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Hyperoxia causes miR-34a-mediated injury via
angiopoietin-1 in neonatal lungs
Mansoor Syed1,2,8, Pragnya Das2, Aishwarya Pawar2, Zubair H. Aghai3, Anu Kaskinen4, Zhen W. Zhuang5,

Namasivayam Ambalavanan 6, Gloria Pryhuber7, Sture Andersson4 & Vineet Bhandari 1,2

Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of

bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or

therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are

significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition

of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial

hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a

overexpression. Administration of angiopoietin-1, which is one of the downstream targets of

miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three

independent cohorts of human samples, we show that miR-34a expression is increased in

type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our

data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent

or ameliorate HALI/BPD in neonates.
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Hyperoxia is a well-known antecedent of injury to devel-
oping lungs and is a major contributor to the pathogen-
esis of bronchopulmonary dysplasia (BPD) in human

preterm neonates1–3. BPD is the most common chronic lung
disease in infants and the long-term consequences extend well
into adulthood, with increasing evidence that it can lead to
chronic obstructive pulmonary disease (COPD)4,5. There is cur-
rently no specific preventive or therapeutic agent available to
alleviate BPD6.

MicroRNAs (miRs) are single stranded and evolutionarily
conserved sequences of short non-coding RNAs (~21–25
nucleotides)7 and act as endogenous repressors of gene expres-
sion by mRNA degradation and translational repression. They
have been shown to have important roles in cell differentiation,
development, proliferation, signaling, inflammation, and cell
death7–9. They have been considered promising candidates for
novel targeted therapeutic approaches to lung diseases7. Given the
role of hyperoxia in development of BPD, a few studies have
evaluated expression profiles of miRs in various animal models
and human infants8,10–14.

Angiopoietin-1 (Ang1) is a ligand for receptor tyrosine kinase
Tie215 expressed on endothelial and epithelial cells16,17. Ang1-
Tie2 signaling has been shown to be mainly involved in angio-
genic activity and promoting maturation of blood vessels, regu-
lated by Akt and MAPK signaling18–20.

The pulmonary phenotype of BPD is characterized by impaired
alveolarization and dysregulated vascularization21. Given the
potential role of miRs in the pathogenesis of BPD, in this study,
we reveal that lung miR-34a levels are significantly increased in
neonatal mice lungs exposed to hyperoxia. Deletion/inhibition of
miR-34a globally and locally in type 2 alveolar epithelial cells
(T2AECs) limits cell death and inflammation with injury and

improves the pulmonary and pulmonary arterial hypertension
(PAH) phenotypes in BPD mouse models. Conversely, over-
expression of miR-34a in room air (RA) worsened the BPD
pulmonary and PAH phenotypes, while the addition of miR-34a
in the miR-34a deletion mice model exposed to hyperoxia led to
reiteration of the BPD pulmonary phenotype. We also show that
administration of recombinant Ang1, one of the downstream
targets of miR-34a, ameliorates the BPD pulmonary and PAH
phenotypes. Finally, using three independent cohorts of human
samples, we show the significant association of increased miR-34a
and localization to T2AECs in neonates with respiratory distress
syndrome (RDS) and BPD. Collectively, our findings support
miR-34a as a novel therapeutic target in regulating hyperoxia-
induced acute lung injury (HALI) and BPD.

Results
Hyperoxia upregulates miR-34a in T2AECs in developing
lungs. miRs have been recently implicated in the regulation of
hyperoxia-induced injury and cell death in developing
lungs10,11,22. Hence, to address the role of miR in hyperoxia-
induced lung injury in neonates, we exposed newborn (NB) wild-
type (WT) mice to 100% O2 from postnatal day (PN)1–4, and ran
a comparative miR array analysis for RA vs. hyperoxia-exposed
PN4 mouse lungs (Supplementary Fig. 1A). miR-34a was detected
in lungs from WT mice breathing RA and increased markedly
after exposure to 100% O2 (Supplementary Fig. 1A). Next, we
studied the kinetics of miR-34a expression in hyperoxia-exposed
lungs at PN2, PN4, PN7, and PN14 (using lung samples from the
mouse model of BPD). miR-34a expression was significantly
increased with hyperoxia exposure and reached their maximum
levels at PN7 (almost 10-fold); even the BPD model showed a
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Fig. 1 Expression of miR-34a in hyperoxia exposed NB lungs and type 2 cells. a Representative graphs showing miR-34 expression in WT NB mice exposed
to hyperoxia for 2, 4, and 7 days after birth and in the BPD model. b Primary miR-34a expression is shown in hyperoxia exposed and BPD murine lung
tissue as compared to controls. c Freshly isolated type 2 epithelial cells were used for measuring miR-34a expression in room air (RA) and after 4 h and
16 h HYP (95% O2). d, e MLE12 cells were exposed to different concentrations of oxygen (21, 40, 60, and 95%) for 24 h and 48 h, respectively. NB:
newborn; RA: room air; HYP: hyperoxia. A minimum of four animals were used in each group. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, compared
with controls; 1-way ANOVA
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significant increase in miR-34a expression as compared to RA
control (Fig. 1a; Supplementary Fig. 1B). We next addressed the
question whether hyperoxia could increase transcription of miR-
34a. Canonically, miRNA genes are transcribed by RNA poly-
merases into long primary miRNA transcripts (pri-miRNAs). Pri-
miRNAs are next cleaved into 60−70 nucleotide-long precursor
miRNAs (pre-miRNAs) by the nuclear microprocessor enzymes
complex. Pre-miRNAs are next transported to the cytoplasm and

processed to mature form of miRNA23,24. In response to hyper-
oxia, pri-miR-34a was rapidly induced, with the highest expres-
sion reaching 15-fold at PN2, after which it began to decline
(Fig. 1b), most likely due to the processing of pri-miR-34a into
the pre-forms and mature forms. In an effort to localize the
specific lung compartment, we checked miR-34a expression in
freshly isolated neonatal lung T2AECs, endothelial and macro-
phage cells. As shown in Fig. 1c, in T2AECs, hyperoxia (95% O2)
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Fig. 2 Hyperoxia downregulates Ang1-Tie2 signaling in developing lungs. NB WT mice were exposed to hyperoxia from PN day 1−4. a Western blots
showing decreased expression of Phospho-Tie2, Tie2 and Ang1. b Densitometric analysis was completed and the expression of detected proteins was
normalized to β-actin. c, d MLE12 cells were incubated with or without the presence of hyperoxia (95% O2) for 24 h. Western blot analysis showed
downregulation of Tie2 and Ang1, quantified in D. e, f Western blot showing decreased Tie2 and Ang1 expression in MLE12 cells, which were exposed to
different concentrations of oxygen (21, 40, 60, and 95%) for 48 h, quantified in F. g, h Freshly isolated type 2 epithelial cells were incubated in absence and
presence of HYP (95% O2) for 4 h and western blot performed for Ang1 and Tie2 expression, quantified in H (n= 1). WT: Wild-type; NB: newborn; PN:
postnatal; Ang1: Angiopoietin 1; RA: room air; HYP: hyperoxia. Values are means + SEM of a minimum of four observations (in vitro experiments, unless
otherwise stated) or four animals (in vivo experiments) in each group. *P<0.05, **P<0.01, ***P<0.01, compared with controls, 1-way ANOVA
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gradually induced the expression of mature miR-34a at 4 h. We
did not find any significant changes in miR-34a expression in
hyperoxia-exposed lung endothelial cells or macrophages (Sup-
plementary Fig. 1C, D). To utilize an in vitro model, we used
MLE12 cells, and noted that the expression of miR-34a was
highest with 95% O2 exposure at 24 h (Fig. 1d) and with 60% O2

exposure at 48 h (Fig. 1e). Since several publications have shown
that miR-34a expression is regulated by Trp5325,26, we evaluated
and noted that Trp53 was acetylated upon hyperoxia exposure to
MLE12 cells (Supplementary Fig. 2A). Next, we transfected
Trp53 siRNA in MLE12 cells and neonatal PN4 lungs, but only
noted a modest (non-significant) decrease in miR-34a expression
(Supplementary Fig. 2B, C). We also evaluated miR34a expression
in p53 null mutant and Trp53 siRNA treated mice in room air
and our BPD model at PN14. These data are shown in Supple-
mentary Fig. 2D, E, where miR34a expression is significantly
increased in RA and BPD, compared to WT controls, in p53
absence/inhibition.

