Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Development of heat-responsive adhesive materials that are stable during use and quickly deteriorate during dismantling

Abstract

When developing functional adhesives, material design is generally based on incorporating additional function without sacrificing the original adhesive performance. In contrast, the development of dismantlable adhesive materials—adhesives with on-demand debonding function—requires a different approach from ordinary functional adhesive materials since the function of disassembly is opposite to that of adhesion. In this review article, the author first provides an overview of recent studies on heat-responsive and photoresponsive adhesive materials and the characteristics of other external stimuli used for dismantlable adhesive systems. Then, research on dismantlable adhesive materials using polyperoxides is introduced as an example of early material design. Research trends in the synthesis of degradable polymers by radical polymerization, which are closely related to future environmental issues, are briefly referenced. Next, the development processes of dual-stimuli responsive dismantlable adhesive materials are interpreted as a guideline for the material design to achieve stability during use and degradability during dismantling. Finally, recent studies on heat-responsive dismantlable adhesive systems, in which thermal stability during use is prioritized while responding quickly during disassembly by heating, are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. da Silva LFM, Öchsner A, Adams RD. (eds) Handbook of adhesion technology, 2nd Edition. Springer, New York (2011).

  2. Abbott S. Sticking together: The science of adhesion. The Royal Society of Chemistry, London (2020).

  3. Benedek I. Pressure-sensitive adhesives and applications, 2nd Edition, Revised and expanded. CRC Press, Boca Raton (2004).

  4. Höfer R, Matharu AS, Zhang Z. (ed) Green chemistry for surface coatings, inks and adhesives: Sustainable applications.The Royal Society of Chemistry, London (2019).

  5. Matsumoto A. Polymers for functional adhesives, In Handbook of functional polymers, General editor Chujo Y, Section editor Nishino T. Springer, NewYork, in press (2024).

  6. Sato C. Recycling and environmental aspects. In Handbook of adhesion technology, 2nd Edition, da Silva LFM, Öchsner A, Adams RD. (eds) Springer, New York, pp. 1751–74 (2011).

  7. Mulcahy KR, Kilpatrick AFR, Harper GDJ, Walton A, Abbott AP. Debondable adhesives and their use in recycling. Green Chem. 2022;24:36–61.

    Article  CAS  Google Scholar 

  8. Schüwer N, Vendamme R. Debondable adhesive systems. In Green chemistry for surface coatings, inks and adhesives: Sustainable applications. Höfer R, Matharu AS, Zhang Z. (eds) The Royal Society of Chemistry, Chapter 13, pp. 310–38 (2019).

  9. Kano Y. Technology transition (Roadmap) of adhesive tapes for semiconductor manufacturing and control technology of adhesive properties (in Japanese). Kogyo Zairyo. 2012;60:37–41.

    CAS  Google Scholar 

  10. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater. 2011;10:14–27.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Montarnalmathieu D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science 2011;334:965–8.

    Article  ADS  Google Scholar 

  12. Winne JM, Leibler L, du Prez PE. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym Chem. 2019;10:6091–108.

    Article  CAS  Google Scholar 

  13. Chakma P, Konkolewicz D. Dynamic covalent bonds in polymeric materials. Ang Chem Int Ed. 2019;58:9682–95.

    Article  CAS  Google Scholar 

  14. Zheng N, Xu Y, Zhao Q, Xie T. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev. 2021;121:1716–45.

    Article  CAS  PubMed  Google Scholar 

  15. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451:977–80.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: How can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.

    Article  CAS  Google Scholar 

  17. Hayashi M. Versatile functionalization of polymeric soft materials by implanting various types of dynamic crosslinks. Polym J. 2021;53:779–88.

    Article  CAS  Google Scholar 

  18. de Luzuriaga AR, Martin R, Markaide N, Rekondo A, Cabañero G, Rodríguez J, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater Horiz. 2016;3:241–7.

    Article  Google Scholar 

  19. Tsai H-Y, Nakamura Y, Fujita T, Naito M. Strengthening epoxy adhesives at elevated temperatures based on dynamic disulfide bonds. Mater Adv. 2020;1:3182–8.

