL in RGCs as assessed by the percentage of mCherry+ (red) RGCs (RBPMS+ cells, green) depicted in retinal flat mounts. On
average, 76.1 ± 1.2% of RGCs were colabeled with mCherry. n= 4. Scale bar, 50 µm. B WT (n= 5) and BclXL

AAV (n= 6) retinal flat mounts and
quantification of cleaved caspase 3 (cCASP3)+ cells 5 days post-CONC. BclXL

AAV retinas had 74.9 ± 10.5% fewer cCASP3+ cells compared to WT
controls. *P= 0.030, two-tailed t-test. Scale bar, 50 µm. C WT and BclXL

AAV retinal flat mounts and quantification of RGCs (RBPMS+ cells) 14 days
post-CONC. Both WT and BclXL

AAV retinas had significant RBPMS+ cell loss after CONC compared to Sham controls (85.4 ± 0.8% and 34.8 ± 4.2%
loss respectively, *P < 0.001). However, BclXL

AAV retinas had 59.2 ± 4.9% improved RGC survival after CONC compared to WT controls (*P < 0.001).
n= 5, two-way ANOVA, Holm-Sidak’s post hoc test. Scale bar, 50 µm. D Quantification of RBPMS+ RGC soma size from BclXL

AAV retinas 14 days
after Sham and CONC. After CONC, surviving RGCs from BclXL

AAV retinas were 27.5 ± 2.2% smaller compared to Sham controls. n= 5, *P < 0.001,
two-tailed t-test. E Representative PERG traces and quantification of PERG amplitudes from WT and BclXL

AAV eyes 14 days post-Sham (n= 17, 18,
respectively) and CONC (n= 18, 17, respectively). WT and BclXL

AAV eyes had significant reductions in PERG amplitude after CONC relative to
Sham (43.5 ± 5.8% and 36.2 ± 6.6% reductions respectively, *P < 0.05). BclXL

AAV eyes did not have improved PERG amplitudes after CONC
compared to WT controls (P= 0.816). Two-way ANOVA, Holm-Sidak’s post hoc test. Scale bar: X: 100ms, Y: 5µV. F Longitudinal BclXL

AAV optic
nerve sections 5 days post-Sham and CONC. Sham BclXL

AAV optic nerves had notable axonal mCherry labeling, which was markedly “beaded”
and lost post-CONC. n= 4. Scale bar, 50 µm. G Longitudinal WT and BclXL

AAV optic nerve sections 5 days post-Sham and CONC immunoassayed
for neurofilament-H. BclXL

AAV optic nerves had similar histological signs of degeneration after CONC compared to WT controls. n= 4. Scale bar,
50 µm. H Representative CAP traces and quantification of CAP amplitudes fromWT and BclXL

AAV optic nerves 5 days post-Sham and CONC. Both
WT and BclXL

AAV optic nerves had significantly decreased CAP amplitudes after CONC compared to Sham controls (59.7 ± 5.6% and 59.3 ± 3.7%
amplitude reductions respectively, *P < 0.001). After CONC, BclXL

AAV optic nerves did not have improved CAP amplitudes compared to WT
controls (P= 0.582). n= 5, two-way ANOVA, Holm-Sidak’s post hoc test. Scale bar: X: 1ms, Y: 1mV. All numerical data are reported as
mean ± standard error of the mean. For graphs, bars represent the mean, and error bars represent standard error of the mean.
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