Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quinomycins with an unusual N-methyl-3-methylsulfinyl-alanine residue from a Streptomyces sp

Abstract

Four new echinomycin congeners, quinomycins M−P (14) were isolated from the cultures of the soil-derived Streptomyces sp. CPCC205575. The planar structures were determined by comprehensive analyses of NMR and HRESIMS/MS data. The absolute configurations were elucidated by the advanced Marfey’s method combined with biosynthetic gene analysis. Compounds 14 represent the first examples of quinomycin-type natural products with the sulfur atom at the N,S-dimethylcysteine residue oxidized as a sulfoxide group forming the unusual N-methyl-3-methylsulfinyl-alanine residue. Bioassay results revealed that the oxidation of the sulfur atom at the Cys or Cys′ residues led to dramatic decrease of cytotoxicity and antimicrobial activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fernández J, Marín L, Álvarez-Alonso R, Redondo S, Carvajal J, Villamizar G, et al. Biosynthetic modularity rules in the bisintercalator family of antitumor compounds. Mar Drugs. 2014;12:2668–99.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dell A, Williams DH, Morris HR, Smith GA, Feeney J, Roberts GC. Structure revision of the antibiotic echinomycin. J Am Chem Soc. 1975;97:2497–502.

    Article  CAS  PubMed  Google Scholar 

  3. Martin DG, Mizsak SA, Biles C, Stewart JC, Bacynsky L, Meulman PA. Structure of quinomycin antibiotics. J Antibiot. 1975;28:332–6.

    Article  CAS  Google Scholar 

  4. Socha AM, LaPlante KL, Russell DJ, Rowley DC. Structure-activity studies of echinomycin antibiotics against drug-resistant and biofilm-forming Staphylococcus aureus and Enterococcus faecalis. Bioorg Med Chem Lett. 2009;19:1504–7.

    Article  CAS  PubMed  Google Scholar 

  5. Foster BJ, Clagett-Carr K, Shoemaker DD, Suffness M, Plowman J, Trissel LA, et al. Echinomycin: The first bifunctional intercalating agent in clinical trials. Investigational N. Drugs. 1985;3:403–10.

    Article  CAS  Google Scholar 

  6. Waring MJ, Wakelin LPG. Echinomycin: A bifunctional intercalating antibiotic. Nature. 1974;252:653–7.

    Article  CAS  PubMed  Google Scholar 

  7. Lu QP, Ye JJ, Huang YM, Liu D, Liu LF, Dong K, et al. Exploitation of potentially new antibiotics from mangrove actinobacteria in Maowei Sea by combination of multiple discovery strategies. Antibiotics. 2019;8:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu Q, Wu G, Hao X, Hu X, Cai H, Liu X, et al. Isolation, structure elucidation, and first total synthesis of Quinomycins K and L, two new octadepsipeptides from the Maowei Sea mangrove-derived Streptomyces sp. B475. Mar Drugs. 2023;21:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Q, Li S, Li S, Hao X, Wang A, Si S, et al. Antimicrobial and anti-inflammatory cyclic tetrapeptides from the co-cultures of two marine-derived fungi. J Nat Prod. 2024;87:365–70.

    Article  CAS  PubMed  Google Scholar 

  10. Chang S, Cai M, Xiao T, Chen Y, Zhao W, Yu L, et al. Prenylemestrins A and B: Two unexpected epipolythiodioxopiperazines with a thioethanothio bridge from Emericella sp. Isolated by genomic analysis. Org Lett. 2022;24:5941–5.

    Article  CAS  PubMed  Google Scholar 

  11. Hao X, Li S, Ni J, Wang G, Li F, Li Q, et al. Acremopeptaibols A–F, 16-residue peptaibols from the sponge-derived Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. J Nat Prod. 2021;84:2990–3000.

    Article  CAS  PubMed  Google Scholar 

  12. Hao X, Yu J, Wang Y, Connolly JA, Liu Y, Zhang Y, et al. Zelkovamycins B–E, cyclic octapeptides containing rare amino acid residues from an endophytic Kitasatospora sp. Org Lett. 2020;22:9346–50.

    Article  CAS  PubMed  Google Scholar 

  13. Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem. 2002;3:619–27.