Thus, taken together, our data suggest that miR-34a expression
is increased upon hyperoxia exposure in developing lungs, and
this appears to be localized to T2AECs, of the three lung cell types
investigated, as noted above. In addition, miR-34a expression is
also regulated by Trp53 in both our in vitro and in vivo
hyperoxia-exposed/BPD models.

miR-34a downregulates Ang1-Tie2 signaling in developing
lungs. To identify the molecular targets of miR-34a, we examined
the predicted miR-34a targets using bioinformatics tools, focusing
our attention on the regulators of lung inflammation and injury.
Using three available prediction algorithms (Targetscan, miR-
ANDA, and Pictar), we then produced a comprehensive list of all
possible miR-34a targets. We honed onto Ang1 and its receptor,
Tie2 (Tek) as potential targets of miR-34a, as they have conserved
miR-34a seed sequence in its 3′ UTR (Supplementary Fig. 3A).
Ang1 and Tie2 signaling have been consistently demonstrated to
be critical players in lung and vascular development27–29 and
several studies have shown Ang1/Tie2 localization to T2AECs17.
We co-localized Ang1 to T2AECs in neonatal lungs (Supple-
mentary Fig. 3B). These data led us to hypothesize that Ang1/Tie2
may be functional downstream targets of miR-34a in the

inflammatory/apoptotic response to hyperoxia in lung epithelial
cells.

The expression levels of Ang1 and Tie2 were first evaluated in
hyperoxia-exposed lungs and epithelial cells. As shown in Fig. 2a,
b, Ang1 expression was reduced by roughly 70–80% in PN4
hyperoxia-exposed lungs as compared to RA controls. Addition-
ally, levels of Tie2 protein and its phosphorylation were decreased
significantly (Fig. 2a, b). Additional downstream targets of miR-
34a (Notch2, Sirt1, c-kit, p-ckit, and SCF) were also decreased
upon hyperoxia exposure in PN4 neonatal lungs (Supplementary
Fig. 3C−E).

We also observed the same effects on Ang1 and Tie2
proteins expression in MLE12 and neonatal mouse primary
(freshly isolated) lung T2AECs (Fig. 2c–e). Hyperoxia caused a
decrease in Ang1 and Tie2 proteins after 24 h (Fig. 2c, d) and
a concentration dependent decrease at 48 h in MLE12 cells
(Fig. 2e, f). As in the neonatal lungs, the expression of miR-34a
downstream targets were also decreased in MLE12 cells
(Supplementary Fig. 3F, G). Interestingly, Trp53 siRNA increased
the expression of miR-34a downstream targets Ang1 and Tie2 in
MLE12 cells (Supplementary Fig. 3H). In contrast, hyperoxia-
exposure to neonatal T2AECs led to decreased Ang1/Tie2 protein
levels (Fig. 2g, h) as well as other downstream targets of miR-34a,
Sirt1, and Notch2 (Supplementary Fig. 3I).

Next we transfected MLE12 cells with different concentrations
of miR-34a mimic and noted that at 50 nm concentration the
expression of Ang1 and Tie2 proteins were markedly decreased
(Fig. 3a), as well as other downstream targets of miR-34a
(Supplementary Fig. 3J). While this observation that miR-34a
modulated Ang1/Tie2 signaling in lung epithelial cells suggested
an association, it was important to assess whether miR-34a can
directly target Ang1/Tie2 according to the in silico target-
prediction analysis. To answer this question, we co-transfected
miR-34a mimic/inhibitor with Ang1/Tie2 3′ UTRs in MLE12
cells. Overexpression of miR-34a inhibited the activity of a
luciferase reporter construct containing Ang1 and Tie2 3′ UTRs
(Fig. 3b, c). Similarly miR-34a inhibitor transfection increased 3′
UTR activity of Ang1 only (Fig. 3D). Furthermore, miR-34a
inhibitor increased the expression of the downstream targets of
miR-34a (Supplementary Fig. 3K).
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Fig. 3 miR-34a specifically controls Ang1-Tie2 expression in lung epithelial cells. a MLE12 cells were transfected with different concentrations of miR-34a
mimic in RA and western blots for Ang1 and Tie2 expression were performed. b The wild-type Ang1 3′ UTR reporter vector was co-transfected into the
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miR-34a increases apoptosis in lung epithelial cells. We next
evaluated the role of miR-34a in the regulation of hyperoxia-
induced cell death in MLE12 cells. We transfected these cells with
miR-34a inhibitor, miR-34a mimic and scrambled controls and
exposed to 48 h hyperoxia. Cells cultured in 5% CO2 and RA did
not show significant cell death (Supplementary Fig. 4, Fig. 4a). In
contrast, 95% O2 (with scrambled controls) caused a modest
increase in cell death, mostly in Annexin V positive staining after
48 h in hyperoxia (Supplementary Fig. 4, Fig. 4a). This hyperoxia-
induced cell death response was significantly increased in the
presence of miR-34a mimic (mostly Annexin V+Propidium
iodide positive) and decreased with miR-34a inhibitor (mostly
Annexin V positive) transfection as compared to scrambled
controls (Supplementary Fig. 4, Fig. 4a, b). In addition, miR-34a-
inhibitor treatment increased miR-34a targets Ang1 and Tie2
expression in hyperoxia-exposed MLE12 cells as compared to
scrambled control (Fig. 4c). Furthermore, cleaved caspase3
expression was also decreased in miR-34a-inhibitor treated group
(Fig. 4c, d). Quantification of Tie2 and Ang1 is shown in Fig. 4e, f.

Taken together, these studies show that miR-34a stimulates
epithelial cell death and decreases the expression of target
proteins Ang1/Tie2; conversely, miR34a-inhibition decreases cell
death and enhances the expression of target proteins Ang1/Tie2
upon hyperoxia exposure in vitro.

miR-34a global deletion renders mice resistant to HALI/BPD.
To determine the contribution of miR-34a to HALI, we examined

WT andmiR-34a (−/−) mice exposed to hyperoxia and noted that
miR-34a (−/−) NB mice in hyperoxia had better survival than WT
mice (Fig. 5a). In the HALI model, as compared to NB WT,
hyperoxia exposure to NB miR-34a (−/−) mice lungs at PN7 had
improved lung morphometry, as demonstrated by chord length
measurements (Fig. 5b, c). The same trend was observed in
inflammatory bronchoalveolar lavage fluid (BALF) interleukin
(IL)-1β and IL-6 levels, both of which were increased in WT, but
not as much in miR-34a (−/−) mice, with IL-6 levels being sig-
nificantly decreased, at PN7, upon hyperoxia-exposure (Supple-
mentary Figs. 5A, 5B).

