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Abstract

Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-
spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic
measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here,
we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data
from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework
(DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the
multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly,
through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding
molecular phenotypes, i, clinical intervention relevant subtypes (CISs), in which bone mineral density benefits
response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular
phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of
osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two
subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-
up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies
for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an
independent cohort (166 participants).

Introduction

Osteoporosis is conventionally regarded as a systemic
skeletal disease accompanied by low bone mass, micro-
architectural deterioration of bone tissue, bone fragility
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and susceptibility to fracture'. Osteoporosis and its
increased risk for bone fractures have become wide-
spread major public health issues given the rapidly aging
global population. Osteoporotic fractures are extremely
harmful and are one of the primary causes of disability
and death in elderly patients®. Within 1 year of experi-
encing a hip fracture, ~36% of patients may succumb to
various complications, while about 50% may become
disabled, leading to a significant decline in their quality of
life?, and thus the disease constitutes a great international
medical and economic burden* In the US, in 2018,
osteoporosis and low bone mass combined affected
~55.7% adults aged 50 and over’. In China, the estimated
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prevalence of osteoporosis is 20.73% among middle-aged
and elderly men and 38.05% among middle-aged and
elderly women®. And research has shown that if osteo-
porosis could be avoided then 1,364,717 of 2.7 million hip
fractures that occurred in 2010 worldwide were poten-
tially preventable’.

Although calculating the bone mineral density (BMD)-
based T-score is the standard measure for the diagnosis of
osteoporosis®, there is still a large degree of heterogeneity
among cases of osteoporosis in evaluating its risk of
fracture. This is because T-score values estimated by
BMD from dual-energy X-ray absorptiometry (DXA) vary
across DXA manufacturers’ and reference values'’.
Moreover, people diagnosed with osteoporosis have
varying degrees of fracture risk'!, suggesting that the
diagnosis of osteoporosis needs to be more precise for
each specific population. Several molecular markers, like
bone turnover markers (BTMs), have been used recently
to reflect the bone remodeling process and to measure the
bone turnover rate of patients with osteoporosis. BTMs
can also be used to monitor response to bone loss therapy,
but they are not a satisfactory diagnostic index for iden-
tifying cases of osteoporosis'>. Thus, there is an urgent
unmet clinical need for new molecular candidate markers
to more accurately identify patients at osteoporosis
progression.

In the management of osteoporosis, calcium supple-
mentation is widely recommended for the prevention of
osteoporosis and fractures''. These recommendations are
based on evidence from randomized controlled trials
(RCTs) with BMD as the outcome, however, large meta-
analysis and systematic review showed inconsistent
treatment effects'”. In a pooled study (7 prospective
cohorts of 170,991 women, 5 prospective cohorts of
68,606 men, and 5 clinical trials of 6740 participants)
suggested that calcium intake is not significantly asso-
ciated with hip fracture risk'®, yet other pooled studies
had opposite results, considering calcium supplementa-
tion alone had a positive effect on bone density and a
significant reduction in fractures'®. Such studies indicate
the role of calcium supplementation in the prevention of
osteoporosis and fracture risk has not been well estab-
lished, especially implicate inaccurate or imprecise diag-
noses of osteoporosis and fractures could be an important
reason for differences in drug efficacy.

The identification of osteoporosis and its subtypes with
their corresponding molecular determinants is key for a
personalized diagnosis and more effective treatment
strategy. Along with the development of various high-
throughput technologies, many kinds of omics data'®!’
and integration with phenomics data'®'® provide the
opportunity for osteoporosis stratification in a multi-
omics manner. On the basis of epigenomicszo, metabo-
lomics and metagenomics®', some variants between
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normal bone and osteoporosis have been measured.
However, large-scale studies connecting methylation,
metabolism and microbiota to osteoporosis genomics are
still lacking.

Here, utilizing 366 samples from the China
Community-based Cohort of Osteoporosis (CCCO)**, we
constructed the first prospective multi-omics atlas of the
largest osteoporosis cohort to date. Such big biological
data include genomics, epigenomics and metagenomics
data for comprehensively characterizing the osteoporosis
risk based on genetic and environmental factors, as well as
metabolomics data for indicating the metabolic bone
disorder and additional phenomics data for characterizing
the observable covariates with osteoporosis risk. Next, we
implemented an explainable data-intensive analysis fra-
mework for an omnigenic model**** based on a multi-
modal approach, referred to as a deep latent space fusion
(DLSF)'®*>%¢, which can help detect subtypes of osteo-
porosis with clinical significance and explain biological
significance underlying osteoporosis and its subtypes with
multi-modal molecular signatures (M3S). In addition,
2-year and 4-year follow-up outcomes were also collected
to emphasize the clinical utility of the established osteo-
porosis and subtypes, which were also validated in
another independent (Jinshan) cohort of osteoporosis
with hundreds of samples.

Through such a data-intensive study (Fig. 1a), we have
firstly identified clinical intervention relevant subtypes
(CISs) in a Chinese population based on the multi-omics
landscape and corresponding M3S by efficient DLSF
analysis, and CISs displayed different sensitivities during
clinical intervention or prognosis (e.g., calcium supple-
mentation). We then recognized many snpGenes asso-
ciated with these molecular phenotypes by diverse
candidate biological mechanisms underlying osteoporosis,
and xQTL preferences indicate an omnigenic effect on
different biological domains for explaining osteoporosis
and CISs. Finally, the M3S as explicit functional repre-
sentations of hidden genotypes can help develop
improved osteoporosis risk models and identify new
composite index for fracture prediction in clinical appli-
cations. Our integrative data resources and data-intensive
analysis framework should greatly help future pre-disease
and disease-onset studies in osteoporosis and relevant
complex chronic non-communicable diseases, providing a
road map to the development of precise early diagnostic
standards, while accelerating discovery of novel drug
targets and new prevention strategies.

Results
Multi-omics molecular landscape of osteoporosis

Based on biological high-throughput technologies,
we have constructed the first prospective multi-omics
molecular landscape of osteoporosis, by using genomics,
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Fig. 1 Design and workflow for studying osteoporosis and its subtypes on the basis of a multi-omics atlas generated by data-intensive
analysis. a The study design and workflow in the principle of data-intensive analysis. b The global view of the molecular landscape of osteoporosis.
The landscape consists of different data domains. (1) The BMD related indices such as FN BMD and TH BMD. (2) The clinical indicators such as age,
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epi-genomics, metabolomics and metagenomics data
from matched samples within 117 osteoporosis indivi-
duals compared to 91 normal and 158 osteopenic indi-
viduals participated in the CCCO cohort (Fig. 1b). The
demographic and clinical characteristics of the cohort
participants were summarized in Supplementary Table
S1. In each omics data modal, we observed different
degrees of group discriminations: the methylation and
microbiota modals showed more obvious separation
between normal and disease groups than those of other
modals (Fig. 2a), suggesting the necessity and importance
of introducing molecular (microscopic) phenotypes (e.g.,
methylation, metabolites and microbiota) in addition to
conventional genotypes (e.g, SNPs) to associate with
physiological or pathological clinical (macroscopic) phe-
notypes. By differential expression analysis of each modal,
microbiota as external factors had the highest percentage
of relevant features detectable to distinguish osteoporosis
from other groups, while SNPs and methylation as
internal genetic factors showed a similar percentage of
candidate discriminative features (Fig. 2b and Supple-
mentary Tables S2—S5). Although metabolites tended to
indicate the normal group (Fig. 2b), this modal was most
efficient in detecting molecular associations with clinical
phenotypes (Fig. 2c and Supplementary Table S6). For
example, albumin, aspartate transaminase and alanine
transaminase are associated with the crosstalk between
osteoporosis and liver disease, while a history of smoking
is known to be a risk factor for osteoporosis®’, and uric
acid has shown some protective effects on bone meta-
bolism in Chinese postmenopausal females independent
of body composition®®. Thus, our multi-omics molecular
landscape should help reveal the global and complete
characteristics of osteoporosis.

In addition to these individual molecular features, the
co-expression molecular networks and modules showed
systematic and functional characteristics of osteoporosis
and other osteopenia and normal groups. In general, the
correlations among different molecular features were
reduced from normal to osteopenia, and to osteoporosis
(Fig. 2d), indicating the co-expression network coupling-
separation underlying disease occurrence and progres-
sion. In particular, the co-expression modules identified
by the typical WGCNA method®® displayed global trait
association patterns for osteoporosis different to those for
other groups (Fig. 2e and Supplementary Tables S7-S9).