    Article  CAS  Google Scholar 

  20. Tsai H-Y, Nakamura Y, Hu W-H, Fujita T, Naito M. Mechanochromism of dynamic disulfide bonds as a chromophoric indicator of adhesion strength for epoxy adhesive. Mater Adv. 2021;2:5047–51.

    Article  CAS  Google Scholar 

  21. Hohl DK, Weder C. De bonding on demand with optically switchable adhesives.Adv Optical Mater. 2019;7:1900230.

    Article  Google Scholar 

  22. Kondo M. Photomechanical materials driven by photoisomerization or photodimerization. Polym J. 2020;52:1027–34.

    Article  CAS  Google Scholar 

  23. Lai H, Peng X, Li L, Zhu D, Xiao P. Novel monomers for photopolymer networks. Prog Polym Sci. 2022;128:101529.

    Article  CAS  Google Scholar 

  24. Zou Z, Xu C, Weis P, Suzuki Y, Huang S, Koynov K, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem. 2017;9:145–51.

    Article  Google Scholar 

  25. Akiyama H, Kanazawa S, Okuyama Y, Yoshida M, Kihara H, Nagai H, et al. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS Appl Mater Interfaces. 2014;6:7933–41.

    Article  CAS  PubMed  Google Scholar 

  26. Ito S, Akiyama H, Sekizawa R, Mori M, Yoshida M, Kihara H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl Mater Interfaces. 2018;10:32649–58.

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto T, Norikane Y, Akiyama H. Photochemical liquefaction and softening in molecular materials, polymers, and related compounds. Polym J. 2018;50:551–62.

    Article  CAS  Google Scholar 

  28. Kondo M, Kawatsuki N. Dismantlable adhesives based on photoreaction. J Adhes Soc Jpn (Nippon Setchaku Gakkaishi, Jpn). 2022;58:36–43.

    CAS  Google Scholar 

  29. Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev. 2014;43:148–84.

    Article  CAS  PubMed  Google Scholar 

  30. Imato K, Momota K, Kaneda N, Imae I, Ooyama Y. Photoswitchable adhesives of spiropyran polymers. Chem Mater. 2022;34:8289–96.

    Article  CAS  Google Scholar 

  31. Tano K, Sato E. Synthesis and dissociation behavior of degradable network polymers consisting of epoxides and 9-anthracene carboxylic acid dimer. Chem Lett. 2021;50:1787–90.

    Article  CAS  Google Scholar 

  32. Okada S, Sato E. Thermo- and photoresponsive behaviors of dual-stimuli-responsive organogels consisting of homopolymers of coumarin-containing methacrylate. Polymers 2021;13:329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, et al. Polydopamine biomaterials for skin regeneration. ACS Biomat Sci Eng. 2022;8:2196–219.

    Article  CAS  Google Scholar 

  34. Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent. 2002;87:364–79.

    Article  CAS  PubMed  Google Scholar 

  35. Sangermano M, Antonazzo I, Sisca L, Carello M. Photoinduced cationic frontal polymerization of epoxy–carbon fibre composites. Polym Int. 2019;68:1662.

    Article  CAS  Google Scholar 

  36. Li Q, Shen H-X, Liu C, Wang C-F, Zhu L, Chen S. Advances in frontal polymerization strategy: From fundamentals to applications. Prog Polym Sci. 2022;127:101514.

    Article  CAS  Google Scholar 

  37. Baldan A. Adhesion phenomena in bonded joints. Int J Adhes Adhes. 2012;38:95–116.

    Article  CAS  Google Scholar 

  38. Boyne J, Millan E, Webster I. Peeling performance of a novel light switchable pressure-sensitive adhesive. Int J Adhes Adhes. 2001;21:49–53.

    Article  CAS  Google Scholar 

  39. Czech Z. Solvent-based pressure-sensitive adhesives for removable products. Int J Adhes Adhes. 2006;26:414–8.

    Article  CAS  Google Scholar 

  40. Arrington KJ, Radzinski SC, Drummey KJ, Long TE, Matson JB. Reversibly cross-linkable bottlebrush polymers as pressure-sensitive adhesives. ACS Appl Mater Interfaces. 2018;10:26662–8.