We next determined the inflammatory markers, specifically
neutrophil influx, and myeloperoxidase (MPO) activity in the
BPD model at PN14. Hyperoxia-exposed WT mice had a
maximal increase in neutrophils and MPO activity, which
were significantly decreased in the miR-34a (−/−) mice lungs
(Fig. 5d, e).

In the BPD model, as compared to NB WT, NB miR-34a (−/−)
mice BPD lungs had improved lung morphometry, as demon-
strated by chord length measurements (Fig. 5f, g) which
correlated with TUNEL staining (Fig. 5h). In addition, there
was significantly increased Ang1, Tie2, SCF, and Notch2
expression in the miR34a (−/−) BPD mice lungs (Fig. 5i). In
contrast, we noted decreased expression of Ang2 in miR34a (−/−)
mice lungs upon hyperoxia exposure at PN4 as well as being
significantly decreased in BPD mice lungs at PN14, compared to
respective controls (Fig. 5j, k).
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Collectively, these data demonstrate that miR-34a is a
critical component of the neonatal mouse response to
hyperoxia and regulates inflammation and alveolarization in
HALI and BPD.

Deletion of T2AEC-specific miR-34a reverses the BPD phe-
notype. To address the role of miR-34a being specifically
expressed in T2AECs in mediating alveolarization, we used SPC-
CreER/miR-34afl/fl mouse line to disrupt miR34a specifically in
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T2AECs. Expression of Cre recombinase is activated in T2AECs
by the tamoxifen-inducible system coupled with T2AEC-specific
promoter SpC. To determine whether the increased T2AEC
expression of miR-34a seen in the above studies is causally related
to impairment of lung BPD phenotype, we used mice in which
miR-34a deletion was conditionally induced exclusively in
T2AECs. We crossed miR-34a-floxed mice (miR-34afl/fl) with
SPC-Cre-ER mice. SPC-Cre-ER mice express Cre recombinase in
SP-C positive T2AECs in a tamoxifen-inducible manner. miR-34a
deletion was induced by maternal tamoxifen administration
(2 mg) from PN1−PN5 in the NB pups, via maternal milk.
Tamoxifen-induced Cre recombinase activity markedly decreased
miR-34a expression in PN4 lung (Fig. 6a). We confirmed that
tamoxifen injection alone had effect on lung morphometry
(Supplementary Fig. 5C) in WT, Cre, or miR-34afl/fl mice.

Importantly, we observed improved chord lengths in
T2-miR34a−/− BPD lungs as compared to appropriate controls
(Fig. 6b). Additionally, T2AECs miR-34a deletion decreased
TUNEL-positive cells (Fig. 6c) and lung inflammation as
demonstrated by a decrease in lung neutrophils in the BALF
and a significant decrease in tissue MPO activity in T2-miR34a−/−

lungs (Fig. 6d, e).
Hence, miR-34a deletion in T2AECs is sufficient to protect the

newborn lung to develop the BPD pulmonary phenotype, upon
hyperoxia-exposure.

miR-34 overexpression in RA restores the BPD phenotype. To
address whether miR-34 expression was required and sufficient
for the hyperoxia-induced lung injury and inflammation leading
to the BPD pulmonary phenotype, we next asked whether only
miR-34a overexpression itself was sufficient, in the absence of
hyperoxia i.e., in RA. To test this, we intranasally administered
miR-34a mimic in WT and miR-34a (−/−) mice, and confirmed
the restoration of miR-34a levels (Supplementary Figs. 6A, 6B).
Figures 7a, b show that administration of miR-34a mimic is
sufficient to elicit the BPD phenotype in RA.

Furthermore, restoring miR-34a levels by intranasal adminis-
tration of miR-34a mimic in miR34a (−/−) animals recapitulated
the BPD phenotype induced by hyperoxia (Fig. 7c). Mechan-
istically, we were able to show that miR-34a mimic in RA was
able to decrease the expression of the downstream targets (Ang1,
Tie2, SCF, c-kit, Notch2, and Sirt1) in MLE12 cells as well as
in vivo (Fig. 7d, e).

Taken together, our data show that T2AEC-specific deletion of
miR-34a is sufficient to rescue the BPD phenotype in hyperoxia;
conversely, increased expression miR-34a in RA is sufficient to re-
create the BPD pulmonary phenotype. In addition, provision of
miR-34a to the miR34a (−/−) BPD model re-creates the BPD
pulmonary phenotype. These effects are associated with

differential regulation of downstream targets of miR-34a,
impacting on inflammatory and angiogenic pathways.

miR-34a inhibitor treatment improves hyperoxia-induced
BPD. Given that genetic deletion of miR-34a was associated
with complete protection from hyperoxia-induced changes in
lung morphometry and inflammation, we next sought to block
miR-34a as a therapeutic strategy in NB WT mice exposed to
hyperoxia, using a miR-34a inhibitor via the intranasal route. We
administered 5 µl (20 µM concentration) of miR-34a inhibitor (or
scrambled control) at PN2 and PN4 intranasally, during hyper-
oxia exposure. Lung histology showed that, in comparison to the
scrambled group, intranasal treatment with miRNA-34a inhibitor
in neonatal mice significantly improved the BPD pulmonary
phenotype, specifically in terms of chord length and septal
thickness (Fig. 8a–c). Administration of miR-34a inhibitor in
BPD mice also reduced the TUNEL-positive score (Fig. 8d) and
reduced cleaved-caspase3 expression (Fig. 8e). MiR-34a treatment
was also effective in reducing lung inflammation as evident by
reduced neutrophil infiltration, MPO activity, IL-1β and IL-6 in
BALF (Fig. 8f–i). To examine lung regenerative capacity in PN4
mouse lungs, these were stained with PCNA, which revealed
increased cell proliferation in the lungs treated with miR-34a
inhibitor (Fig. 8j). Finally, in comparison to controls, miR-34a
inhibitor treated mice had significantly increased Ang1 and Tie2
as well as Sirt1 and Bcl2 protein expression in hyperoxia-exposed
lungs (Fig. 8k).

miR-34a inhibition improved PAH in the mouse BPD model.
In addition to impaired alveolarization, dysregulated vascular-
ization is a key component of the pathology of BPD lungs. Hence,
to understand the impact on vascular development, we investi-
gated the effects of neonatal hyperoxia on the vessel density in
these animals by immunostaining the small non-muscularized
vessels with Willebrand Factor (vWF)—a marker for endothelial
cells. As previously reported30, we observed decreased vascular
growth in BPD animals compared to RA mice lungs, which was
improved in miR-34a inhibitor treated animals, confirmed by
quantification (Supplementary Fig. 6C, D). Importantly, as was
the case with alveolarization (Fig. 7a–c), there was decreased
vascular density (equivalent to control and scrambled miR-
treated BPD lungs) in the miR34a-mimic treated miR-34a (−/−)
mice hyperoxia-exposed BPD lungs (Supplementary Fig. 6C, D).