The disease heterogeneity of osteoporosis has been
widely observed with regard to the above molecular
phenotypes. But in clinical practice, the diagnosis of
osteoporosis is mainly based on BMD measurements via
DXA measurements. This “one size fits all” approach is
poorly equipped to explain the complex disease status and
treatment response of osteoporosis observed in the clinic.
Thus, greatly inspired by the molecular clues above, we
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sought to apply our multi-modal approach to identify
potential disease stratifications in an effort to better
understand the disease heterogeneity of osteoporosis and
guide clinical determinations that may lead to a higher
quality of care. To this aim, we sought to identify subtypes
of osteoporosis in an integrative manner, while providing
multi-modal molecular signatures (M3S) for osteoporosis
diagnosis and fracture risk evaluation. By a theoretical
estimation, the information fusion or sharing among dif-
ferent omics data has to be measured with an RV index*”.
The quantitative values remarkably supported the notion
that the multi-omics molecular landscape supplied com-
plementary information in a combinatorial manner
(Fig. 2f). For example, the methylation and microbiota
datasets tended to have greater overlap or explained
information, whereas any other two datasets had different
or independent information.

Supporting these requirements and motivation, our
previously developed deep learning model, Deep Latent
Space Fusion (DLSF), has shown an efficient analysis
capability in multi-omics data integration for cancer
subtypes'®. Thus, DLSF, as a key component of our data-
intensive analysis pipeline (Fig. 1a), was used to identify
the molecular stratification of osteoporosis individuals
and corresponding subtyping signatures undetectable in
typical DXA analysis, based on their multi-omics mole-
cular landscape (Fig. 2g), and whose sample network in
latent data space rather than in observation data space
allowed us to identify sample clusters (i.e., osteoporosis
subtypes) shared in the multi-modal information.

The identification of osteoporosis subtypes via the
multi-omics molecular landscape by DLSF

DLSF allowed us to identify sample clustering asso-
ciated with more clinical phenotypes than those by other
conventional multi-omics analysis methods, including
Similarity Network Fusion (SNF)** and Perturbation
clustering for data INtegration and disease Subtyping
(PINS)*? (Fig. 3a). It also detected more balanced clusters
(e.g., different clusters with similar number of samples)
than those by PINS (Supplementary Fig. S1). DLSF is an
efficient approach to analyze our multi-omics molecular
landscape of osteoporosis. The sample clustering is robust
for DLSF, and we were able to determine two clusters
using this approach, as we considered the cluster balance
and association to be relevant to clinical phenotypes
(Fig. 3b and Supplementary Table S10).

According to such subtype determined by molecular
phenotypes, osteoporosis individuals could be clearly
divided into two groups in the unified latent data space
(Fig. 3c and Supplementary Tables S11 and S12), and the
same samples showed similar groups in different indivi-
dual observation data spaces, especially in microbiota and
methylation modals. The two sample clusters/subtypes
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self-expression technologies.

Fig. 2 Characterization of multi-omics molecular landscape for osteoporosis. a Sample group distribution in the PLSDA space. b Percentages of
discriminative features at different omics data levels. ¢ Percentages of phenotype-associated features at different omics data levels. d Co-expression
network of features for different sample groups at corresponding omics data level. e Co-expression network modules of features and their phenotype
associations for different sample groups at particular omics data level. f Shared information between different omics datasets estimated by RV index.
g The multi-omics unsupervised learning for osteoporosis multi-omics atlas by our deep latent space fusion model based on joint auto-encoder and

had strong associations with many clinical phenotypes
(Fig. 3d and Supplementary Figs. S2 and S3). For example,
they displayed many phenotype distribution differences
between two subtypes. Notably, individuals within Sub-
type I tended to have lower total hip bone mineral density
(TH BMD) and other related indices like lower femoral
neck bone mineral density (FN BMD) compared to Sub-
type II. Meanwhile, individuals within Subtype II had
lower lumbar spine bone mineral density (L1-L4) (L1-L4
BMD) and other indices like a lower L1-L4 BMD Z-score.

The two subtypes also showed differential changes in
BTMs (Fig. 3e, f). Subtype I had significant changes in
N-terminal propeptide of type I procollagen (PINP) and
osteocalcin (OST) compared to the normal and osteo-
penic groups; meanwhile, Subtype II had significant
changes on PINP and OST compared to the normal
group. Of note, Subtype I had certain differences in
alkaline phosphatase (ALP), and the two subtypes had a
changed trend and varied distribution of B-CrossLaps of
type I collagen containing crosslinked C-telopeptide
(B-CTX). These results showed that Subtype I and II
both display dysfunction of BTMs. Especially, these
osteoporosis subtypes were evaluated for their responses
to therapy by follow-up BMD outcomes of the same
individuals from the CCCO cohort. Actually, many clin-
ical indices of BMD were improved for Subtype I com-
pared to those of Subtype II (Fig. 3g). This strongly
supports the notion that such new osteoporosis subtypes
have a remarkable clinical relevance and that the Subtype
I has a strong disposition for BMD improvement against
osteoporosis, which would be the sensitive subgroup for
clinical intervention of the disease. Thus, these subtypes
have remarkable clinical intervention relevance, and could
be annotated as clinical intervention relevant subtypes
(CISs) instead of original terms of Subtype I/IL. In addi-
tion, according to our survey of medical history, we
observed that the percentages of individuals receiving
calcium supplements are significantly different between
osteoporosis and others, rather than between osteoporosis
subtypes (Fig. 3h and Supplementary Fig. S4). This fact
indicated that osteoporosis individuals can be improved
by taking necessary calcium supplements, and different
osteoporosis subtypes would have different sensitivities
during such improvement process, e.g., CIS1 (Subtype I)

is a sensitive group while CIS2 (Subtype II) tends to be a
less-sensitive or non-sensitive group.

These osteoporosis subtypes were efficiently identified
by DLSF, an upstream method for discovering molecular
subtypes consistent with biological central dogma
(Fig. 3i). Therefore, the next downstream procedure is to
characterize the subtypes (i.e, CISs) through a reverse
biological explanation (Fig. 3i), which mainly includes the
Differential Association Matrix Analysis (DAM) to char-
acterize the phenotype-relevant molecular signatures and
the Multi-Omics Quantitative Trait Locus (xQTL) to
characterize the phenotype-relevant genotypes, and to
implement clinical applications in osteoporosis diagnosis,
subtype prognosis, fracture prediction and so on (Fig. 3i).

Molecular signatures of the osteoporosis subtypes among
different modals

To understand the molecular characteristics underlying
the identified osteoporosis subtypes, the molecular sig-
natures of M3S for each modal were investigated. Firstly,
the microbiota and metabolite signatures of M3S were
extracted as microbiomes are thought to crosstalk and
have functional impacts on host metabolism®®. Micro-
biota showed greater discrimination among subtypes than
metabolite (Figs. 4a and 2a), suggesting its dominant
efficiency in our analyses. The microbiota signatures have
rewiring associations with many metabolite signatures for
different subtypes (Fig. 4b). For example, the correlation
between Veillonella parvula and 3-hydroxybutyric acid is
positive in CIS1 while negative in CIS2 (Fig. 4b). There are
many case reports regarding the contribution of Veillo-
nella parvula to various bone diseases, including spon-
dylodiscitis, osteomyelitis and primary sclerosing
cholangitis®*~>°. Recent studies have further suggested an
association between osteoporosis and these bone dys-
functions. For example, pyogenic spondylodiscitis is able
to cause severe osteolytic and destructive lesions®’, while
osteomyelitis and osteoporosis can both lead to loss of
bone mass, where infections can alter RANKL-RANK-
OPG signaling that is involved in the regulation of
osteoblast and osteoclast behavior’®. Furthermore,
osteoporosis is an oft-occurring bone disease in chole-
static liver diseases, like primary biliary cholangitis and
primary sclerosing cholangitis®.
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Fig. 4 Microbiota and metabolite signatures associated with osteoporosis and its subtypes. a Expression profiles of microbiota and metabolite
signatures during two osteoporosis subtypes. b Association matrix among microbiota and metabolite signatures during two osteoporosis subtypes.
¢ Subtype-specific association matrix among microbiota/metabolite signatures and annotated functions and pathways. d Functional enrichments of
metabolite signatures. e Several representative microbiota and metabolite signatures, indicating osteoporosis and its subtypes.

