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Drought and climate change impacts on cooling
water shortages and electricity prices in Great
Britain
Edward A. Byers 1✉, Gemma Coxon 2,3, Jim Freer2,3 & Jim W. Hall 4

The risks of cooling water shortages to thermo-electric power plants are increasingly studied

as an important climate risk to the energy sector. Whilst electricity transmission networks

reduce the risks during disruptions, more costly plants must provide alternative supplies.

Here, we investigate the electricity price impacts of cooling water shortages on Britain’s

power supplies using a probabilistic spatial risk model of regional climate, hydrological

droughts and cooling water shortages, coupled with an economic model of electricity supply,

demand and prices. We find that on extreme days (p99), almost 50% (7GWe) of freshwater

thermal capacity is unavailable. Annualized cumulative costs on electricity prices range from

£29–66m.yr-1 GBP2018, whilst in 20% of cases from £66-95m.yr-1. With climate change, the

median annualized impact exceeds £100m.yr-1. The single year impacts of a 1-in-25 year

event exceed >£200m, indicating the additional investments justifiable to mitigate the 1st-

order economic risks of cooling water shortage during droughts.
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Reliable and affordable electricity systems play a funda-
mental part of modern economies. Comprising a diversity
of power sources, transmission and distribution networks

linked by advanced communications, the balancing of supply and
demand is brokered by market-clearing systems designed to
provide both short- and long-run incentives to suppliers to meet
demand cost-effectively1. Plant level and system failures can cause
major and costly disruptions for energy users. Recent work sug-
gests that economic losses from business disruption from flooding
are 300% higher when power outages are included2.

Even when no physical damages on the grid occur, disruptions
can entail changes in shortfall risk3 and substantial economic
impacts that directly affect suppliers and consumers of energy if
the replacement supply is more expensive, which commonly it is
in liberalized electricity markets4. In such disruption cases, sup-
pliers bid to fulfil grid demand at the lowest cost (the system
marginal price). Price increase thus occurs when more costly
supply fills its place on the merit order. Natural hazards and
meteorological events that cover large geographical areas, such as
droughts, storms and floods, can simultaneously affect multiple
supply units and network infrastructure and hence large pro-
portions of the supply mix5. Resulting welfare losses are thus a
joint function of the geographical extent and severity of the
hazard, and the position of impacted units within the merit order.
For example, droughts in Brazil during 2001–2002 and
2013–2016, and in California during 2011–17, substantially
impacted the availability of cheaper hydro-electric capacity,
resulting in higher usage of more expensive thermal power
plants6. Additional costs in electricity prices have been estimated
to be in the order of US$41 million7 (£45 million GBP2018), US
$19.1 billion7 (£15.8 billion GBP2018) and US$2 billion8 (£1.7
billion GBP2018), respectively. After the 2001–2002 drought in
Brazil, which had huge levels of rationing and indirect economic
impacts, the substantial build-out of thermal plants in response
then significantly increased electricity prices during the
2013–2016 drought.

In many countries, the current and future electricity sector is
and will be highly dependent on reliable water resources that are
necessary for reliable operation of hydro-electric and pumped
storage power plants and used for cooling most steam-cycle
thermo-electric plants, whether powered by coal, oil, gas, bio-
mass, nuclear or even concentrated solar power9,10. One study of
Great Britain found that with an approximate halving of reliable
thermal capacity on freshwater under climate change, results in
an additional £18–19 billion in system costs over 40 years due to
more costly cooling, location options, more fuel use and different
capacity decisions11. Concerns about climate change have moti-
vated several high-impact studies focusing on the impact of
reduced cooling water availability and increased cooling
water temperatures on power plant reliability and energy pro-
duction12–16. One notable study at the European scale estimated
electricity price impacts from drought under climate change on
hydro and thermal plant, finding negative impacts in southern
and southeastern European countries, but producer benefits in
northern hydro producing countries, which can sell electricity at
higher prices to compensate for power plant outages in the
south17.