Another critical element of BPD is the associated PAH, as noted
in the mouse model31,32 and human BPD33. miR-34a inhibitor
treated animals demonstrated attenuated right ventricular hyper-
trophy (RVH), as indicated by right ventricle (RV)/left ventricle
(LV) ratio and Fulton’s Index (Supplementary Fig. 6E, F).
Importantly, the PAH indices worsened upon exposure to

Fig. 5 Deletion of miR-34a results in improvement of BPD. a NBWT (n= 8) and miR-34a KO (n= 11) mice were exposed to hyperoxia from PN day 1–15 and
were monitored for survival. Survival data were analyzed using the Kaplan−Meier method and log-rank test. b Representative images of lung histology
(H&E stain) of NB miR-34a KO mice exposed to RA or 100% O2 at PN7. Scale bar: 100 µm. c Bar graph showing the morphometric analysis of lung
histology sections of NB miR-34a KO mice exposed to RA or 100% O2 at PN7. d, e Hyperoxia increased the numbers of neutrophils and BAL
myeloperoxidase (MPO) in neonatal mouse lungs, and the deletion of miR-34a attenuated the hyperoxia-induced increase in neutrophil numbers in the
BPD mouse model. f Representative H&E stained images of alveolar regions from lungs from WT and miR-34a KO mice from RA and BPD groups. g
Morphometric analysis of lung histology sections of NB WT and miR-34a KO expressed as chord length and analyzed using Image J software. h Bar graph
showing the percentage of TUNEL-positive cells indicating the apoptosis quantification in WT and miR-34a KO BPD models. i NBWT and miR-34a KO mice
were exposed to hyperoxia from PN day 1−4. Western blots showing increased expression of Tie2, Ang1, SCF, and Notch2 in miR-34a KO lungs as
compared to WT. j NB WT and miR-34a KO mice were exposed to hyperoxia from PN day 1−4. Western blots and quantification showing decreased
expression of Ang2 in miR-34a KO lungs compared to WT, upon exposure to hyperoxia (n= 2). k Western blots and quantification of the same showing
significantly decreased expression of Ang2 in miR-34a KO lungs as compared to WT, in the BPD model at PN14 (n= 3). BPD: bronchopulmonary dysplasia;
NB: newborn; WT: Wild-type; KO: knockout or null mutant; PN or P: postnatal; BAL: bronchoalveolar lavage. Values are means± SEM of a minimum of four
animals in each group, unless otherwise stated. *P<0.05, **P<0.01, ***P<0.001, 2-way ANOVA, Tukey’s
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miR34a-mimic in the miR34a-mimic treated miR-34a (−/−)
hyperoxia-exposed mice (Supplementary Fig. 6E, F). Similar
protective responses were noted in the miR-34a (−/−) mice
(Supplementary Fig. 6G, H). Using micro-CT, we were able to
confirm that the improved PAH indices were secondary to
improved numbers of large and medium-sized pulmonary vessels
(Supplementary Fig. 6I, J).

Ang1 is protective of the BPD pulmonary and PAH pheno-
types. To firmly establish the mechanistic role of miR-34a, given
the impact on Ang1 expression, we evaluated the effect of Ang1
administration in the regulation of lung epithelial cell survival
pathway and the BPD pulmonary phenotype. In the NB WT
murine model of BPD, administration of recombinant Ang1
resulted in a significant decrease in TUNEL-positive cells at PN14
(Fig. 9a). Concomitantly, we noted a significant improvement in
alveolarization, as evidenced by decreased chord length (Fig. 9b).
In addition, in the PN7 HALI model, Ang1 treatment showed
improved Ki67 staining levels similar to that of the miR-34 (−/−)
mice lungs (Supplementary Fig. 7).

Furthermore, Ang1 treatment was protective of BPD-
associated PAH (Fig. 9c, d). Since Akt and Erk pathways are
important for epithelial cell survival and growth in response to
hyperoxia34 and Ang1/Tie2 signaling activates Akt and Erk by
phosphorylating them, we examined the effect of miR-34a

inhibitor in vitro. Phosphorylation of Akt and Erk was increased
in miR-34a inhibitor transfected cells treated with recombinant
Ang1 (Fig. 9e).

Taken together, our data suggest that miR-34a inhibitor
treatment improves the alveolar and vascular development in
the hyperoxia-exposed BPD mouse model, at least in part, via the
Ang1/Tie signaling pathway.

miR-34a regulates epithelial-mesenchymal transition in BPD.
Investigators have reported a role for miR34a in TGF-β1 and
drug-induced epithelial-mesenchymal transition (EMT) in
alveolar type II cells35. We evaluated 2 EMT markers (N-cadherin
and E-cadherin) in lung homogenates of WT and miR-34a null
mutant mice upon hyperoxia exposure at PN4 and in the BPD
model at PN14 (Supplemental Fig. 8). We noted that the
mesenchymal marker (N-cadherin) is decreased in the miR-34a
null mutant mice, as compared to WT, in room air, PN4
hyperoxia and BPD lungs at PN14, with no change in the epi-
thelial marker (E-cadherin). Overall, our results would suggest
that there is a potential role for miR-34a regulating EMT in the
BPD model, but further experiments (beyond the scope of this
manuscript) would be required to be definitive.

miR-34a regulation in other models BPD/lung injury. We36,37

and others38 have reported that overexpression of transforming
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Representative bar graph showing tamoxifen deletion of miR-34a in Spc CRE positive miR-34 KO lungs (T2-miR34a−/−). b Representative graph shows
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growth factor (TGF)-β1 in the developing lung mimics the BPD
pulmonary phenotype. To determine whether the effects of miR-
34a are limited to the hyperoxia-induced BPD model or could be
dependent on other injury mediators, we tested the expression of
miR-34a in lungs of our TGF-β1 doxycycline-inducible over-
expressing transgenic mouse model. We noted increased
expression of miR-34a at PN10 in the neonatal mouse lungs as
compared to transgene negative animals (Supplementary
Fig. 9A). Furthermore, we also found miR-34a targets Ang1 and
Sirt1 were decreased in TGF-β1 TG mouse lung samples (Sup-
plementary Fig. 9B). Trp53 (p53) expression was also increased in
TGF-β1 transgenic neonatal mouse lung tissues (Supplemental
Fig. 9B).

We further investigated the role of hypoxia and TGFβ signaling
in a newborn mice model39. We obtained lung tissues and noted
that miR34a expression was decreased with hypoxia and
decreased TGFβ signaling (using inducible dominant-negative
mutation of the TGF-beta type II receptor (DNTGFbetaRII)
mice) or a combination of the two exposures (Supplementary
Fig. 9C). Furthermore, we used antenatal LPS administration
(mimicking chorioamnionitis) with/without additional PN hyper-
oxia exposure in a neonatal rat model, and noted increased
expression of miR34a in the lungs, but only when PN hyperoxia
exposure was present (Supplemental Fig. 9D).

Taken together, our data would suggest that hyperoxia as well
as increased TGFβ signaling is a major contributor to the
increased levels of miR34a.

Human BPD infant lungs have increased miR-34a expression.
To evaluate the human disease relevance of these findings, we
examined whether miR-34a is increased in the TA and/or lungs of
babies with RDS/BPD. The expression of miR-34a was sig-
nificantly higher in TA cell pellets from individuals who went on
to develop BPD and/or died, compared to controls (Fig. 10a).
Similarly, in situ hybridization showed higher expression of miR-
34a in epithelial linings of lungs of neonates with RDS especially
with RDS 3-7 and RDS >7 days of PN age, mostly localized to
T2AECs (Fig. 10b).