    Article  CAS  PubMed  Google Scholar 

  41. Banea MD, da Silva LFM, Carbas RJC. Debonding on command of adhesive joints for the automotive industry. Int J Adhes Adhes. 2015;59:14–20.

    Article  CAS  Google Scholar 

  42. Nishiyama Y, Uto N, Sato C, Sakurai J. Dismantlement behavior and strength of dismantlable adhesive including thermally expansive particles. Int J Adhes Adhes. 2003;23:377–81.

    Article  CAS  Google Scholar 

  43. Czech Z. Synthesis and cross-linking of acrylic PSA systems. J Adhes Sci Technol. 2007;2:625–35.

    Article  Google Scholar 

  44. Kano Y, Morishima Y. Trend of pressure-sensitive adhesive tapes utilized in semiconductor processing. J Adhes Soc Jpn (Nippon Setchaku Gakkaishi). 2002;38:471–6.

    Article  CAS  Google Scholar 

  45. Inada T, Kume M. Material design and evaluation technology of backgrind tape (in Japanese). J Soc Rub Sci Technol Jpn. 2012;85:46–51.

    CAS  Google Scholar 

  46. Takahashi K. Requirements and development trend of dicing tapes (in Japanese). J Soc Rub Sci Technol Jpn. 2012;8:52–7.

    Google Scholar 

  47. Saito S, Nobusue S, Tsuzaka E, Yuan C, Mori C, Hara M, et al. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nat Commun. 2016;7:12094.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Akiyama H, Okuyama Y, Fukata T, Kihara H. Reversible photocuring of liquid hexa-anthracene compounds for adhesive applications. J Adhes. 2018;94:799–813.

    Article  CAS  Google Scholar 

  49. Liu Z, Cheng J, Zhang J. An efficiently reworkable thermosetting adhesive based on photoreversible [4+4] cycloaddition reaction of epoxy-based prepolymer with four anthracene end groups. Macromol Chem Phys. 2021;222:202000298.

    Article  Google Scholar 

  50. Aizawa M, Akiyama H, Matsuzawa Y. Dismantlable adhesion interface featuring a thermo/photocleavable molecular layer. Adv Eng Mater. 2022;24:2100823.

    Article  CAS  Google Scholar 

  51. Aizawa M, Akiyama H, Yamamoto T, Matsuzawa Y. Photo-and heat-induced dismantlable adhesion interfaces prepared by layer-by-layer deposition. Langmuir 2023;39:2771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kihara N, Ii R, Ogawa A. Synthesis and properties of nylon-0,2-oxidatively degradable polymer that is stable in air. J Polym Sci Part A Polym Chem. 2007;45:963–7.

    Article  CAS  ADS  Google Scholar 

  53. Yanaze K, Kihara N. Superabsorbent polymer solubilized instantly by decrosslinking with sodium hypochlorite. Polym J. 2021;53:1153–5.

    Article  CAS  Google Scholar 

  54. Usuba M, Hongo C, Matsumoto T, Nishino T. On-demand easy peeling of acrylic adhesives containing ionic liquids through a microwave irradiation stimulus. Polym J. 2018;50:1051–6.

    Article  CAS  Google Scholar 

  55. Bhudolia SK, Gohel G, Leong KF, Islam A. Advances in ultrasonic welding of thermoplastic composites: A review. Materials 2020;13:1284.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Inutsuka M, Kondo M, Koita T, Lim S, Ota K, Honda T, et al. Electrical properties of adhesives designed for smart debonding by a pulsed discharge method. J Adhes. 2023;99:1996–2010.

    Article  CAS  Google Scholar 

  57. Bhanu VA, Kishore K. Role of oxygen in polymerization reactions. Chem Rev. 1991;91:99–117.

    Article  CAS  Google Scholar 

  58. Schaberg A, Goertz R, Bräse S. Investigations on the Staudinger explosion and its prevention. J Hazard Mater. 2019;367:375–80.