    Article  CAS  PubMed  Google Scholar 

  14. Zhen X, Gong T, Liu F, Zhang P-C, Zhou W-Q, Li Y, et al. A new analogue of echinomycin and a new cyclic dipeptide from a marine-derived Streptomyces sp. LS298. Mar Drugs. 2015;13:6947–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blum S, Fielder HP, Groth I, Kempter C, Stephan H, Nicholson G, et al. Biosynthetic capacities of actinomycetes. 4. Echinoserine, a new member of the quinoxaline group, produced by Streptomyces tendae. J Antibiot. 1995;48:619–25.

    Article  CAS  Google Scholar 

  16. Corbaz R, Ettlinger L, Gäumann E, Schierlein WK, Kradolfer F, Neipp L, et al. Stoffwechselprodukte von actinomyceten. 7. Mitteilung. Echinomycin. Helv Chim Acta. 1957;40:199–204.

    Article  CAS  Google Scholar 

  17. Park YS, Kim YH, Kim SK, Choi SJ. A new antitumor agent: Methyl sulfonium perchlorate of echinomycin. Bioorg Med Chem Lett. 1998;8:731–4.

    Article  CAS  PubMed  Google Scholar 

  18. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. Antismash 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watanabe K, Hotta K, Praseuth AP, Koketsu K, Migita A, Boddy CN, et al. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat Chem Biol. 2006;2:423–8.

    Article  CAS  PubMed  Google Scholar 

  20. Sheldrick GM, Heine A, Schmidt-Base K, Pohl E, Jones PG, Paulus E, et al. Structures of quinoxaline antibiotics. Acta Cryst Sec B. 1995;51:987–99.

    Article  Google Scholar 

  21. Cuesta-Seijo JA, Sheldrick GM. Structures of complexes between echinomycin and duplex DNA. Acta Crystallogr D Biol Crystallogr. 2005;61:442–8.

    Article  PubMed  Google Scholar 

  22. Kojima K, Yakushiji F, Katsuyama A, Ichikawa S. Total synthesis of echinomycin and its analogues. Org Lett. 2020;22:4217–21.

    Article  CAS  PubMed  Google Scholar 

  23. Pal D, Chakrabarti P. Cis peptide bonds in proteins: Residues involved, their conformations, interactions and locations. J Mol Biol. 1999;294:271–88.

    Article  CAS  PubMed  Google Scholar 

  24. Mauger AB, Rzeszotarski WJ, Ford RA. Proton magnetic resonance studies of actinomycin-related peptides containing N-methyl groups. Org Magn Res. 1973;5:231–4.

    Article  CAS  Google Scholar 

  25. Yu C, Yang TH, Young JJ. The conformation of echinomycin in dmso solution. Biochim Biophys Acta. 1991;1075:141–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wang AH, Ughetto G, Quigley GJ, Hakoshima T, van der Marel GA, van Boom JH, et al. The molecular structure of a DNA-triostin a complex. Science 1984;225:1115–21.

    Article  CAS  PubMed  Google Scholar 

  27. Ko J, Chin S, Kyo T, Mizogami K, Hanada K. Manufacture of cyclopeptide FD-991 with streptomyces echinatus. Japan Patent: 06316595. 1994.

  28. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al. Rk-1355a and b, novel quinomycin derivatives isolated from a microbial metabolites fraction library based on npplot screening. J Antibiot. 2014;67:323–9.

    Article  CAS  Google Scholar 

  29. Yang Z, Shao L, Wang M, Rao M, Ge M, Xu Y. Two novel quinomycins discovered by uplc-ms from streptomyces sp. Hccb11876. J Antibiot. 2019;72:164–8.

    Article  CAS  Google Scholar 

  30. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol. 2007;7:78.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li J, Chen M, Hao X, Li S, Li F, Yu L, et al. Structural revision and absolute configuration of burnettramic acid a. Org Lett. 2020;22:98–101.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu X, Wang A, Zheng Y, Li D, Wei Y, Gan M, et al. Anti-biofilm activity of cocultimycin a against candida albicans. Int J Mol Sci. 2023;24:17026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant no. 82273830) and CAMS Innovation Fund for Medical Sciences (CIFMS, 2021-I2M-1-055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuzhen Chen, Yan Li or Maoluo Gan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Li, S., Wei, Y. et al. Quinomycins with an unusual N-methyl-3-methylsulfinyl-alanine residue from a Streptomyces sp. J Antibiot (2024). https://doi.org/10.1038/s41429-024-00736-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41429-024-00736-0

Search

Quick links