However, very few studies have applied probabilistic methods
and risk assessment approaches18,19 to assess the impacts of low
flows across large spatial domains on associated power plant
outages3,20–22, and the subsequent economic consequences for
energy markets and consumers. A probabilistic approach better
explores the uncertainties in future climate and hydrological
model projections and can properly characterize the spatial and
temporal heterogeneity of natural hazards such as droughts.
Systemic approaches, to understand how impacts at the plant

level play out more broadly on the grid, can help increase
understanding of system resilience in a changing climate23.

Simultaneously, particularly in liberalized energy markets,
impacts on power plants do not necessarily result in impacts on
electricity prices as this depends on demand and which plants are
contracted to generate. Thus, commonly used economic
input–output and computable general equilibrium methods that
lack spatial detail can be inadequate for assessment of spatially
heterogenous meteorological hazards2. In addition, because
electricity supply–price curves tend to be non-linear, studies that
do not fully explore the ranges of uncertainties, for example, by
only presenting median effects or single models (e.g. one climate
or one hydrological simulation), may underestimate the risks. For
example, median drought events may present a tolerable level of
risks to decision-makers, but low-probability events revealed by
exploring climatic extremes may have intolerably high impacts
that would prompt different adaptation decisions24.

To robustly quantify the economic impacts of drought to the
electricity sector, our modelling framework combines the use of
national-scale, risk-based water resources planning approaches18,19

with a model of power plant availability and wholesale electricity
market supply prices (Fig. 1). We use a large ensemble of climate
and hydrological model parameterizations to simulate the impacts
of low flows and cooling water shortages across the current fleet of
thermal, water-dependent power plants in Great Britain. Con-
sistent simulated meteorology is used to estimate daily electricity
demand and price. Taking into account power plant production
constraints due to environmental flow requirements, we calculate
the potential impacts that unavailable capacity has on wholesale
electricity prices and quantify the impact of price adjustments
upon producer surplus. We calculate the no impact case where
supply cost varies solely due to variation in the level of demand and
power plant availability is subsequently 100%. From this, we cal-
culate the welfare impacts that result from power plant unavail-
ability for a baseline climate scenario (representative of the
historical climate 1975–2004) and two future scenarios under cli-
mate change, referred to as near future (NF) and far future (FF).

In the baseline scenario, median capacity unavailability at
individual plants ranges 3.4–4.2%, whilst under the climate
change medians increase to 5.5–6.9% for NF and 5.8–11.2% for
FF scenarios. On extreme days (p99), the cumulative freshwater
capacity unavailable is 40% under BS, and 46 and 52% under the
NF and FF climate change scenarios, respectively. Annualized
cumulative costs on electricity prices range from £29 to £66
million per year, whilst with climate change, the median
annualized impact exceeds £100 million per year. The single year
impacts of a 1-in-25-year event exceed >£200 million.

Results
Impacts on plant-level availability. Aggregated over the baseline
period, individual power plant unavailability due to low river
flows (Fig. 2a) varies between 1 and 8%. Boxplots show the spread
across 100 W@H2 climate samples, with the difference across the
medians between 3.4 and 4.2%. Here, we characterise low flows as
days where the river discharge is below the historical Q90. These
values are expected, based on the way that the gradual reductions
during environmental hands off flows (restricted withdrawals) are
structured (Supplementary Table 1). Whilst curtailment starts at
Q91 (ninth flow exceedance percentile) with plants subsequently
experiencing some level of impacts on average 10% of the time,
actual capacity availability is higher since only a proportion of
capacity is actually curtailed, depending on the severity of the low
flow. However, during very low flow events that are spatially
widespread across the country, i.e. during a drought, the cumu-
lative capacity impacted can accumulate rapidly (Fig. 3b).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16012-2

2 NATURE COMMUNICATIONS |         (2020) 11:2239 | https://doi.org/10.1038/s41467-020-16012-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Under climate change more significant differences between the
impacts at different plants are apparent (Fig. 2c, f). Depending on
the power plant, median unavailability ranges between 5.5 and
6.9% for NF and 5.8 and 11.2% for FF, with Willington C and
Ironbridge plants in the upper Trent catchment, most severely
impacted. But it is important to remember that depending on
the demand of a particular day, plants that are not contracted
to supply would not have subsequent impacts on the
electricity price.