    Article  CAS  PubMed  Google Scholar 

  59. Staudinger H, Erfahrungen über einige Expolsionen. Zeit Angew Chem. 1922:657–64.

  60. Staudinger H. Über Autoxydation organischer Verbindungen. III: ÜBer Autoxydation des asymm Diphenyläthylens Chem Ber. 1925;58B:1075–9.

    CAS  Google Scholar 

  61. Miller AA, Mayo FR. Oxidation of unsaturated compounds. I. The oxidation of styrene. J Am Chem Soc. 1956;78:1017–23.

    Article  CAS  Google Scholar 

  62. Mukundan T, Kishore K. Synthesis, characterization and reactivity of polymeric peroxides. Prog Polym Sci. 1990;15:475–505.

    Article  CAS  Google Scholar 

  63. Samanta P, Mete S, Pal S, De P. Polymeric peroxides: Synthesis, characterization, degradation and applications. J Macromol Sci Part A Pure Appl Chem. 2022;59:711–30.

    Article  CAS  Google Scholar 

  64. Samanta P, Mete S, Pal S, Hasan ME Khane, De P. Synthesis, characterization, degradation and applications of vinyl polyperoxides. Polym. J. in press.

  65. Matsumoto A, Ishizu Y, Yokoi K. Solid-state photopolymerization of octadecyl sorbate to yield an alternating copolymer with oxygen. Macromol Chem Phys. 1998;199:2511–6.

    Article  CAS  Google Scholar 

  66. Sato E, Matsumoto A. Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen. Chem Rec. 2009;9:247–57.

    Article  CAS  PubMed  Google Scholar 

  67. Taketani S, Matsumoto A. Facile synthesis of a degradable gel by radical copolymerization of vinyl sorbate and molecular oxygen. Macromol Chem Phys. 2004;205:2451–6.

    Article  CAS  Google Scholar 

  68. Taketani S, Matsumoto A. Synthesis of degradable polymer exhibiting LCST-type phase separation by radical copolymerization of sorbic esters and molecular oxygen. Chem Lett. 2006;35:104–5.

    Article  CAS  Google Scholar 

  69. Kitamura T, Matsumoto A. Synthesis of poly(lactic acid) with branched and network structures containing thermally degradable junctions. Macromolecules 2007;40:509–17.

    Article  CAS  ADS  Google Scholar 

  70. Kitamura T, Matsumoto A. Facile synthesis of degradable gels by oxygen cross-linking of polymers including a dienyl group on their side chain or at chain ends. Macromolecules 2007;40:6143–9.

    Article  CAS  ADS  Google Scholar 

  71. Sato E, Kitamura T, Matsumoto A. In-situ collapse of phase-separated structure by covalent bond cleavage at a branching point upon heating. Macromol Rapid Commun. 2008;29:1950–3.

    Article  CAS  Google Scholar 

  72. Fujioka T, Taketani S, Nagasaki T, Matsumoto A. Self-assembly and cellular uptake of degradable and water-soluble polyperoxides. Bioconjugate Chem. 2009;20:1879–87.

    Article  CAS  Google Scholar 

  73. Mihashi A, Tamura H, Sato E, Matsumoto A. Synthesis of degradable network polymers containing peroxy units in the main chain or the cross-linking point. Prog Org Coat. 2010;67:85–91.

    Article  CAS  Google Scholar 

  74. Matsumoto A, Higashi H. Convenient synthesis of polymers containing labile bonds in the main chain by radical alternating copolymerization of alkyl sorbates with oxygen. Macromolecules 2000;33:1651–5.

    Article  CAS  ADS  Google Scholar 

  75. Hatakenaka H, Takahashi Y, Matsumoto A. Degradable polymers prepared from alkyl sorbates and oxygen under atmospheric conditions and precise evaluation of their thermal properties. Polym J. 2003;35:640–51.

    Article  CAS  Google Scholar 

  76. Matsumoto A, Taketani S. Fabrication and degradation of polyperoxides by a radical chain process under mild conditions. Chem Lett. 2004;33:732–3.

    Article  CAS  Google Scholar 

  77. Matsumoto A, Taketani S. Regiospecific radical polymerization of a tetra-substituted ethylene monomer with molecular oxygen for the synthesis of a new degradable polymer. J Am Chem Soc. 2006;128:4566–7.