For further validation, we used a third independent collection
of human lung samples matched by gestational and/or PN age,40

and conducted an immunoblot analysis. As noted in Fig. 10c–e,
there was a marked decrease in the Ang1 and Tie2 proteins,
comparing term control infants with no lung disease to those with
evolving and established BPD1. Upon densitometry quantifica-
tion, it was obvious that the Ang1/Tie2 proteins were decreased
with increasing severity of disease, with the maximal decrease
noted in those with established BPD (Fig. 10c–e).
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These data would suggest that hyperoxia and/or ventilation-
induced injuries to the developing lung are accompanied by
alterations in the miR-34a-Ang1/Tie2 signaling axis in human
neonates. A proposed schema for the role of miR-34a in the
pathogenesis of BPD is shown in Fig. 10f.

Discussion
The present study reports on three major novel findings. First,
hyperoxia induces miR-34a expression in lung T2AECs of new-
born mice and human infants with the clinically relevant diag-
noses of RDS, evolving and established BPD suggesting
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translational significance. Second, using genetic gain-of-function
and loss-of-function strategies (including deletion of miR-34a
specifically in T2AECs), we comprehensively prove a causal det-
rimental role of increased miR-34a; conversely, inhibition of miR-
34a was protective of the BPD pulmonary and associated PAH
phenotypes. Third, we experimentally validate the mechanistic
angiogenic, inflammatory, cell death and cell proliferation path-
ways of miR-34a, focusing on the role of vascular downstream
targets, Ang1 and Tie2, and show that Ang1 treatment is pro-
tective of the BPD pulmonary and associated PAH phenotypes.

The role of miRNAs in epithelial cells related to inflammatory
and immune responses has been demonstrated by various
groups22,41–43. Recently Narasaraju et al.22 showed decreased
miR-150 expression in alveolar epithelium in neonatal mouse
upon hyperoxia exposure, which might be responsible for epi-
thelial apoptosis. Similarly overexpression of miR-181b resulted
in the induction of an increment in IL-6 levels in bronchial
epithelial cells43. The miR-200 family was significantly upregu-
lated during T2AECs differentiation in fetal lung; miR-200
induction was inversely correlated with expression of known
targets, transcription factors ZEB1/2, and TGF-β2. miR-200
antagonists inhibited thyroid transcription factor (TTF)-1 and
surfactant proteins and upregulated TGF-β2 and ZEB1 expression
in T2AECs44.

Several studies have recently examined the role of specific
miRNAs in the pathogenesis of lung injury. Accumulating studies
have implicated a role of miRNAs in lung diseases such as adult
RDS (ARDS), fibrosis, COPD, and BPD45–48. miR-206 was
reduced in BPD mice compared with controls and in BPD
patients compared with controls. MiR-206 overexpression sig-
nificantly induced cell apoptosis, reduced cell proliferation,
migration, and adhesion abilities, whereas the inhibition of miR-
206 expression had the opposite effect12. Recently, decreased
miR-489 has been reported upon hyperoxia exposure in neonatal
mice and humans with BPD49. The authors suggest that
decreased miR-489 may be inadequate attempts at compensa-
tion49. Another group has reported that miR-17∼92 expression is
significantly lower in human BPD lungs50. While previous studies
have reported the expression of miR-34a in neonatal and adult
lung injury11,51, none, to the best of our knowledge, has com-
prehensively mechanistically defined the role of miR-34a in HALI
and BPD in developing lungs.

We provide evidence of the in vivo relevance of miR-34a in
hyperoxia-induced neonatal human and murine lung injury.
Moreover, we identify the underlying molecular mechanisms by
analyzing specific inflammatory/vascular/survival-associated tar-
gets of miR-34a. Most importantly, we demonstrate the feasibility
and efficacy of in vivo miR-34a inhibition as a protective ther-
apeutic option to ameliorate BPD and associated PAH. Recent
direct evidence suggests that miR-34a is correlated with potential
inflamed states, including the staphylococcal enterotoxin B-
induced acute inflammatory lung injury51, hepatic ischemia/
reperfusion injury52, high-fat diet induced hepatic steatosis53,

cardiac aging, and myocardial infarction54–56 and acute kidney
injury57. Therefore, miR-34a may be an indicator of inflamma-
tion/injury, especially since its role in cell death and cell cycle is
well established58–60. Other studies have indicated that miR-34a
attenuates cell proliferation, invasion and EMT35,61,62. Consistent
with above studies, we also observed that when miR-34a was
augmented in neonatal lung, cell proliferation, and angiogenesis
levels were notably attenuated, and apoptosis was significantly
increased. Furthermore, downregulated miR-34a had the opposite
effect suggesting that miR-34a can significantly affect cellular
biological function.

To identify the downstream mechanism of miR-34a-regulated
protection, we used mRNA databases to identify targets and
revealed many apoptosis/inflammation associated genes. We
focused on Ang1, Tie2, Sirt1, Notch2, and Bcl2, all of which have
established roles in recovery of lung injury and/or apoptosis.
Ang1 and Tie2 are protective as regards DNA-damage and oxi-
dative stress and were among the strongest downregulated targets
in our profiling approach. Sirt1, Notch2, CDKs, and Bcl2 are
predicted targets of miR-34a and these have previously been
described as important factors in lung development and
injury63–66. We have previously reported lower levels of Sirt1 to
be associated with BPD in human neonates67. Notch2 expression
has been reported to be decreased upon hyperoxia exposure to
newborn rats68. Interestingly, reconstitution of rAng1 in miR-34a
overexpressing epithelial cells underlined their critical importance
in miR-34a-mediated effects on cell survival regulation. In vivo,
Ang1/Tie2 was significantly upregulated by miR-34a antagonism,
and this signaling was able to ameliorate the neonatal BPD
phenotype. Ang1 secretion has been shown to be responsible for
restoring epithelial protein permeability through suppression of
NFκB activity in human T2AECs69. Combined VEGF and Ang1
gene transfer has been reported to mature the new vasculature,
reducing the vascular leakage seen in VEGF-induced capillaries70.
Our data thus reveal a critical role of miR-34a and the down-
stream Ang1/Tie2 signaling and the transition between the pro-
inflammatory and anti-inflammatory phenotypes, which is
believed to be important for the molecular regulation of func-
tional shaping of T2AECs apoptosis and proliferation and the
related BPD phenotype. We thus propose Ang1/Tie2 signaling as
the major factor in miR-34a-mediated BPD.

In support, using complementary gain-of-function and loss-of-
function approaches, we demonstrated that miR-34a inhibits
downstream cell survival signaling by directly targeting Ang1/
Tie2 in vitro and in vivo, an effect that inhibits apoptosis, neu-
trophil accumulation, and vascular injury in vivo. Importantly,
lung delivery of miR-34a inhibitor repressed activation of the cell
death pathway and reduced the lung BPD phenotype in
hyperoxia-exposed mice. Moreover, miR-34a overexpression in
room air alone was sufficient to produce the BPD phenotype in
neonatal mice (Fig. 7a, b).