Regarding the microbiota signature, we also found the
association between Klebsiella quasipneumoniae and
threonic acid is negative in CIS1 but positive in CIS2 by
DAM (Fig. 4b). Klebsiella pneumoniae has a similar
metabolism association to Klebsiella quasipneumoniae,
and it has been shown to induce the generation of
inflammatory immune cells that can migrate to distant
inflammatory tissues in the context of a genetically sus-
ceptible host where it takes part in the onset and pro-
gression of non-intestinal inflammatory diseases, such as
arthritis’.  In  addition, the concentration of
3-hydroxybutyric acid is elevated in individuals with type I
diabetes and diabetic coma®!, and threonic acid is
involved in calcium absorption*?, indicating their poten-
tial discriminative roles and functional relevance in
osteoporosis and subtypes.

The common and specific roles of these signatures in
osteoporosis and its subtypes were also supported by
their associations with osteoporosis-related functions
(Fig. 4c). In general, microbiota signatures showed more
functional associations than metabolite signatures, indi-
cating the common and specific metabolic dysfunctions
caused by microbes and host. We also found that these
signatures had more functional associations in CIS1 than
in CIS2, suggesting again the relative functional rewiring
that occurs between these two subtypes of osteoporosis.
Meanwhile, in contrast to Klebsiella quasipneumoniae,
Streptococcus salivarius, Streptococcus parasanguinis and
Bifidobacterium dentium displayed certain consistent
functional associations in the two subtypes, which have
been reported to be involved in schizophrenia®®, and it
should be noted that schizophrenia is thought to be
correlated to bone fragility**. On the other hand, meta-
bolite signatures revealed additional pathogen informa-
tion (Fig. 4d). By enrichment analysis, these metabolites
mainly belong to beta hydroxy acids, which act in fatty
acid biosynthesis and propanoate metabolism. There are
predicted functional locations, including in neurons, the
brain and the liver. These metabolites are also involved in
many diseases, including obesity, diabetes, growth hor-
mone deficiency and pyruvate carboxylase deficiency.
Similar to osteoporosis, type 2 diabetes is also affected by
aging and the two diseases often coexist. Thus, fracture
risk is actually increased in patients with diabetes™. In
addition, untreated growth hormone deficiency may
cause a higher risk of vertebral fractures in adult
patients™®.

Supported by the above diverse functional evidence, the
microbiota and metabolite signatures are explainable and
efficient biomarker candidates for indicating osteoporosis
and its subtypes (Supplementary Fig. S5). For example,
compared to the normal and osteopenia groups, Klebsiella
quasipneumoniae and Veillonella parvula had specific
expression in osteoporosis CIS1, and 3-hydroxybutyric
acid tended to be upregulated in osteoporosis CIS1, while,
in contrast, threonic acid was upregulated in osteoporosis
CIS2 (Fig. 4e). In addition, the similar microbiota sig-
natures on the genus level could also be screened, which
can be efficiently and alternatively applied when the 16S
data are available. Indeed, we found them to be consistent
to the above findings and included such genuses as
Kilebsiella, Veillonella, Bacteroides and Streptococcus
(Supplementary Fig. S6).

Although osteoporosis is known as a metabolic disease,
recent studies have shown that abnormal epigenetic reg-
ulation (e.g., aberrant DNA methylation) can also cause
bone metabolism-related dysfunction on osteogenic dif-
ferentiation, osteogenesis and bone remodeling, which
should provide a new understanding on the pathogenesis
of osteoporosis*” and potential treatment targets of the
disease™,

In the methylation modal of our multi-omics atlas, a
general epigenome-wide association study (EWAS) ana-
lysis confirmed the contribution of epigenetic information
to different clinical phenotypes (Fig. 5a). Compared to age
or body mass index (BMI), different principal components
(PCs) of the methylation profile tended to have many
effects on the genotype-phenotype associations, and dif-
ferent PCs showed dissimilar preferences. For example,
cpgPC2 and cpgPC3 had a greater association with FN
BMD while cpgPC7 had a greater association with L1-L4
BMD, compared to the average of all phenotypes (Fig. 5b).
These findings suggest that the methylation profile is
capable of providing common and specific information
and features to define osteoporosis and its subtypes.

Our analysis had screened out a set of CpG sites related
to osteoporosis and its subtypes (Fig. 5a). These methy-
lation signatures have corresponding associations with the
above metabolite and microbiota signatures (Fig. 5c, d),
indicating their potential relevance to metabolic altera-
tions during osteoporosis. For instances, cgl18008345
showed a positive correlation with Streptococcus salivar-
ius and Streptococcus parasanguinis in CIS1 but a reduced
correlation in CIS2, while cg09057517 had a negative
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Fig. 5 Methylation signatures associated with osteoporosis and its subtypes. a CpGs of methylation signatures. b Summary of EWAS results.
¢ Subtype-specific association matrix among methylation and microbiota signatures. d Subtype-specific association matrix among methylation and
metabolite signatures. e Subtype-specific association matrix among methylation signatures and clinical phenotypes. f Public reports about
methylation signatures in EWAS DB. g Public reported phenotypes associated with methylation signatures. h Several representative methylation

signatures, indicating osteoporosis and its subtypes.

correlation with Gemmiger formicilis in CIS1 and with
Haemophilus parainfluenzae in CIS2 (Fig. 5¢). Further-
more, cgl8243574 displayed many associations with
microbiota signatures, including Klebsiella pneumoniae,
in CIS1, while cg18249968 had a remarkable negative
correlation with Bifidobacterium dentium in CIS2
(Fig. 5¢). These results reveal that host epigenetic infor-
mation can explain many common and specific features
observed in external factors, like the microbiota. Similarly,
these methylation signatures showed subtype-specific
correlations with metabolite signatures, including adipic
acid, 5Z-dodecenoic acid and 9E-tetradecenoic acid,
indicating the complementary information and repre-
sentation on epigenetic and metabolomic levels (Fig. 5d).
Of note, cgl18249968 was negative with most metabolite
signatures in CIS1, but positive with them in CIS2.

These cross-modal associations by DAM suggest that
methylation signatures must also have common and
specific associations with clinical phenotypes (Fig. 5e).
Our analysis found a few shared associations, including
that cg18008345 was remarkably negatively associated
with L1-L4 BMD indices in different subtypes, and that
cg23088318 was positively associated with them, while
€g21813369 illustrated negative correlations with many
indices in two subtypes (Fig. 5e). Meanwhile, we also
observed subtype-specific associations, including that
cg09057517 was positively associated with a history of
smoking in CIS2, that cg18243574 in CIS1 had a negative
correlation with a family history of diabetes and a positive
correlation with medication history of traditional Chinese
medicine (TCM), and that cg18249968 and some other
sites had negative correlations with systolic pressure (SP)
and diastolic pressure (DP) in CIS1 rather than those
in CIS2.

Notably, these methylation signatures were detectable
in public EWAS studies, including EWASdb*’, and many
signatures locate with methylation-regulated genes on
DNA sequences, which have functional relations with
osteoporosis (Fig. 5f and Supplementary Table S13). For
example, cg18008345 is a site within POLR2E. This gene
is upregulated during osteoclastogenesis, and its inhibi-
tion decreases osteoclastogenesis while its overexpression
shows completely opposite effects in vitro, whose gene
product interacts with CREB1 to regulate osteoclastic
bone resorption®®. cg21813369 is located within the
CSNIS2B locus, and in bones of type 2 diabetic rats,

CSN1S2 protein has shown a protective effect against
osteoporosis via bone morphometric protein signaling”.
cg18243574 is a site within CLEC3A, and this gene is a
member of the C-type lectin superfamily and a candidate
oncogene in osteosarcoma, whose suppression might
inhibit osteosarcoma cell proliferation and promote che-
mosensitivity>>. cg18249968 is localized to RUNX1, which
is highly expressed in osteoblasts and RUNXI maintains
adult bone homeostasis from bone loss, which could be a
new therapeutic target for osteoporosis>>. cg09656629 is
localized to PARK?2, whose variations have been linked to
rare, inherited forms of Parkinson’s disease’, and osteo-
porosis and Parkinson’s disease often co-occur, indicating
a possible similar role for PARK2 variations in
osteoporosis™”.