    Article  CAS  PubMed  Google Scholar 

  78. Sugimoto Y, Taketani S, Kitamura T, Uda D, Matsumoto A. Regiospecific structure, degradation, and functionalization of polyperoxides prepared from sorbic acid derivatives with oxygen. Macromolecules 2006;39:9112–9.

    Article  CAS  ADS  Google Scholar 

  79. Sato E, Taketani S, Omori C, Horibe H, Matsumoto A. Regiospecificity of alternating copolymerization of cyclic conjugated dienes and oxygen. Chem Lett. 2019;4:445–8.

    Article  Google Scholar 

  80. Pratt DA, Porter NA. Role of hyperconjugation in determining carbon−oxygen bond dissociation enthalpies in alkylperoxyl radicals. Org Lett. 2003;5:387–90.

    Article  CAS  PubMed  Google Scholar 

  81. Pratt DA, Mills JH, Porter NA. Theoretical calculations of carbon−oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. J Am Chem Soc. 2003;125:5801–10.

    Article  CAS  PubMed  Google Scholar 

  82. Sato E, Tamura H, Matsumoto A. Cohesive force change induced by polyperoxide degradation for application to dismantlable adhesion. ACS Appl Mater Interfaces. 2010;2:2594–601.

    Article  CAS  PubMed  Google Scholar 

  83. Sato E, Hagihara T, Matsumoto A. Facile synthesis of main-chain degradable block copolymers for performance enhanced dismantlable adhesion. ACS Appl Mater Interfaces. 2012;4:2057–64.

    Article  CAS  PubMed  Google Scholar 

  84. Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T. Living radical polymerizations with germanium, tin, and phosphorus catalysts: Reversible chain transfer catalyzed polymerizations (RTCPs). J Am Chem Soc. 2007;129:13347–54.

    Article  CAS  PubMed  Google Scholar 

  85. Goto A, Tsujii Y, Fukuda T. Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization. Polymer 2008;49:5177–85.

    Article  CAS  Google Scholar 

  86. Wang C-G, Chong AML, Pan HM, Sarkar J, Ting XT, Goto A. Recent development in halogen-bonding-catalyzed living radical polymerization. Polym Chem. 2020;11:5559–71.

    Article  CAS  Google Scholar 

  87. Sato E, Yuri M, Matsumoto A, Horibe H. Reductants for polyperoxides to accelerate degradation at elevated temperatures. Polym Degrad Stab. 2019;162:47–54.

    Article  CAS  Google Scholar 

  88. Sato E, Yuri M, Fujii S, Nishiyama T, Nakamura Y, Horibe H. Liquid marble containing degradable polyperoxides for adhesion force-changeable pressure-sensitive adhesives. RSC Adv. 2016;6:56475–81.

    Article  CAS  ADS  Google Scholar 

  89. Ivin KJ. Thermodynamics of addition polymerization. J Polym Sci Part A Polym Chem. 2000;38:2137–46.

    Article  CAS  ADS  Google Scholar 

  90. Dainton FS, Ivin KJ. The kinetics of polysulphone formation II. The formation of 1-butene polysulphone in the region of the ceiling temperature. Proc R Soc. 1952; A212:207–20.

    ADS  Google Scholar 

  91. Kitamura T, Tanaka N, Mihashi A, Matsumoto A. Soluble and thermally stable polysulfones prepared by the regiospecific and alternating radical copolymerization of 2,4-hexadiene with sulfur dioxide. Macromolecules 2010;43:1800–6.

    Article  CAS  ADS  Google Scholar 

  92. Tanaka N, Sato E, Matsumoto A. Thermally stable polysulfones obtained by regiospecific radical copolymerization of various cyclic and acyclic 1,3-diene monomers with sulfur dioxide and subsequent hydrogenation. Macromolecules 2011;44:9125–37.

    Article  CAS  ADS  Google Scholar 

  93. Tanaka N, Sato E, Matsumoto A. Highly-controlled regiospecific free-radical copolymerization of 1,3-diene monomers with sulfur dioxide. Org Biomol Chem. 2011;9:3753–8.