Climate impacts on cumulative capacity availability. First we
consider the cumulative simultaneous unavailability, as even
minor disruptions for prolonged periods of time and over several
plants can result in a steady build-up of additional costs that do
not necessarily make headlines. For example (Fig. 3a), in the
baseline climate, negligible impacts (1% capacity) are experienced
24% of the time (18–31% depending on the climate sample p5–
p95), whilst 10% of the time 10% (5–17%) of the freshwater
thermal capacity is unavailable. However on extreme days (99th
percentile, annualized frequency of ~3 days per year), ~40%
(32–47%) of the capacity would be impacted with the potential to
cause price effects (Table 1).

Under NF and FF climate scenarios, cooling water shortages
are expected to impact more capacity, more frequently. Impacts
are negligible for 33% (NF) and 43% (FF) of the time (compared
with 24% in the baseline), whilst 10% of the time, 20% (NF) and
29% (FF) of capacity would be unavailable due to cooling water
shortages (compared with 10% in the baseline). On extreme days,

46% (NF) and 52% (FF) of capacity would be unavailable
(compared with 40% in BS).

This change in extreme day severity can be seen in Fig. 3b with
the overlapping cumulative distribution functions, whereby the
median impacts for the NF and FF (dashed lines) overlap the top
of the curve in the BS scenario, i.e. there are 11 and 22% chances
that impacts equivalent to the median NF and FF scenarios,
respectively, could occur during the BS climate. Whilst this may
not be surprising to those familiar with unprecedented natural
variability25, it underscores the importance of correctly inter-
preting the risks that exist even in the current baseline climate.
Bringing these two aspects together, the changing distribution
and growing severity of impacts, cumulatively and on extreme
days, can be visualized in Fig. 3d using kernel density estimation.

System-level electricity price and economic impacts. In esti-
mating actual impacts on the electricity market, not all capacity is
contracted, depending on the daily demand. Thus, costs are
accounted by only considering the power plants that would be
contracted to supply electricity, not the full capacity unavailability
as presented in the previous figures and Table 1.

Results for the baseline climate runs indicate that for the
majority of the climate model samples (0–80th ranked), annual-
ized cumulative costs of cooling water shortages to power plants
are in the region of £29–66 million per year (Fig. 4a–c). However,
in ~20% of cases, annualized costs over the climate model
samples could be substantially higher, in the range of £66–95
million per year, annualized over the 30-year period.
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Fig. 1 Coupled hydroclimate and electricity supply–demand model framework for calculating welfare impacts of cooling water shortage for the
electricity sector. Large ensemble of regional climate simulations from Weather@Home are used to simulate daily electricity demand and force the
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Fig. 2 Power plant unavailability (%) due to low flows at the power plant level under the three climate scenarios. Boxplots show the distribution
ofclimate uncertainty, which is in the order of ±3%. For the majority of power plants and compared to the Baseline scenario (a, d), unavailability doubles in
the near future scenario (b, e) and almost triples in the far future scenario (c, f). Most severe impacts occur in the upstream tributaries and smaller rivers.
Boxplot notch is the median, the bar is the inter-quartile range (IQR), whiskers extend to 5th and 95th percentiles, dots are outside this range.
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Comparing the climate change scenarios, steadily growing
impacts across the distribution are observed, with the medians of
the NF (~£93 million per year) and FF (~£129 million per year)
scenarios approximately equivalent to the upper extremes of the
baseline (~£95 million per year) and NF (~£145 million per year)
scenarios. The worst case scenario in baseline (~£95 million per
year) is approximately equivalent to the best case in FF (~£88
million per year), for example.

On a monthly basis these impacts can generally be expected to
be higher in the late summer and autumnal months, from August
through November (Fig. 4d–f). Approximately every other year is
impacted in these autumn months in the baseline scenario, with
the medians close to 0. In the future scenarios, medians are well

into the tens of millions of pounds per month, with 3 in every 4
years experiencing impacts (Fig. 5d).