We identified patients with RDS, evolving and established BPD
as having high levels of miR-34a in lung and TA cell pellets

Fig. 8 miR-34a inhibition improves BPD phenotype via increased Ang1-Tie2 signaling. a Representative images of lung histology (H&E stain) of NB WT
mice models of RA or BPD were treated with miR-34a inhibitor (20 µM; PN2 and PN4) intranasal. Scale bar: 100 µm. b, c Morphometric analyses of lung
histology sections of NB WT mice miR-34a inhibitor at PN14. Alveolar size expressed as chord length and septal thickness. d Representative graph shows
TUNEL-positive cells (%) in NB WT mice lungs treated with miR-34a inhibitor or control. e Western blot analysis of cleaved and total Caspase 3 was
performed on MLE12 cells transfected with miR-34a inhibitor or scrambled control. f, g Bar graphs showing BAL neutrophils count and myeloperoxidase
activity in RA and BPD mice treated with miR-34a inhibitor or scrambled control. h, i Bar graphs showing lung IL-1β and IL-6 in RA and BPD mice treated
with miR-34a inhibitor or scrambled control. j Representative immunohistochemistry (IHC) images showing increased staining of PCNA in miR inhibitor
treated PN4 hyperoxia exposed animals. Scale bar: 100 µm. k Western blot shows increased Ang1 and Tie2 in miR-34a inhibitor treated PN4 lung samples.
BPD: bronchopulmonary dysplasia; Ang1: angiopoietin 1; NB: newborn; WT: wild-type; RA: room air; PN: postnatal; IL: interleukin. Values are means + SEM
of a minimum of four observations (in vitro experiments) or four animals (in vivo experiments) in each group. *P<0.05, **P<0.01, ***P<0.01, compared
with controls, 1-way ANOVA
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compared with “No BPD” term control patients. Ang1/Tie2 sig-
naling was decreased in RDS, evolving and established BPD patient
lungs as compared to controls (Fig. 10a–e). These findings coupled
with the improved survival observed in miR-34a “knockout” stu-
dies in neonatal BPD mice (Figs. 5, 6, 8) suggest that therapies
directed at inhibiting miR-34a expression may ameliorate BPD.

Of note, miR-34 family members also have been recognized as
tumor suppressor miRNAs. Given that the miR-34 family has
been implicated in the p53 tumor suppressor network, and that
p53 pathway defects are common features of human cancer25,
miR-34 inhibition therapy is considered a promising therapeutic
approach26. Recent reports demonstrate that inhibition of the
miR-34 family does not promote tumorigenesis, supporting the
potential for therapeutic suppression of this family as a treatment
for BPD56. It is important to emphasize that future therapeutic
approaches using a targeted approach that can restrict inhibition
to the lung T2AECs may have the maximal therapeutic potential.
Such an approach can be done by utilizing surfactant (which is
used routinely in preterm neonates with RDS) as a delivery vehicle
for a miR-34a inhibitor. This will not only rapidly and effectively
deliver the drug to the alveolar compartment, but will also allow
uptake by T2AECs, as surfactant is recycled within the lung.

Another recently described complication of BPD has been
BPD-associated PAH33. We found that our BPD model also led to
PAH, which was associated with decreased vascular development

(Supplementary Fig. 6C−H). Importantly, it should be pointed
out that miR-34a deletion/inhibition enhanced pulmonary vas-
cular development and indices of PAH in hyperoxia-exposed
neonatal mice. These data suggest that the mechanism of PAH in
BPD mice is, to some degree, regulated by the miR-34a/Ang1/
Tie2 axis.

In conclusion, we show that miR-34a contributes to neonatal
murine BPD by influencing T2AECs apoptosis through regula-
tion of anti-apoptotic Ang1/Tie2 signaling. Silencing of miR-34a
ameliorates the apoptotic response in vitro and in vivo, leading to
suppressed epithelial apoptosis; this, in turn, is associated with
restoration of alveolarization, enhanced angiogenesis and
improvement in pulmonary vascular development. Intriguingly,
miR-34a is also increased in RDS, evolving and established BPD
patients, indicating its potential role in human neonatal lung
injury. Pharmacologic miR-34a inhibition has clinical transla-
tional potential as a viable therapeutic option in the treatment of
neonatal patients to prevent/ameliorate BPD.

Methods
Animals. All experimental WT mice of the C57BL/6 strain were purchased from
The Jackson Laboratory (Bar Harbor, ME) and housed in Yale or Drexel animal
care facilities. In addition, miR34a−/− mice71 and conditional miR-34fl/fl72 (JAX
laboratory) and SPC-CreER (gift from Brigid Hogan, PhD, Duke University, USA)
were housed in the Yale and Drexel Universities Animal Care Facilities (New
Haven, CT and Philadelphia, PA, respectively). Mice were allowed free access to
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standard food and water. All animal experiments proceeded in accordance with
NIH policies and were approved by the Institutional Animal Care and Use
Committees (IACUCs) at Yale and Drexel Universities. Both male and female
newborn mice were used for the experiments, at specific postnatal ages, as noted in
the figure legends.

Cell culture. T2AECs purification: T2AECs were freshly isolated from fetal mice
(E19−E20) by the modified method of Wang et al.73. Briefly, mouse lungs were
obtained from timed-pregnant C57B6 mouse (Jax labs, USA). The tissues were
transferred into a 50 ml conical tube containing Dulbecco’s modified Eagle’s
medium (DMEM) on ice and digested by pipetting up and down with collagenase.
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The cell suspension was serially filtered through 100, 30, and 20 μm nylon meshes
using screen cups (Sigma). Clumped non-filtered cells from the 30 and 20 μm
nylon meshes were collected after several washes with DMEM to facilitate the
filtration of non-epithelial cells. Cells were next collected and based on epithelial
cell morphology and immunostaining for SP-C (marker for type II cells), the purity
of the cells was determined to be 90± 5% by microscopic analysis. The newly
isolated T2AECs were further plated (till 50% confluency) on Bioflex multiwell
plates (Flexcell International, Hillsborough, NC, USA) precoated with fibronectin.
Monolayers were maintained in serum-free DMEM for further experimental
analysis.

MLE12 cells were a gift from Patty J. Lee, MD (Yale University, USA), and were
maintained in DMEM supplemented with 2% Fetal Bovine Serum (FBS), 100 U/ml
penicillin, 100 µg/ml streptomycin (GIBCO) at 37 °C in 95% air; 5% CO2.
Hyperoxia conditions were achieved by placing 70–75% confluent MLE12 cells or
freshly isolated T2AECs for specified time points in 95% O2/5% CO2 at 37 °C in a
tightly sealed modular chamber (Stem Cell Technologies, Vancouver, Canada).

Hyperoxia exposure. Exposure to 100% O2 to newborn (NB) mice (along with
their mothers) was performed by placing them in cages in airtight Polypropylene
chamber (medium size), following standard methods74–77. For hyperoxia experi-
ments, all NB mice were exposed to 100% O2 along with their mother for different
time points. Every alternate day, the mother was changed with a lactating dam
between RA and hyperoxia to prevent the mother from hyperoxia-induced death
and to ensure sufficient nutrition for the treated pups during the course of
hyperoxia exposure. We used two experimental lung injury models. In the HALI
(hyperoxia-induced acute lung injury) model, exposure to 100% O2 was initiated
on postnatal day 1 (PN1; saccular stage of lung development) and continued till
PN7 (alveolar stage). For the BPD model, NB mice were exposed to hyperoxia from
PN1 to 4, then allowed to recover in RA for the following 10 days and then killed
on PN14, as previously described28,36,78. Oxygen level was constantly monitored to
be at 100%. The inside of the chamber was kept at atmospheric pressure, and mice
were exposed to a 12 h light-dark cycle. CO2 inhalation was used for euthanasia
prior to removing lungs from the NB mice. In all experiments, NB mice were killed
at selected time points and lungs were harvested for histology, RNA and protein
evaluation. All animal work was approved by Yale and Drexel Universities
IACUCs.