We also filtered out many osteoporosis-related pheno-
types to link our targeted sites and genes (Fig. 5g and
Supplementary Fig. S7). For instance, the CpG variants in
the following genes have reports to many osteoporosis-
related phenotypes: CSN1S2B and GNBS5 are associated
with obesity, schizophrenia and osteosarcoma, PARK? is
linked to Crohn’s disease with known influencing factors
of osteoporosis, and RUNX1 is associated with medullo-
blastoma, whose most common sites of extraneural
metastases include skeleton and bone marrow”®.

Given these functional relevance and evidence, we
confirmed the biological and biomedical significance of
the methylation signatures of M3S, whose expressions
demonstrated significant down-regulated changes in
identified osteoporosis subtypes (Fig. 5h and Supple-
mentary Fig. S5). cg21813369 (CSN1S2B) had lower
expression in osteoporosis CIS1 compared to the
normal and osteopenia groups. In contrast,
cg18243574 (CLEC3A) had lower expression in osteo-
porosis CIS2. These signatures represent molecular
characteristics of new osteoporosis subtypes at the
epigenetic level.

Genotype associations underlying multi-modal molecular
signatures of osteoporosis subtypes

The above osteoporosis subtypes were defined and
characterized by integrative molecular phenotypes, e.g.,
represented by M3S. The genotypes associated with these
signatures of molecular phenotypes are expected to fur-
ther reveal potential common and specific genetic deter-
minants relevant to osteoporosis and its subtypes.
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On the one hand, the differences in SNP/SNV dis-
tribution in the normal, osteopenia and osteoporosis
groups were summarized (Fig. 6a; Supplementary Fig. S8
and Table S14), and we found two subtypes of osteo-
porosis that had remarkable changes in global SNP pat-
terns compared to the other groups. These findings
suggest the genotype changes that exist in osteoporosis
and its subtypes. Multiple SNPs located at a global
snpGene INPP4B tended to have consistent changes in
CIS1, which are similar for ATP6V0A4 and GLPIR. Sev-
eral SNPs located at another global snpGene PTPRD had
consistent changes in CIS2, where PDGFA and SCARA3
had similar changes. INPP4B°" and ATP6VOA4>® are
known modulators of osteoclast differentiation and have a
prognostic locus for human osteoporosis, while SCARA3
is known to regulate the switch between adipocyte and
osteoblast differentiation and thus represents a potential
therapeutic target for bone loss and osteoporosis®®. These
results indicate diverse causality of SNPs on molecular
phenotypes. Most global snpGenes showed dense func-
tional protein interactions or associations (Fig. 6b) and
were enriched in the Calcium signaling pathway and
Rapl signaling pathway (Fig. 6¢). Calcium signaling par-
ticipates in the differentiation and function of osteoclasts,
whose dysfunction can cause the abnormalities in osteo-
clastic bone resorption involved in osteoporosis®.
Rapl signaling targets are known to participate with
epigenetic factors in the modulation of osteogenesis by
coordinating osteoblast/osteoclast differentiation®. And
Rapl is known to play critical roles in the resorptive
function of osteoclasts, and its selective inhibition in
mature osteoclasts retards pathological bone loss®’.
Notably, many global snpGenes were reported in The
Comparative Toxicogenomics Database (or as CTD
genes)®, and they have pathogenic roles in many
osteoporosis-relevant inference networks, including
Estradiol and Resveratrol (Fig. 6¢c and Supplementary Fig.
S9). These findings dovetail with previous findings that
older men with total estradiol deficiency are osteoporotic
and those with osteoporosis are more likely to be total
estradiol deficient®*.

On the other hand, the xQTL models®® corresponding
to two osteoporosis subtypes were investigated to infer
the quantitative association between genotype and mole-
cular phenotypes (e.g,, M3S). From the distribution of
QTL SNP variant types, we indeed observed again the
common and specific molecular characteristics for the
two subtypes (Fig. 6d). For the genotype features under-
lying M3S with quantitative associations, the dominate
distributions of variants are intergenic and intronic, which
were consistent for different types of QTLs, including
methyQTL, metaboliteQTL and microbiotaQTL. In con-
trast, the specific characteristics of SNP variant types were
also observed and compared to CIS2, CIS1 had greater
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intronic variants in microbiotaQTL and less intronic
variants in metaboliteQTL. Indeed, such local snpGenes
involved in xQTL had many overlaps with those in the
above global snpGenes (Fig. 6b). By comparison, CIS1 had
the most similar snpGenes between methyQTL and global
ones, while CIS2 had the most similar snpGenes between
microbiotaQTL and global ones (Fig. 6e). These factors
supported again the necessity and importance of multi-
omics analysis and multi-modal model for osteoporosis.

Subtypes of osteoporosis could be greatly reflected by
different molecular phenotypes. Of note, snpGenes
PLCG2, FRMD4A and MED27 were consistently found
in most kinds of genotype-phenotype associations in
CIS1 and belonged to CIS1-specific global snpGenes.
Meanwhile, RBFOX1 and ASTN2 were consistently
found in all kinds of genotype-phenotype associations in
CIS2 and were CIS2-specific global snpGenes. Further-
more, SNPs in ESRI and CSMDI1 had genotype-
phenotype associations with the two subtypes and
showed consistent variant distributions corresponding
to subtype-specific global snpGenes. There are many
reports regarding the roles of ESRI and ESR2 poly-
morphisms in osteoporosis, which have demonstrated
potential heterogeneity associated with osteoporosis
risk®®. CSMDI1 is a schizophrenia-associated gene and
there is a potential risk of osteoporosis in schizo-
phrenia®’. By enrichment analysis, several key functions
related to osteoporosis subtypes were further confirmed
(Supplementary Fig. S10). The Calcium signaling path-
way was enriched in CIS2-related xQTL snpGenes,
while nitric oxide stimulates guanylate cyclase was
enriched in CIS1-related xQTL snpGenes. As previously
reported, vasculature-produced nitric oxide is essential
for the mobilization of stem and progenitor cells, which
can arise from the bone marrow stem cell niche®®, and
nitric oxide can cooperate with AMPK in the regulation
of skeletal muscle cells®’.

Notably, the analysis of typical osteoporosis-associated
signaling pathways inspired our findings to link genotype
and phenotype (Fig. 6f and Supplementary Tables S15 and
S16). CIS1 had relatively more xQTL associations with
genes that participate in estrogen and AMPK signaling
pathways, which was a group of sensitive responders in
osteoporosis individuals, and annotated as Yang-type
representing an expectation of great improvement in
BMD during clinical intervention. In contrast, CIS2 had
genotype-molecular phenotype associations with a great
number of genes involved in the calcium signaling path-
way, which was a group of non-sensitive responders in
osteoporosis individuals, and annotated as Yin-type indi-
cating a low expectation of BMD improvement.

The above clinical and molecular evidence of osteo-
porosis subtypes indicated the strong contribution of
calcium relevant functions and potential subtype-specific
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responses. As reported, the “non-responders” to calcium
and vitamin D supplementation have higher frequency of
polymorphisms in the ESR1 and VDR’’, compared to
“responders”. Indeed, we also consistently found that CIS2
tend to have higher allele frequency of SNVs on these
genes, and some new relevant genes like calcium-sensing
receptor (CASR), compared to CIS1 (Fig. 6g and Sup-
plementary Table S17), suggesting the candidate genetic
determinants of sensitivity difference on calcium supple-
mentation between CIS2 and CIS1. In addition, we also
found many candidate epigenetic determinants of such
sensitivity difference, and many CpGs of Calcium relevant
genes displayed hyper-methylation in CIS2 (Fig. 6h and
Supplementary Fig. S11). For example, ESR1, VDR, CASR
and the osteoblasts related gene BMPR1B would have
hyper-methylations in CIS2 compared to in CIS1. By
contrast, the osteoclast related genes NFATC1 and
HDAC4”"”* might be hyper-methylation in CIS1 (Fig. 6h
and Supplementary Fig. S12). This certainly explains the
sensitivity of CIS1 individuals receiving calcium supple-
mentation, and the insensitivity of CIS2 compared to CIS1
due to inhibition of calcium signaling pathway by epige-
netic factors.