    Article  CAS  PubMed  Google Scholar 

  94. Watanabe H, Kamigaito M. Direct radical copolymerizations of thioamides to generate vinyl polymers with degradable thioether bonds in the backbones. J Am Chem Soc. 2023;145:10948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Uchiyama M, Murakami Y, Satoh K, Kamigaito M. Synthesis and degradation of vinyl polymers with evenly distributed thioacetal bonds in main chains: Cationic DT copolymerization of vinyl ethers and cyclic thioacetals. Angew Chem Int Ed. 2023;62:e202215021.

    Article  CAS  Google Scholar 

  96. Tardy A, Nicolas J, Gigmes D, Lefay C, Guillaneuf Y. Radical ring-opening polymerization: Scope, limitations, and application to (bio)degradable materials. Chem Rev. 2017;117:1319–406.

    Article  CAS  PubMed  Google Scholar 

  97. Lai H, Ouchi M. Backbone-degradable polymers via radical copolymerizations of pentafluorophenyl methacrylate with cyclic ketene acetal: Pendant modification and efficient degradation by alternating-rich sequence. ACS Macro Lett. 2021;10:1223–8.

    Article  CAS  PubMed  Google Scholar 

  98. Jones GR, Wang HS, Parkatzidis K, Whitfield R, Truong NP, Anastasaki A. Reversed controlled polymerization (RCP): Depolymerization from well-defined polymers to monomers. J Am Chem Soc. 2023;145:8989–9915.

    Article  Google Scholar 

  99. Inui T, Sato E, Matsumoto A. Pressure-sensitive adhesion system using acrylate block copolymers in response to photoirradiation and postbaking as the dual external stimuli for on-demand dismantling. ACS Appl Mater Interfaces. 2012;4:2124–32.

    Article  CAS  PubMed  Google Scholar 

  100. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev. 2001;101:3689–745.

    Article  CAS  PubMed  Google Scholar 

  101. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev. 2001;101:2921–90.

    Article  CAS  PubMed  Google Scholar 

  102. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis. Chem Rev. 2009;109:4963–5050.

    Article  CAS  PubMed  Google Scholar 

  103. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev. 2009;109:5051–68.

    Article  CAS  PubMed  Google Scholar 

  104. Yamago S. Practical synthesis of dendritic hyperbranched polymers by reversible deactivation radical polymerization. Polym J. 2021;53:847–64.

    Article  CAS  Google Scholar 

  105. Yamago S, Iida K, Nakajima M, Yoshida J. Practical protocols for organotellurium-mediated living radical polymerization by in situ generated initiators from AIBN and ditellurides. Macromolecules 2003;36:3793–6.

    Article  CAS  ADS  Google Scholar 

  106. Inui T, Yamanishi K, Sato E, Matsumoto A. Organotellurium-mediated living radical polymerization (TERP) of acrylates using ditelluride compounds and binary azo initiators for the synthesis of high-performance adhesive block copolymers for on-demand dismantlable adhesion. Macromolecules 2013;46:8111–20.

    Article  CAS  ADS  Google Scholar 

  107. Inui T, Sato E, Matsumoto A. High-molecular-weight and polar acrylate block copolymers as high-performance dismantlable adhesive materials in response to photoirradiation and postbaking. RSC Adv. 2014;4:24719–28.

    Article  CAS  ADS  Google Scholar 

  108. Sato E, Iki S, Yamanishi K, Horibe H, Matsumoto A. Dismantlable adhesion properties of reactive acrylic copolymers resulting from cross-linking and gas evolution. J Adhes. 2017;93:811–22.

    Article  CAS  Google Scholar 

  109. Ito H. Chemical amplification resists for microlithography. Adv Polym Sci. 2005;172:37–245.

    Article  CAS  Google Scholar 

  110. Sato E, Taniguchi K, Inui T, Yamanishi K, Horibe H, Matsumoto A. Dismantling behavior of pressure sensitive adhesives using acrylic block and random copolymers in response to photoirradiation and postbaking. J Photopolym Sci Technol. 2014;27:531–4.