Additional rodent models of BPD. Hypoxia Model: Neonatal mice (C57BL/6
background strain) with an inducible dominant-negative mutation of the TGF-beta
type II receptor (DNTGFbetaRII) and WT mice controls were exposed to hypoxia
(12% O2) or air from birth to 14 days of age following the method of Ambalavanan
et al39. The DNTGFβRII mouse is a dominant-negative mutant as it expresses a
cytoplasmically truncated TGFβRII receptor that competes with endogenous
receptors for heterodimeric complex (TGFβRI and -RII) formation. The
DNTGFβRII has no intrinsic activity as it lacks the cytoplasmic kinase domain, and
the expression can be induced by administering ZnSO4. This was administered (20
μg/g ip) daily to mice pups kept in air (DT-zinc-air group) or hypoxia (DT-zinc-
hypoxia group). Control DNTGFβRII mice were administered saline (vehicle
control) and kept in air (DT-saline-air group) or hypoxia (DT-saline-hypoxia
group). Also, WT mice were administered saline and ZnSO4 (same dose as men-
tioned above) as additional controls. RT-PCR was done to detect DNTGFβRII
receptor mRNA using the primers: 5′-ATCGTCATCGTCTTTGTAGTC-3′ and 5′-
TCCCACCGCACGTTCAGAAG-3′, to confirm induction of DNTGFβRII in the
NB mice pups. No differences were noted in mortality of WT or DNTGFβRII mice
(administered either vehicle or ZnSO4) over the study duration. Standard techni-
ques were utilized for collecting lungs of the mice pups after PN14 and isolating
RNA from them, after completion of the study.

Chorioamnionitis: in a rat model of chorioamnionitis combined with PN
hyperoxia exposure, 1 µg of lipopolysaccharide (LPS) was injected into each

individual amniotic sac of the pregnant dams on E20 so as to induce
chorioamnionitis on E21 and the pups to be normally delivered between E21 and
E22. Briefly, a small incision was made in the abdomen of the pregnant dam on
gestation day 20 following anesthesia, and carefully the pups were pulled out by
lifting the uterine horn. Each individual amniotic sac was injected with 1 µg of LPS
and the pups were placed back into the maternal abdominal cavity, the abdomen
sutured and the mother was rested to deliver normally the following day. After
birth, NB mice were exposed to hyperoxia (100% O2) from PN1-7, and killed
thereafter to obtain lung tissue. All animal work was approved by the University of
Alabama at Birmingham and Thomas Jefferson University, Philadelphia IACUCs.

Human lung tracheal aspirates. Human lung tracheal aspirates (TA) pellets were
obtained from premature infants being mechanically ventilated in the first PN week
with an in-dwelling endotracheal tube. These infants had the final outcomes of
having the diagnoses of with or without BPD and/or death. Collection and pro-
cessing of the human lung samples was approved by the institutional review board
of Yale University and Cooper University Hospital. Selected clinical details have
been shown in Supplementary Table 1.

Real-time reverse transcriptase PCR. For the detection of miRNA expression,
RNA was extracted from lungs, MLE12 cells, human tracheal aspirate (TA) pellets
and primary T2AECs using miRNeasy mini kit (Qiagen, Valencia, CA). RNA
concentration and quality was determined using a Biotek synergy II plate reader
(Biotek, Winooski, VT). Across all samples the mean 260/280 ratio was greater
than 2.0. cDNA was synthesized using a miScript II RT Kit (Qiagen, Valencia, CA).
The StepOnePlus platform (Applied Biosystems) was used for all PCR, done in
triplicate using miScript primer assay (Qiagen). Changes in expression were cal-
culated by the change in threshold (ΔΔCT) method with RNU6 as the endogenous
control for miRNA analysis and ß-actin (ACTB) for primary miRNA for gene-
expression analysis. The miScript primer assay (Qiagen) IDs are mouse
MS00001428 (miR-34a), Human MS00003318 (miR-34a), MS00033740 (RNU6),
Mouse MP00005614 (Pre-miR-34a) and Mouse QT01136772 (ACTB).

Western blot. Western blotting was performed as previously described79. Briefly,
lung lysate and whole-cells extracts were made in RIPA buffer and protein con-
centration determined by Bradford method (BioRad Dye). Proteins were separated
by SDS-PAGE (4–20%) and transferred to PVDF or nitrocellulose (BioRad)
membranes followed by 1 h blocking at room temperature (RT) in either Odyssey
blocking Buffer (Licor, Germany) or 5% milk in TBST (Tris buffer saline with 0.1%
Tween 20) and incubating with primary antibodies at 4 °C, overnight. The fol-
lowing day membranes were washed three times with either TBST or PBST
(Phosphate buffer saline with 0.1% Tween 20), incubated with either HRP-
conjugated or fluorescent conjugated secondary antibody, as and when necessary
for 2 h at RT, washing and subsequently developing using enhanced chemilumi-
nescence reagent (Amersham, Chalfont St Giles, UK) followed by development
with autoradiography or LICOR infrared imaging.

The primary antibodies used were Ang1 (Millipore; AB10516; 1:1000), Ang2
(Millipore; AB10516; 1:1000), N-Cadherin (Millipore; AB10516; 1:1000), b-Catenin
(Cell signalling; AB10516; 1:1000), Notch1 (Cell signaling; 3608; 1:1000), Notch2
(Cell signaling; 5732; 1:800), Acetylated P53 (Cell signaling; 2570; 1:500), P53 (Cell
signaling; 2524; 1:2000), phospho-Tie2 (R&D; AF2720; 1:500), Tie2 (Abcam;
ab24859; 1:1000), Sirt1 (Cell signaling; 2028; 1:800), cyclin D1 (Cell signaling; 2922;
1:800), phospho-c-Kit (Cell signaling; 3391; 1:800), c-Kit (Cell signaling; 3074;
1:1000), Stem cell factor (SCF) (Santa Cruz Biotechnology; SC-9132; 1:1000), Bcl2
(Cell signaling; 3498; 1:1000), CDK4 (Santa Cruz Biotechnology; SC-260; 1:1000),
cleaved-caspase 3 (Cell signaling; 9661; 1:500), Caspase 3 (Cell signaling; 9662;
1:1000), phosphor-erk1/2 (Cell signaling; 9101; 1:1000), Total erk1/2 (Cell
signaling; 9102; 1:1000), p-Akt (473) (Cell signaling; 9271; 1:1000), Akt (Cell
signaling; 9272; 1:1000).