Improved discrimination of osteoporosis and its subtypes
by introducing M3S into the risk model

There are many analyses demonstrating the biological
foundation of M3S related to osteoporosis events and
many clinical phenotypes, and thus they should improve
the risk model based on BTMs with necessary covariates,
like age and BMI'2, Here, three kinds of logistic regression
(LR) risk models were constructed on hundreds of normal
and osteoporosis samples. The first is Baseline I, which is
built on age, BMI and histories of drinking and smoking.
The second is Baseline II, which is Baseline I + BTMs (i.e.,
B-CTX, OST and PINP). The third is our new Model,
which is Baseline II + M3S. According to the decision
curves of our analysis data, our new Model outperformed
the other two baseline models in diagnosing osteoporosis
(Fig. 7a), indicating the improved clinical discrimination
introduced from M3S. Since the risk of osteoporosis may
differ between women and men, it is worth noting that
gender could also be included in the relevant risk models.

Next, we have validated M3S, BTMs and their associa-
tions in an independent (Jinshan) cohort with hundreds of
normal and osteoporosis samples, where 87 samples have
matched multi-omics data. We found that M3S indeed
had consistent associations in the new cohort, especially
for microbiota and metabolite modal (Fig. 7b and Sup-
plementary Figs. S13-S15), which again suggested the
molecular heterogeneity of osteoporosis. Thus, the risk
model based on these two modal was re-trained again
after correction of potential batch effects existing in omics
data (Supplementary Figs. S16—-S19), and it still achieved a
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higher performance than the two baseline models (Fig. 7¢
and Supplementary Figs. S20 and S21); notably, with an
independent validation AUC of 0.819.

On the other hand, another M3S-based risk model for
subtype evaluation can efficiently recognize potential
subtype individuals in the independent Jinshan cohort
(Fig. 7d). In contrast, the baseline models and M3S
component models without methylation information
tended to have prediction bias (e.g., assessed by balance
index) and predicted all individuals to be the same sub-
type, which suggested the importance and necessity of
multi-omics information and multi-modal modeling for
detecting and characterizing osteoporosis subtypes.
Similarly, there were many phenotype associations with
the individual subtype predicted by the M3S model than
those of other methods (e.g., assessed by number of
associated phenotypes) (Fig. 7d and Supplementary Fig.
S22), as especially the associations with FN BMD or TH
BMD in the Jinshan cohort were consistent to those found
in CCCO cohort (Fig. 3d).

If gender is included in the risk models above, we could
actually achieve some improvements in prediction (Sup-
plementary Fig. S23), which should be more valuable if
the model is built on a larger cohort with a balanced
number of male and female individuals.

Risk of fragile fracture assessed by M3S for osteoporosis

BMD is thought to be associated with fracture outcome.
The lower the BMD, the higher the risk of fracture’”*,
When tracking fracture events of our cohorts collected in
2023, we found that the osteoporosis group actually had a
higher ratio of fractures than normal groups (Fig. 7e),
supporting the causal relationship between BMD and
fracture. Meanwhile, CIS1 individuals have lower fracture
ratio than CIS2 individuals across osteoporosis subtypes.
It is clinically accepted that people who have fractures
have a higher chance of breaking again. In fact, we
observed that CIS1 individuals without PF (Prior Frac-
ture) have the lowest fracture ratio compared to other
conditions; in contrast, CIS2 individuals have a fracture
ratio greater than 10% regardless of whether PF is taken
into account or not (Fig. 7f, g and Supplementary
Fig. S24a). Thus, regardless of whether the molecular
mechanisms of CIS are calcium sensitive or not, the role
of prior fracture as a risk factor cannot be over-
emphasized, which better illustrates the existence of dif-
ferent molecular mechanisms for CIS1 and CIS2.

It is possible to evaluate biomarkers for predicting the
fracture risk by sorting the indicator values. Taking FN
BMD as an example (Fig. 7h), the values of different
individuals can be arranged in ascending order (e.g., gray
dots) and the fracture event can be labeled (e.g., red dots).
Apparently, in the statistics of the entire population (i.e.,
ALL group including normal, osteopenic and osteoporosis
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(see figure on previous page)

Fig. 7 Clinical application of M3S including risk models for osteoporosis and fracture risk assessment. a Decision curve of different risk
models (osteoporosis vs others), Baseline I: conventional risk factors; Baseline II: Baseline | + BTMs; Model: Baseline Il 4+ our multi-modal molecular
signatures (M3S). b Independent evaluation of phenotype associations between the CCCO and Jinshan cohorts. ¢ Independent performance
evaluation of risk model (osteoporosis vs others) based on M3S, compared to two baseline methods. d Independent performance evaluation of risk
model (Yang vs Yin subtypes) based on M3S, compared to other component models and baseline methods. e Statistic of fracture outcome of the
CCCO cohort at 4-year of follow-up. f The fracture rate of different osteoporosis subtypes. g The fracture rate of different osteoporosis subtypes
adjusted by prior fracture (PF). h Cases of fracture risk assessment by ranking measured with AUC, e.g., the AUC of FN BMD was evaluated in the ALL
population (including normal, osteopenic and osteoporosis individuals) and OP population (including individuals with osteoporosis only)
respectively. i The AUC of traditional clinical indices of fracture risk. j The original and adjusted AUC of each M3S feature in the ALL and OP
populations respectively. k The evaluation of a composite index for fracture risk assessment according to original and adjusted AUC for the discovery
cohort (CCCO) and for the independent validation cohort (Jinshan) respectively.

individuals), there is indeed a possibility that individuals
with lower BMD will experience fracture events. In con-
trast, in the OP population (i.e., OP group comprising
individuals with osteoporosis), the distribution of fracture
events among BMD values is scattered, suggesting that
risk assessment of fracture prediction in osteoporosis
would be a new clinical prognostic problem where BMD
would make a smaller contribution/association for the
occurrence of fractures. Based on further quantitative
assessment of predictive power using Area Under Curve
(AUC), EN BMD actually had high predictive power in the
ALL population (AUC = 0.67), while the AUC in the OP
population was lower to 0.53 (Fig. 7h). Indeed, other
previously reported clinical indicators’® associated with
fractures also supported this conclusion (Fig. 7i).

Therefore, we used the same AUC measurement to
assess the predictive power of fracture risk for each omics
feature (Supplementary Fig. S24b), e.g., methylation site,
metabolite and microbiota. On the one hand, ~2 K can-
didate indicators (AUC > 0.6) were found for both ALL
and OP populations, with an intersection of about 50%,
again confirming that osteoporosis has remarkably spe-
cific molecular factors for fracture risk. On the other
hand, as previously reported, BMD is associated with
fractures in ALL population, which may serve as covari-
ates for the above-mentioned omics features. Thus, we
adjusted the AUC score of each omics feature using three
methods (Supplementary Fig. S24b): (1) age + gender; (2)
age + gender + prior fracture; and age + gender + prior
fracture + FN BMD. In fact, there were about 20% of
omics features with a significant decrease in AUC after
correction, but most omics features still had a high AUC
of > 0.6. Accordingly, there was no significant association
between BMD and fractures in OP population, which
could be a confounding factor. Therefore, after adjust-
ment, especially after BMD correction, we were able to
detect many osteoporosis-specific fracture risk factors.
These results again suggested that omics features may
provide more osteoporosis-specific and BMD-
independent fracture risk factors in contrast to tradi-
tional clinical indicators.

Especially, M3S can actually provide effective
osteoporosis-specific biomarkers of fracture risk (Fig. 7j).
For example, methylation sites such as ¢g23088318
(AUC>0.65) and ¢gl155008935 (AUC~0.7) are
osteoporosis-specific. Meanwhile, Bifidobacterium Den-
tium and Klebsiella Variicola would be potential bio-
markers for both ALL and OP populations regardless of
BMD. As is known, the combination of different bio-
markers would achieve some predictive support. Given
that the methylation sites in M3S showed remarkable
predictive power for fracture risk, we screened the entire
combinations of a small panel of CpGs from M3S (N < 5)
and found some candidate composite indices, quantified
by a simple sum of member CpGs’ abundances. For
example, the combination of ¢g15320980 &
cg18249968 & ¢g15508935 & ¢g23088318 could achieve
an AUC of 0.73 in the discovery cohort (CCCO), and even
a validation AUC of 0.7 in the independent Jinshan cohort
(Fig. 7k).

Discussions

Compared to individual-omics studies’®, multi-omics
analyses can provide a more comprehensive view of
osteoporosis pathogenesis’’, as such analysis is better
equipped to link the drivers of a disease (e.g., genetic
variations) with relevant functional outcomes (e.g., dif-
ferential gene expression or metabolite abundance). Our
data-intensive analysis framework, as an integrative
approach, allows for the analysis of three or more data
sets simultaneously to better advance our understanding
of osteoporosis pathomechanisms, effects of calcium
supplementation and fracture risk.