    Article  Google Scholar 

  111. Fukamoto Y, Sato E, Okamura H, Horibe H, Matsumoto A. Control of adhesive strength of acrylate polymers containing 1-isobutoxyethyl and isobornyl esters in response to dual stimuli for dismantlable adhesion. Appl Adhes Sci. 2017;5:6.

    Google Scholar 

  112. Sato E, Yamanishi K, Inui T, Horibe H, Matsumoto A. Acetal-protected acrylic copolymers for dismantlable adhesives achieving spontaneous and complete removal of adhesives. Polymer 2015;64:260–7.

    Article  CAS  Google Scholar 

  113. Iseki M, Suzuki Y, Tachi H, Matsumoto A. Design of a high-performance dismantlable adhesion system using pressure-sensitive adhesive copolymers of 2-hydroxyethyl acrylate protected with tert-butoxycarbonyl group in the presence of cross-linker and Lewis acid. ACS Omega. 2018;3:16357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jing C, Suzuki Y, Matsumoto A. Thermal decomposition of methacrylate polymers containing tert-butoxycarbonyl moiety. Polym Degrad Stab. 2019;166:145–54.

    Article  CAS  Google Scholar 

  115. Jing C, Osada K, Kojima C, Suzuki Y, Matsumoto A. RAFT polymerization of 2-(tert-butoxycarbonyloxy)-ethyl methacrylate and transformation to functional polymers via deprotection and the subsequent polymer reactions. Macromol Chem Phys. 2022;223:227001.

    Article  Google Scholar 

  116. Jiang Y, Fréchet JMJ, Willson CG. Poly(vinyl-t-butylcarbonate). Synthesis and thermolysis to poly(vinyl alcohol). Polym Bull. 1987;17:1–6.

    Article  CAS  Google Scholar 

  117. Mata-Perez F, Perez-Benitol JF. The kinetic rate law for autocatalytic reactions. J Chem Educ. 1987;64:925–7.

    Article  CAS  Google Scholar 

  118. Lee OP, Hernandez HL, Moore JS. Tunable thermal degradation of poly(vinyl butyl carbonate sulfone)s via side-chain branching. ACS Macro Lett. 2015;4:665–8.

    Article  CAS  PubMed  Google Scholar 

  119. Sakamoto T, Suzuki Y, Matsumoto A. Precise control of thermal deprotection behavior and dismantlable adhesion property of acrylate copolymers containing BOC-protected hydroxy group. Polymer 2022;262:125416.

    Article  CAS  Google Scholar 

  120. Osada K, Akahori R, Suzuki Y, Matsumoto A. Controlled deprotection of poly(2-(tert-butoxycarbonyloxy)-ethyl methacrylate) using p-toluenesulfonic esters as thermally latent acid catalysts. Polym Degrad Stab. 2022;205:110127.

    Article  CAS  Google Scholar 

  121. Uehara F, Matsumoto A. Metal-resin bonding mediated by epoxy monolith layer. Appl Adhes Sci. 2016;4:18.

    Google Scholar 

  122. Sugimoto Y, Nishimura Y, Uehara F, Matsumoto A. Dissimilar materials bonding using epoxy monolith. ACS Omega. 2018;3:7532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sakata N, Takeda Y, Kotera M, Suzuki Y, Matsumoto A. Interfacial structure control and three-dimensional X-ray imaging of an epoxy monolith bonding system with surface modification. Langmuir 2020;36:10923–32.

    Article  CAS  PubMed  Google Scholar 

  124. Tominaga R, Nishimura Y, Suzuki Y, Takeda Y, Kotera M, Matsumoto A. Co-continuous network polymers using epoxy monolith for the design of tough materials. Sci Rep. 2021;11:1431.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Tominaga R, Takeda Y, Kotera M, Suzuki Y, Matsumoto A. Non-destructive observation of internal structures of epoxy monolith and co-continuous network polymer using X-ray CT imaging for elucidation of their unique mechanical features and fracture mechanism. Polymer 2022;263:125433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akikazu Matsumoto.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, A. Development of heat-responsive adhesive materials that are stable during use and quickly deteriorate during dismantling. Polym J 56, 223–247 (2024). https://doi.org/10.1038/s41428-023-00849-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00849-7

Search

Quick links