Fig. 10 Lungs of infants with RDS and BPD have increased miR-34a expression. a miR-34a expression in cell pellets obtained from tracheal aspirates of
neonates in the first PN week, who subsequently did or did not develop BPD. b Next, we used ISH to detect miR-34a in human neonatal lungs. As noted in
the representative microphotographs, there was increased violet staining (miR-34a-positive) of the cells in the lungs of RDS and BPD neonates, compared
to controls. c Western blot analysis of Tie2 and Ang1 was performed on total homogenates from human lung samples. d, e Densitometric analysis of Tie2
and Ang1 expression from infants born near term with no lung disease compared to near or post term with mild RDS, evolving BPD and established BPD. f
A proposed schema for the role of miR-34a in the pathogenesis of BPD. Hyperoxia exposure to the developing lung leads to production and release of the
primary (Pri-miR-34a), which is processed into the mature form of miR-34a. Downstream targets of the miR34a signaling pathway include Ang1 and its
receptor Tie2, and the anti-apoptotic protein Bcl2; decreased expression of both are known to increase cell death in hyperoxia-induced lung injury models
and BPD. In addition, hyperoxia decreases cell proliferation via CDK4 and cyclin D1, both targets of miR34a. The class III histone deacetylator, Sirt1 is also a
downstream target of miR-34a, and a decrease in Sirt1 has been associated with enhanced transcription of pro-inflammatory mediators and BPD. The
combined effect of enhanced cell death and decreased cell proliferation would be impaired alveolarization in the lung. In addition, miR34a, by suppressing
the Ang1/Tie2 signaling pathway and enhancing cell death, results in dysregulated vascularization in the lung. Hence, increased miR-34a results in
increased inflammation, impaired alveolarization and dysregulated vascularization in the developing lung—the hallmarks of “new” BPD. RDS: respiratory
distress syndrome; BPD: bronchopulmonary dysplasia; Ang1: angiopoietin 1; Sirt1: Sirtuin 1. *P<0.05, **P<0.01, compared with controls, 1-way ANOVA
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Equality of loading was confirmed by probing for β-actin (Santacruz, Cell
signaling Technology, Danvers, MA) or GAPDH (Cell signaling Technology,
Danvers, MA). The uncropped raw images of western blot using the above
antibodies have been shown in Supplementary Fig. 10.

Luciferase reporter assays. Ang1 and Tie2 3′UTR reporter constructs for mouse
were obtained from Genecopoeia along with control construct (Cmi T000001-
MT01). All these targets were cloned in miRNA Target clone control vector for
pEZX-MT01 (Genecopoeia). For luciferase assays, 5 × 106 MLE12 cells
were transfected with endotoxin-free 5× 3′UTR Ang1 and Tie2 reporter luciferase
plasmid (Genecopeia, Rockville, MD) and Luc-Pair miR Luciferase Assay Kit
(Genecopeia). Cells were allowed to recover for 24 h before being transfected with
these constructs as described above. Reporter gene activity was measured with the
Dual-Luciferase kit (Promega) 24 h after hyperoxia treatment.

Determination of cytokine and myeloperoxidase levels. The levels of IL-6, and
IL-1β in lung homogenates were measured by ELISA (R&D Systems). The lung
myeloperoxidase (MPO) levels were determined using lung tissue homogenates
using a mouse MPO ELISA kit (Catalog #ab155458; Abcam), according to man-
ufacturer’s instructions.

Lung morphometry. Alveolar size was estimated from the mean chord length of
the airspace and septal thickness, as described previously, using ImageJ76,77. Briefly,
hematoxylin-eosin sections (×100 magnification) were analyzed in ImageJ using
the plugins and macros for chord length and septal thickness.

TUNEL assay with T2AECs co-localization. TUNEL assay was performed on
paraffin lung sections (5 μm) using in situ Cell Death Detection Kit, Fluorescein
(Roche) following manufacturer’s instructions. Co-localization for T2AECs marker
SP-C (surfactant protein C; Santacruz; 1:50) was done along with the apoptotic
cells, as described80. Following TUNEL staining, the sections were incubated with
SP-C antibody, overnight at 4 oC, quick washing in 1X PBS and incubated with
fluorescent secondary antibody for 2 h at room temperature (Jackson immunor-
esearch, 1:200), subsequent washing with 1X PBS and mounting with DAPI
(Vector labs, California). Quantification of TUNEL-positive cells co-expressing
SPC was performed in selected images by an observer masked to the identity of the
experimental groups.

PAH-induced right ventricular hypertrophy. Quantitative measurements of
PAH-induced right ventricular hypertrophy (RVH) by RV/left ventricle (LV) and
RV/(LV + interventricular septum or IVS) ratios were done using the methodology
described previously either using ImageJ or Cell Sens Olympus software31. Briefly,
the thickness of right and left ventricle was measured on hematoxylin-eosin sec-
tions (×40 magnification) and the ratio between the two regions of the heart were
calculated.

In situ hybridization for human lung samples. Human lung tissue samples were
obtained postmortem from premature infants having the diagnoses of RDS:
1–2 days (RDS 1–2), RDS 3–7 days (RDS 3–7), RDS >7 days (RDS >7), BPD.
Collection and processing of the human lung samples was approved by the
National Supervisory Authority for Welfare and Health in Finland and the Uni-
versity of Rochester Institutional Review Board. Selected clinical details have been
shown in Supplementary Table 2. Whole lungs from humans were isolated and
immediately fixed with 10% NBF (neutral-buffered formalin). Briefly, lung sections
were subjected to deparaffinization, incubation with 0.5% pepsin solution (20 min
at 37 °C in humidified chamber), dehydration, and hybridization with either 40 nM
Biotin LNA miR-34a probe, at 55 °C for 3 h. Subsequently sections were washed,
blocked and incubated with streptavidin-AP reagent for 20 min and applied with
alkaline phosphatase solution containing nitro-blue tetrazolium and 5-bromo-4-
chloro-3=indolyphosphate (BCIP/NBT) for 1 h. Finally sections were dehydrated,
mounted, and examined under microscope. Counterstaining was omitted for
clarity.

Prediction and identification of miRNA gene targets. To identify potential
targets for differentially expressed miRNAs, we screened their sequences against
the mouse genome database, using the miRNA target identification programs
miRBase, PicTar, and TargetScan.

Flow cytometry. Briefly, after the hyperoxia exposure and treatment, MLE12 cells
were trypsinized and washed with cold PBS. Following this, cells were instantly
stained using FITC Annexin V Apoptosis Detection Kit (BD Pharmingen)
according to the manufacturer’s protocol. Cell density was determined and stained
with Annexin V and PI and analyzed by flow cytometry (Becton Dickinson). A
worklist was created from the assay and the samples were acquired automatically
using the Loader with acquisition criteria of 10,000 events for each tube. The report
generated from the apoptosis assay included the following gates and plots:

1. FSC-A vs. SSC-A with a gate for cells.

2. Annexin V FITC-A vs propidium iodide-A (PI-A) with gates for following
populations: (1) Annexin V–/PI– (2) Annexin V+/PI– (3) Annexin V+/PI+ (4)
Annexin V–/PI+.

A summary of assay results with statistics for untreated and treated samples was
automatically calculated.

Statistical analyses. Values are expressed as mean± SEM. Groups were compared
with the Student’s two-tailed unpaired t-test or 1-way ANOVA (followed by
Tukey’s Multiple Comparison post hoc test) or 2-way ANOVA as appropriate
(followed by Bonferroni’s Multiple Comparison post hoc test), using GraphPad
Prism 7.0 (GraphPad Software, Inc., San Diego, CA). A value of p <0.05 was
considered statistically significant.

Data availability. All relevant data are available from the authors upon reasonable
request.
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