Osteoporosis is a systemic bone disease characterized by
deterioration of the bone microstructure and decreased
bone mass, which leads to increased risk of fractures and
bone fragility’®. An omnigenic model or effect is widely
thought to be a reasonable way to explain and understand
such complex diseases®®**, as such a model posits that
small changes in hundreds or even thousands of genes can
lead to a large outcome (i.e., disease). Indeed, such a
model, where multiple genes or gene networks, instead of
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individual genes, can have a combinatorial effect may
contribute to osteoporosis initiation, progression and
treatment. Further, the biological network is not limited
to just a gene network. Rather, an omnigenic effect could
be reflected on different biological levels according to the
genetic central dogma. The multi-modal model char-
acterizing multi-omics information within different kinds
of biological molecules (e.g., DNA, RNA or metabolites)
can provide a more plausible scheme for an omnigenic
effect than simply small changes in only gene expression.
Here, our construction of the first multi-omics landscape
of osteoporosis is a valuable data resource to help the field
study such a complex disease, especially if one appreciates
that an omnigenic effect in the form of a genotype-
molecular phenotype association is related to osteoporosis
indicators and treatment. With this aim in mind, we
implemented a data-intensive analysis framework based
on deep latent fusion analysis to extract the shared and
specific molecular information for characterizing osteo-
porosis, in accordance with the principle of a data-
intensive research paradigm.

We first confirmed the existing complementary biolo-
gical information, which supported the relevance and
novelty of using a multi-omics approach, rather than
individual-omics approaches, for studying such a complex
disease like osteoporosis. A recent study reported that the
decreased bacterial richness and diversity in post-
menopausal osteoporosis and metabolites were closely
associated with such gut bacterial variation, where both
serum procollagen PINP and CTX-1 correlated positively
with osteopenia-enriched Allisonella, Klebsiella and
Megasphaera”. Our analysis similarly revealed that
Klebsiella, Intestinibacter, Streptococcus and Veillonella
are relevant to osteoporosis, as well as identifying their
associations with metabolite signatures and how they
complement BTMs.

Based on this analysis we identified two subtypes of
osteoporosis and their corresponding M3S. The subtypes
are distinguished by their associations with relevant
osteoporosis phenotypes — notably, sensitive responders
(CIS1) and non-sensitive responders (CIS2) within
osteoporosis — and these subtypes are supported by
follow-up outcomes. Especially as shown by the medical
history, the clinical intervention should cause the
improvement of osteoporosis, mainly because there were
more osteoporosis individuals than others would take
calcium supplements. Meanwhile, there were not sig-
nificant difference between osteoporosis subtypes, indi-
cating the difference of prognosis or intervention
sensitivity between CIS1 and CIS2. Actually, the CIS1/
CIS2 subtypes can be characterized from different per-
spectives: (1) at the phenotypic level, CIS1 and CIS2 show
notable differences in several key osteoporosis indices,
eg, BMD, BTMs and response to calcium
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supplementation; (2) at the molecular level, CIS1 and
CIS2 have significant differences in candidate signatures
from different omics data, e.g., the epigenetic difference in
the regulation of the calcium pathway; (3) in terms of
fracture risk, CIS1 had a lower fracture rate compared to
CIS2 according to the 4-year follow-up results. Whether
they show significant disease progression or conversion is
still an open question and will be of great use for future
mechanical studies.

The xQTL model targeting M3S supplied quantitative
association between genotype and these molecular phe-
notypes. The M3S xQTL model revealed many
osteoporosis-related pathways and their functional
representations on diverse molecular phenotypes, and
especially supplied a complementary scheme (as sensitive
and non-sensitive responders), or a Yin-Yang scheme, for
the subtypes while explaining an omnigenic effect on
osteoporosis. After narrowing down several conventional
and new pathways associated with osteoporosis, we have a
few insightful systematic observations. Notably, the two
subtypes have molecular associations with well-known
Wnt, Notch and RANKL signaling pathways. But indivi-
duals in the group of sensitive responders (i.e., CIS1, or
the Yang-type subgroup) have relatively more M3S asso-
ciations with AMPK-signaling pathway, which is of
interest as AMPK signaling is a molecular coordinator of
bone and energy metabolisms with an important role in
skeletal physiology®’. In contrast, individuals in the group
of non-sensitive responders (i.e., CIS2, or the Yin-type
subgroup) have relatively more M3S associations with the
calcium signaling pathway and many different pathway
members. Of note, individuals in the Yin-type subtype
tended to have M3S associations with different types of
molecular phenotypes, while individuals in the Yang-type
subgroup have greater M3S associations with the micro-
biota and metabolites, suggesting more dysfunctional risk
factors beyond host genetics. All these results strongly
suggest the multi-modal characteristics of an omnigenic
effect on osteoporosis, while highlighting the greater
contribution of multi-omics rather than individual-omics
signatures to identifying cases of sensitive responders for
clinical intervention of osteoporosis.

By combining our genotype-molecular phenotype
association study with additional public GWAS and
EWAS data sets, we identified many co-occurrences
between osteoporosis and other chronic diseases,
including chronic obstructive pulmonary disease (COPD),
Alzheimer’s disease and diabetes. Indeed, patients with
COPD have a greater risk of bone fractures and osteo-
porosis, and use of high-dose inhaled corticosteroids
increase this risk further, including for four of the specific
osteoporosis-related events: all fractures, fractures typi-
cally related to osteoporosis, prescriptions of drugs for
osteoporosis and diagnosis of osteoporosis®’. And
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Alzheimer’s disease has a higher incidence in older
women, with a spike in cognitive decline that tracks with
increased visceral adiposity, dysregulated energy home-
ostasis and bone loss during the menopausal transition.
There is a causal role for rising serum follicle-stimulating
hormone (FSH) levels in the exaggerated Alzheimer’s
disease pathophysiology during menopause, indicating an
opportunity for treating Alzheimer’s disease, obesity and
osteoporosis with a single agent (notably, a neutralizing
anti-FSH antibody®?). These associations supported
recent robust association studies about risk factors for
common diseases; e.g., screening genotypes for common
variants that affect the risk of osteoporosis and other
diseases, whose information will affect decisions made by
individuals with regard to their health care®.
Furthermore, we built the osteoporosis risk model based
on M3S, and it outperformed baseline models based on
conventional risk covariates and BTMs, providing new
candidates for osteoporosis diagnosis, prognosis and early
prevention. BTMs can be used to study changes in bone
remodeling in osteoporosis, which can provide informa-
tion that is useful for the management of patients with
osteoporosis, for both the initial clinical assessment and
for guiding and monitoring of treatment. However,
investigators and clinicians should be aware of the
appropriate sample collection and storage conditions for
optimum measurements of these markers®®, Thus, iden-
tifying markers based on diverse molecular phenotypes
would provide new candidates to easily and accurately
diagnose or prognose osteoporosis. Research has shown
that abnormal epigenetic regulation could cause dysre-
gulation of bone metabolism and lead to osteoporosis
through its important roles in osteogenic differentiation
and the pathogenesis of osteoporosis*’. Of note, the
presence of a “microbiota-skeletal” axis would be
explained by the influence of the gut microbiota on ske-
letal homeostasis via effects on host metabolism, immune
function, hormone secretion and the gut-brain axis®*.
Thus, in our multi-omics landscape of osteoporosis, the
epigenetics, metagenomics information and their regu-
lated metabolomics information combined provides a
complete and complementary resource for investigating
the pathogenic mechanisms of osteoporosis, while
recognizing the utility of M3S in addition to conventional
BTMs. With the functional relevance and osteoporosis
associations of M3S, the risk or diagnosis model is effi-
ciently learned with improved discrimination on osteo-
porosis and its subtypes. Indeed, the complete genotype-
phenotype viewpoint of osteoporosis is necessary and
important to understand the underlying molecular
mechanism of the disease and to identify new subtypes.
Meanwhile, in predictive applications, microbiota and
metabolite modals are robust for osteoporosis identifica-
tion, and all three modals are efficient for osteoporosis
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subtype recognition. Thus, the diagnosis and prognosis
models apply whole or part candidate components or
biomarkers from M3S, which can provide flexible test
panels to clinical applications when only certain modal
signatures are available; e.g., testing with single modality
from incomplete multi-modal learning®. For early diag-
nostic standards such as osteoporosis diagnosis or frac-
ture risk assessment, multi-omics signatures and models
are efficient, as shown in this work, however they would
require huge human omics data, potentially requiring
remarkable human and material resources. In fact, as our
experiments show, DNA methylation data have made a
remarkable contribution to osteoporosis diagnosis and
fracture risk assessment. Thus, by further developing the
deep learning model, it is possible to achieve similar
clinical application results by using only DNA methyla-
tion data or other monomodal data.

