Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estrogen administration reduces the risk of pulmonary arterial hypertension by modulating the miR-133a signaling pathways in rats

Abstract

We aimed to investigate how estrogen (ES) is implicated in the pathogenesis of pulmonary arterial hypertension (PAH) potentially by reducing the extent of vascular remodeling in females. HE assay, Western Blot, IHC, and real-time PCR were carried out to observe the role of ES in regulating miR-133a expression and the levels of MYOSLID, SRF, CTGF, and vascular remodeling in rats. In addition, MTT assay and flow cytometry were utilized to observe how ES affects cell proliferation and cell cycle in PAH. Moreover, luciferase assays were carried out to clarity the regulatory relationship between miR-133a and its downstream targets. ES administration relieved the deregulation of miR-133a, MYOSLID, SRF, and CTGF in PAH rats. In addition, ES also reduced the thickening of blood vessels in PAH rats. ES could activate miR-133a promoter and arrest the cells in the G0/G1 cycle, thus dose-dependently suppressing the proliferation of cells. In addition, the presence of ES, MYOSLID siRNA, or miR-133a precursor all altered the expression of MYOSLID, SP1, SRF, and CTGF, thus establishing a molecular signaling pathway among these factors. Furthermore, miR-133a could bind to SP1, MYOSLID, SRF, and CTGF to reduce their expression. Moreover, SRF was proved to function as an activator of miR-133a promoter. Two feedback loops were established in this study: a negative feedback loop between SRF and miR-133a, and a positive loop among miR-133a/SRF/MLK1/MYOSLID. ES treatment upregulates miR-133a expression and reduces the incidence of PAH and vascular remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demerouti EA, Manginas AN, Athanassopoulos GD, Karatasakis GT. Complications leading to sudden cardiac death in pulmonary arterial hypertension. Respir Care. 2013;58:1246–54.

    Google Scholar 

  2. Humbert M, Montani D, Perros F, Dorfmuller P, Adnot S, Eddahibi S. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol. 2008;49:113–8.

    CAS  Google Scholar 

  3. Jacobs W, van de Veerdonk MC, Trip P, de Man F, Heymans MW, Marcus JT, et al. The right ventricle explains sex differences in survival in idiopathic pulmonary arterial hypertension. Chest. 2014;145:1230–6.

    Google Scholar 

  4. Lahm T, Albrecht M, Fisher AJ, Selej M, Patel NG, Brown JA, et al. 17beta-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects. Am J Respir Crit Care Med. 2012;185:965–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, Maclean MR, et al. Gender, sex hormones and pulmonary hypertension. Pulm Circ. 2013;3:294–314.

    PubMed  PubMed Central  Google Scholar 

  6. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.

    CAS  Google Scholar 

  7. Park JY, Lee JE, Park JB, Yoo H, Lee SH, Kim JH. Roles of long non-coding RNAs on tumorigenesis and glioma development. Brain Tumor Res Treat. 2014;2:1–6.

    PubMed  PubMed Central  Google Scholar 

  8. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    CAS  Google Scholar 

  9. Li R, Qian J, Wang YY, Zhang JX, You YP. Long noncoding RNA profiles reveal three molecular subtypes in glioma. CNS Neurosci Ther. 2014;20:339–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertolotto C, Ricci JE, Luciano F, Mari B, Chambard JC, Auberger P. Cleavage of the serum response factor during death receptor-induced apoptosis results in an inhibition of the c-FOS promoter transcriptional activity. J Biol Chem. 2000;275:12941–7.

    CAS  Google Scholar 

  11. Aubert N, Falluel-Morel A, Vaudry D, Xifro X, Rodriguez-Alvarez J, Fisch C, et al. PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: involvement of c-Fos in PACAP-induced Bcl-2 expression. J. Neurochem. 2006;99:1237–50.

    CAS  Google Scholar 

  12. Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol. 2010;42:1252–5.

    CAS  Google Scholar 

  13. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114:1285–94.

    CAS  Google Scholar 

  14. Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH. CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol. 2000;32:1805–19.

    CAS  Google Scholar 

  15. Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ. 1996;7:469–80.

    CAS  Google Scholar 

  16. Han X, Yang F, Cao H, Liang Z. Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J. 2015;29:3054–64.

    CAS  Google Scholar 

  17. Zhao J, Zhang W, Lin M, Wu W, Jiang P, Tou E, et al. MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arterioscler Thromb Vasc Biol. 2016;36:2088–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang R, Xu YJ, Liu XS, Zeng DX, Xiang M. CCN2 promotes cigarette smoke-induced proliferation of rat pulmonary artery smooth muscle cells through upregulating cyclin D1 expression. J Cell Biochem. 2012;113:349–59.

    CAS  Google Scholar 

  19. Wang R, Xu YJ, Liu XS, Zeng DX, Xiang M. Knockdown of connective tissue growth factor by plasmid-based short hairpin RNA prevented pulmonary vascular remodeling in cigarette smoke-exposed rats. Arch Biochem Biophys. 2011;508:93–100.

    CAS  Google Scholar 

  20. Wang R, Zhou SJ, Zeng DX, Xu R, Fei LM, Zhu QQ, et al. Plasmid-based short hairpin RNA against connective tissue growth factor attenuated monocrotaline-induced pulmonary vascular remodeling in rats. Gene Ther. 2014;21:931–7.