Finally, our data and analyses also demonstrate the
existence of an osteoporosis-specific fracture risk and its
potential biomarkers and provide new evidence and
analytical support for precision medicine in osteoporosis.
Of note, we are currently analyzing fracture outcomes
over a 4-year period, whereas traditional clinical trials on
fractures would require follow-up for more than 20
years®®, Therefore, it is expected that, our data and ana-
lyzes will contribute to conducting more diverse and
personalized assessment of fracture risk as we obtain
longer-term follow-up fracture results from our study
cohort in the future.

Notably, the osteoporosis and its subtypes characterized
by M3S can represent an anchor for future studies of the
pre-disease state®” of osteoporosis. The early-warning
signal®® corresponding to the development and progres-
sion of osteoporosis should be associated with M3S,
indicating the temporal/causal functional cascade of bone
remodeling imbalance. In the clinic, we can expect to
continue developing an individual risk model® that pre-
dicts the likelihood probability of developing osteoporosis
in people with osteopenia and fracture in people with
osteoporosis.

Collectively, our analyses of the multi-omics landscape
of osteoporosis in Chinese populations have identified
new M3S for osteoporosis and its two subtypes. On one
hand, many snpGenes are associated with these signatures
and reveal diverse candidate biological mechanisms
underlying osteoporosis, especially the xQTL preferences
of osteoporosis and its subtypes which are in the form of
pleiotropism or physiological associations on different
biological levels/domains. And subtypes are also observed
different sensitivities to calcium supplementation, which
could explain the heterogeneity in efficacy of calcium
supplementation and better guide osteoporosis medica-
tion. On the other hand, M3S can be thought of as
functional representations of hidden genotypes, and they
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are the basis of improved osteoporosis and fracture risk
models in addition to conventional risk factors and BT Ms.
All these integrative data resources and explainable data-
intensive analysis framework should greatly help future
studies into the early diagnosis of, and personalized
treatment for, osteoporosis and any other co-occurring
complex diseases.

Materials and methods
Recruitment of the participants

The study was a part of the registered protocol at
Clinicaltrials.gov (NCT02958020), and the protocol was
approved by the Institutional Review Board at Longhua
Hospital affiliated to the Shanghai University of Tradi-
tional Chinese Medicine (2016LCSY065). It was per-
formed in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki and its later
amendments or comparable ethical standards. Residents
from the Lujiazui and Jinshan subdistricts in Shanghai,
China, participated in a multicentered prospective study
from September 2019 to November 2023, and all parti-
cipants have provided informed written consent before
participation. The detailed criteria for participation can be
found in our previous reports about the CCCO cohort™.

Questionnaires

All participants have completed paper-based ques-
tionnaires via face-to-face interviews, and the ques-
tionnaires contained information about education level,
smoking status, province, age, gender, etc. Based on the
outpatient and emergency treatment record books pro-
vided by the participants, information about medication
history of calcium supplements, vitamin D supplements
and bisphosphonates was also collected.

Physical examinations

All participants were measured barefoot for height and
for body weight while wearing indoor clothing and their
body mass index (BMI) was calculated as weight (kg)/
height squared (m?).

Measurement of serum bone metabolism markers and
calcium and phosphorus metabolism indicators

The venous blood samples of all participants were
collected after an overnight fasting in non-EDTA-
containing tubes. These blood samples were cen-
trifuged within 2 h after the blood collection at 3000 rpm
for 15 min at room temperature to separate the serum.
The electrochemiluminescence immunoassay was
applied to measure serum concentrations of N-terminal
propeptide of osteocalcin (OST), B-C-terminal telopep-
tide of type I collagen (B-CTX), and type I collagen
(PINP). The continuous monitoring technique was used
to measure serum alkaline phosphatase (ALP)
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concentration. The sensitive and specific high-
performance liquid chromatography—tandem mass
spectrometry (HPLC-MS/MS) method detected total
25(0OH)D (25(0H)D3 and 25(0OH)D2). The chemilumi-
nescence immunoassay detected parathyroid hormone
(PTH). The o-cresolphthalein-complexone method and
phosphomolybdate ultraviolet colorimetry were used to
measure total calcium (Ca) and phosphorus (P),
respectively.

Assessment of BMD, osteoporosis diagnosis and fracture
definition

The dual-energy X-ray absorptiometry densitometer
(DXA, Hologic Discovery CI, Bedford, MA, USA)
instruments were applied to measure the BMD values of
each single lumbar vertebra (L1-L4), the total lumbar
vertebra (L1-L4) and the total left hip joint (including
femoral neck). All the centers used the same model of
instruments, which passed the annual verification, and
daily calibration program was performed each time the
instrument was powered on.

For osteoporosis diagnosis, the BMD values were
expressed as T-scores (number of standard deviations
above/below the mean peak BMD of healthy young-adults
of the same race and same gender). Participants with
T-scores of any site > —1.0 were considered not having
osteoporosis or osteopenia; participants with T-scores of
less than —1.0, and more than —2.5 were thought as
having osteopenia; and those with T-score < —2.5 were
diagnosed as having osteoporosis, which are in accor-
dance with criteria of the World Health Organization and
the guideline for diagnosis and treatment of primary
osteoporosis issued by the Chinese Society of Osteo-
porosis and Bone Mineral Research in 2017.

To maximize statistical effectiveness, we have employed
a well-known inclusive definition of fractures’®. Cases
were included that had fractures confirmed at any skeletal
site by medical, radiological, or questionnaire survey
reports. However, finger, toe and skull fractures as well as
fractures with high trauma were excluded when possible.

Statistical analysis

The normality of the demographic and clinical data was
assessed by the Kolmogorov—Smirnov test. The normally
distributed variables were expressed as mean * std, and
the skewed distributed variables were expressed as med-
ian (interquartile range). The ANOVA was used to
compare the differences among groups with normally
distributed data, and the Kruskal-Wallis test was used to
compare the differences among groups with nonnormally
distributed data.

All statistical analyses were performed in the SPSS
software (version 26.0, SPSS Inc. of IBM, USA), with a
P <0.05 considered statistically significant.
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Genomics data and GWAS calculation

Genotyping of 412 samples was performed using the
[llumina Infinium Global Screening Array that analyzes
over 710,000 SNPs. It is a fully custom array designed by
WeGene (https://www.wegene.com/). SNPs  were
excluded if they had a call rate < 95%, MAF < 5% and P
value of violations from Hardy—Weinberg equilibrium
(PHWE) < 0.00001. After quality control, 691,352 SNPs
of 412 samples were left for further analysis. Imputation
was done by SHAPEIT2 and IMPUTE2 using 1000
genome phase 3 as reference. Imputed variants were
filtered with MAF > 0.01, imputation quality score > 0.6
and violations from Hardy—Weinberg (HW) equilibrium
(P<1x107°). We further removed four samples to
ensure any relativeness up to the second degree in all the
sample pairs  (www.cog-genomics.org/plink/1.9/)",
leaving 8,324,631 variants of 408 samples (322 females
and 86 males). All GWASs were conducted by PLINK2
(www.cog-genomics.org/plink/2.0/)°>.  GWASs were
performed by a linear regression and additive model
adjusted for age, sex and top 8 PCs.

Methylation data and EWAS calculation

Bisulfite conversion of five hundred nanogram of geno-
mic DNA from each whole blood sample was performed
using the EZ DNA Methylation Kit (Zymo Research,
Irvine, CA). Genome-wide DNA methylation was profiled
on Infinium Human Methylation 850 K EPIC BeadChip
(Ilumina, San Diego, CA) following the manufacturer’s
instructions. Samples were randomized with respect to
slide and position on arrays, and all samples were hybri-
dized and scanned concurrently to mitigate batch effects
as recommended by the Illumina Infinium® HD Assay
Methylation Protocol Guide. Illumina .idat files were then
processed with the ChAMP Bioconductor package®
without background correction. Probes with SNPs and on
chromosomes X and Y were removed. Normalization and
quality control was conducted by applying BMIQ®* and
champ.QC incorporated in ChAMP. Based on
champ.SVD, we found a significant slide/beadchip effect.
Therefore we used ComBat” incorporated in ChAMP on
M-values (logit of beta-values) to correct for the slide
effect and then transformed the M-values back to beta-
values. Finally, there were 413 samples and 713,195 CpGs
left for further analysis. All the EWASs were conducted by
using R package limma®®, and adjusted for age, sex, BMI,
cell composition, the top 10 PCs, smoking history and
drinking history.

Metabolite data and mass spectrometry analysis

To diminish sample degradation, samples were thawed
in an ice-bath, and 20 pL of plasma was added to a 96-well
plate, which was transferred to the Eppendorf epMotion
Workstation (Eppendorf Inc., Hamburg, Germany) and
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was finally sealed for LC-MS analysis. All targeted meta-
bolites were quantified by an ultra-performance liquid
chromatography coupled to tandem mass spectrometry
(UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S,
Waters Corp., Milford, MA, USA) in a well-established
pipeline with quality control””. The raw data files gener-
ated by UPLC-MS/MS were processed to perform peak
integration, calibration and quantitation for each meta-
bolite by the MassLynx software (v4.1, Waters, Milford,
MA, USA), where the obtained clean data can be applied
for downstream analysis”®.

Gut microbiome data and metagenomics analysis

All the enrolled participants were provided with a stool
collection kit. Each participant collected a bowel move-
ment using a disposable plastic bedpan covered with toilet
paper. Participants were instructed to collect a sample of
specimen with a plastic applicator attached to the cap and
to place the applicator into a tube with stabilizer (Stool
preservation liquid, Realbio Technology), and then shake
the tube to mix stool and preservative. Samples were
carried to the physical examination center within 24 h,
and were kept in a portable Styrofoam box with dry ice
and shipped to the laboratories at Shanghai Sinomics
Corporation (Shanghai, China) within 6 h and stored in a
—80 °C freezer until the nucleic acid extraction. DNA was
extracted using Qiagen QIAamp DNA Stool Mini Kit
(Qiagen) following the standard protocol. The extracted
DNA was prepared by KAPA Hyper Prep Kit (Illumina)
for whole-genome sequencing. A paired-end (2 x 150 bp
reads) shallow shotgun metagenomic sequencing was
carried out using an Illumina NovaSeq 6000 platform
(lumina, USA) at Shanghai Sinomics Corporation
(Shanghai, China).

Taxonomic and functional profiles were analyzed using
the bioBakery workflow””. Raw sequencing reads were
performed for quality control by the KneadData pipeline
with default parameters to filter out low-quality and
human-origin reads””. After quality control, the average
reads per sample was 9.8 million (range 5.7 million—20.0
million). Taxonomic features were profiled using
MetaPhlAn”, Functional potential was profiled using the
HUMANN 3*° and UniRef90 database'®.

Differential analysis of individual-omics data

PCA was used to visualize the data distribution of
samples in different groups, and partial least squares
discriminant analysis (PLSDA) was used to observe the
distinguishing data distribution of sample groups. For
each type of omics data, the differentially expressed fea-
tures/molecules (e.g., DEM including genes or methyla-
tion sites) were initially selected and summarized by
Wilcoxon test and significance threshold is P < 0.05. The
co-expression profiles among features were calculated by
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spearman correlation for each type of omics data in each
sample group. WGCNA? was applied for co-expression
module analysis. RV index®® was used to estimate the
information overlapping or correlation among different
omics datasets.

Integrative osteoporosis subtype identification by deep
latent space fusion model

For integrative analysis of multi-omics data, the mat-
ched 366 samples were determined, including from 91
normal individuals, 158 individuals with osteopenia and
117 individuals with osteoporosis. Their corresponding
methylation, metabolite and microbiota data were used as
input for our DLSF pipeline’®. On these data, three
baseline methods were also calculated and compared,
including PFAY, SNF?!, and PINS®2. The parameters of
different methods were adopted in a series of values by
grid strategy in the suggested ranges, and potential
number of sample clusters was set from 2 to 4. For each
calculation outcome, the sample cluster was evaluated by
the sample balance between different clusters, and their
associations with different clinical phenotypes, where
significance test used Wilcoxon test and threshold is
P <0.05.

Of note, another set of samples from a Jinshan cohort
belonging to CCCO was collected in the year 2021 for
independent testing. In this new cohort, there were
157 samples with existing 16S data, and 162 samples with
targeted CpGs and metabolites according to M3S from
our above analysis. They could be used for individual-
omics testing, and the matched 87 samples (53 normal
and 34 osteoporosis samples) were applied for multi-
omics test (e.g., risk model assessment).

Downstream multi-omics analysis for osteoporosis and its
subtypes

For the downstream analysis of different omics sig-
natures, Wilcoxon test was used for significance testing
of differential expression analysis; the heatmap was used
to show the hierarchical structure of signatures and their
expression pattern among different osteoporosis sub-
types; association matrix was used to illustrate the co-
expression relationship among different modal signatures
and phenotypes; stemness-like index approach'®' was
used to select high-weights multi-modal molecular fea-
tures as M3S; functional enrichment was applied to
analyze the functional significance of a group of genes or
metabolites'®%; EWASdb was used to annotate the phe-
notype relevant to methylation signatures®”; metabolic
enzymes (level 4 Enzyme Commission [EC] nomen-
clature) and complete metabolic pathway from Meta-
Cyc'® in the community and per organism, were
quantified for bridge the functional relevance with
microbiota and metabolite.
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In addition, to investigate the genotype characteristics
corresponding to the osteoporosis subtype determined by
omics signatures, two kinds of snpGenes were identified,
i.e, genes where annotated SNPs located or neighbored
according to ANNOVAR'®. On one hand, the SNPs
whose value distribution has significant change among
different sample groups based on y* Test were filtered and
their annotated genes were collected as global snpGenes.
On the other hand, the targeted xQTL model was carried
out, including methylationQTL, metaboliteQTL, and
microbiotaQTL, by using Plink2. The SNPs involved in
different QTLs were filtered by P < 10~ and their anno-
tated genes were collected as xQTL or local snpGenes.
The STRING database'® was used to extract protein
association network among snpGenes. The Comparative
Toxicogenomics Database®® was applied to extract the
osteoporosis-relevant inference networks associated to
snpGenes. The clusterprofiler'® was carried out for
functional enrichment analysis of snpGenes.

Logistic regression (LR) model was learned based on
different features, i.e., conventional risk factors, BTMs,
and M3S. Of note, the microbiota signatures of M3S used
features on the genus level because only 16S data were
available as independent data from the Jinshan cohort. A
decision curve was used to evaluate the clinical utility of
discussed LR models. ROC curve (receiver operating
characteristic curve) and AUC (area under curve) were
used to evaluate the prediction performance of LR mod-
els. For performance assessment of each model, 70% of
the samples from the CCCO cohort were used as a
training dataset, and the other 30% of the samples were
used as a test dataset, which determined an optimal M3S
subset through mRMR'?”’. The final risk model was built
with the CCCO cohort based on such optimal M3S sub-
set, and tested on all independent samples from the Jin-
shan cohort. The risk models were obtained in a similar
way for osteoporosis identification and osteoporosis sub-
type recognition, respectively. The optimal M3S subset for
osteoporosis identification included Klebsiella, Veillonella,
Intestinibacter, 9E-tetradecenoic acid, and Suberic acid.
The optimal M3S subset for osteoporosis subtype recog-
nition included ¢g22026953, cgl18008345, cg21813369,
cgl1070274, ¢g00329101, ¢g23088318, cgl5508935,
cg09656629, ¢gl15320980, cg00431894, cgl8243574,
Klebsiella, Streptococcus, Veillonella, Threonic acid, and
5Z-Dodecenoic acid.

The ranking assessment was used to evaluate the pre-
dictive power of different features on fracture risk, and the
AUC was the quantitative measurement. The AUC is
between 0 and 1. The larger the AUC, the more effective
the fracture prediction. In addition to the individual fea-
tures, a simple composite index based on the sum of
member features (N < 5) was also calculated and evaluated
by AUC, which helps to obtain a more accurate fracture
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prediction. Focusing on methylation, a small panel of four
CpGs (i.e., ¢gl15320980, cgl18249968, cgl15508935 and
cg23088318) can provide an effective composite index to
assess fracture risk.
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