    CAS  Google Scholar 

  21. Zhou SJ, Li M, Zeng DX, Zhu ZM, Hu XW, Li YH, et al. Expression variations of connective tissue growth factor in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease. Sci Rep. 2015;5:8564.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang R, Ding X, Zhou S, Li M, Sun L, Xu X, et al. Microrna-26b attenuates monocrotaline-induced pulmonary vascular remodeling via targeting connective tissue growth factor (CTGF) and cyclin D1 (CCND1). Oncotarget. 2016;7:72746–57.

    PubMed  PubMed Central  Google Scholar 

  23. Zhou S, Sun L, Cao C, Wu P, Li M, Sun G, et al. Hypoxia-induced microRNA-26b inhibition contributes to hypoxic pulmonary hypertension via CTGF. J Cell Biochem. 2018;119:1942–52.

    CAS  Google Scholar 

  24. Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem. 1994;269:12940–6.

    CAS  Google Scholar 

  25. Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation. 2010;121:2045–66.

    PubMed  PubMed Central  Google Scholar 

  26. Johansen AK, Dean A, Morecroft I, Hood K, Nilsen M, Loughlin L, et al. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1. Pulm Circ. 2016;6:82–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Beishline K, Azizkhan-Clifford J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015;282:224–58.

    CAS  Google Scholar 

  28. Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010;190:867–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ge Y, Chen J. MicroRNAs in skeletal myogenesis. Cell Cycle. 2011;10:441–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    CAS  Google Scholar 

  31. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007;26:219–25.

    CAS  Google Scholar 

  33. Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci USA. 2005;102:1082–7.

    CAS  Google Scholar 

  34. Fu YS, Shi ZY, Wang GY, Li WJ, Zhang JL, Jia L. Expression and regulation of miR-1, -133a, -206a, and MRFs by thyroid hormone during larval development in Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol. 2012;161:226–32.

    CAS  Google Scholar 

  35. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    CAS  Google Scholar 

  36. Zhang X, Azhar G, Helms SA, Wei JY. Regulation of cardiac microRNAs by serum response factor. J Biomed Sci. 2011;18:15.

    PubMed  PubMed Central  Google Scholar 

  37. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev. 1999;20:189–206.

    CAS  Google Scholar 

  38. Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name? Mol Genet Metab. 2000;71:276–92.

    CAS  Google Scholar 

  39. Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999;248:44–57.

    CAS  Google Scholar 

  40. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol. 2001;54:57–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT, et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 2009;69:3482–91.

    CAS  Google Scholar 

  42. Umar S, Cunningham CM, Itoh Y, Moazeni S, Vaillancourt M, Sarji S, et al. The Y chromosome plays a protective role in experimental hypoxic pulmonary hypertension. Am J Respir Crit Care Med. 2018;197:952–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang R, Li M, Zhou S, Zeng D, Xu X, Xu R, et al. Effect of a single nucleotide polymorphism in miR-146a on COX-2 protein expression and lung function in smokers with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:463–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou S, Li M, Zeng D, Sun G, Zhou J, Wang R. Effects of basic fibroblast growth factor and cyclin D1 on cigarette smoke-induced pulmonary vascular remodeling in rats. Experimental and therapeutic medicine. 2015;9:33–8.

    CAS  Google Scholar 

  45. Wang R, Zhou S, Wu P, Li M, Ding X, Sun L, et al. Identifying Involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin. Mol Ther Nucleic Acids. 2018;13:44–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou S, Li M, Zeng D, Xu X, Fei L, Zhu Q, et al. A single nucleotide polymorphism in 3’ untranslated region of epithelial growth factor receptor confers risk for pulmonary hypertension in chronic obstructive pulmonary disease. Cell Physiol Biochem. 2015;36:166–78.

    Google Scholar 

  47. Ding X, Zhou S, Li M, Cao C, Wu P, Sun L, et al. Upregulation of SRF is associated with hypoxic pulmonary hypertension by promoting viability of smooth muscle cells via increasing expression of Bcl-2. J Cell Biochem. 2017;118:2731–8.

    CAS  Google Scholar 

  48. Zhou S, Liu Y, Li M, Wu P, Sun G, Fei G, et al. Combined effects of PVT1 and MiR-146a single nucleotide polymorphism on the lung function of smokers with chronic obstructive pulmonary disease. Int J Biol Sci. 2018;14:1153–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Zhou JS, Xu XC, Li ZY, Chen HP, Ying SM, et al. Endoplasmic reticulum chaperone GRP78 mediates cigarette smoke-induced necroptosis and injury in bronchial epithelium. Int J Chron Obstruct Pulmon Dis. 2018;13:571–81.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the fund from the Natural Science Foundation of China (No. 81300041, 81970051), the fund for Excellent top talent cultivation project of Anhui Higher Education Institutions (gxyqZD2017030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gengyun Sun or Ran Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Zhu, K., Du, Y. et al. Estrogen administration reduces the risk of pulmonary arterial hypertension by modulating the miR-133a signaling pathways in rats. Gene Ther 27, 113–126 (2020). https://doi.org/10.1038/s41434-019-0103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0103-6

This article is cited by

Search

Quick links