What the results for cumulative annualized costs obscure is
much noisier year-to-year variability in impacts. So whilst the
costs spread over each 30-year period may be in the range of
£29–95 million per year, costs during the extreme years may be
much higher, with 1-in-25-year events exceeding £200 million,
and the most extreme events (1-in-500, 1-in-1000) exceeding
£300 million (£400 million under climate change) (Fig. 5e).

In the baseline scenario, ~2-in-every-3-year experience low
flow impacts (Fig. 5a). Although there are only minor changes in
the severity of the worst years (year rank= 1), gradual drying
across the timeseries of the wettest years, means that cumulative
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Table 1 Levels of power plant unavailability in terms of annual generation and capacity during extreme Q99 flows.

TWh per year Cumulative unavailability 99th percentile extreme day unavailability

Baseline Near future Far future MW Baseline Near future Far future

p5 3.0 5.2 8.9 p5 5599 6752 7875
p50 4.7 7.7 11.4 p50 6999 7998 9070
p95 6.5 11.2 14.1 p95 8160 9871 10,396

These data summarise the distributions found in Fig. 3.
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impacts occur and accumulate almost every year. Whilst there are
slight increases in the severity of the worst years (rank= 1), much
more significant are the changes in the middle and benign end of
distribution. In the climate change scenarios even the wettest
years (far left, rank= 25) result in impacts. Average years in the
middle of the distribution are significantly worse, such that the
area under the curves representing the cumulative impact more
than doubles.

Similarly, more frequent droughts with low return periods are
markedly worse in future climate compared with the baseline (~
+60% for 1-in-5-year event), whilst for higher return periods the
impacts between different climates appear to be more similar.

Note that different dynamics of energy demand and the
availability of non-thermal renewables (wind, solar, hydro,
hereafter, renewables) have a role in the daily and monthly
impacts. Low flows may be more severe in summer and coincides
with lower than average renewables production, however this is
buffeted by lower electricity demands. In these cases impacts are
sensitive to the lower structure (cheaper plants) of the supply
curve. In November, curtailments may be less severe and
renewables production higher, but demand is also higher, thus
impacts are sensitive to the upper structure of the supply curve.

Sensitivities to renewables and fuel prices. The level of non-
thermal renewables production within a month and the fuel
prices are two key exogenous factors in determining the
supply–price impacts of low flows. For the baseline climate, we
evaluated the changes in production costs under scenarios of low
and high renewables production and low and high fuel prices.

When renewables production during a given month is higher
than average, less thermal capacity operates and subsequently the
strike price is lower. However, in such cases (Fig. 6a), unavail-
ability of thermal plants significantly pushes up the strike price

due to their position and gradient of the supply curve—whilst
actual strike price may be lower, the change in strike price and
aggregated impact is comparatively large. Subsequently, addi-
tional impacts accumulate more rapidly compared with when
renewables is production low.

However, it is important to note that these costs are offset by
comparatively lower system-wide costs (Fig. 6b). Subsequently,
the difference between months of low (p10) and high (p90)
renewables production (Fig. 6b) indicate that the net benefit of
high renewables production, during a month, could offset the
price impacts of low flows on thermal power plants. Such low or
high renewables production scenarios are unlikely to be sustained
for consecutive months or throughout a year, so these results
should not be compared over longer time periods (e.g. as in
Fig. 7c).

However, fuel prices do have the potential to augment or
dampen the economic impacts over the long term. For the
baseline scenario, it was found that ±25% change in all fuel prices,
i.e. coal, gas, biomass and oil, resulted in, respectively, +30% and
−36% change in the median annualized impact (Fig. 6c). These
are similar to findings for the US that found that natural gas price
volatility to be as significant as the impacts of drought26.

Whilst the economic impacts must be assessed at the system
level, some analysis is possible to determine which power plants
contribute most to increased prices, done by assessing the
correlation between individual power plant availability and
increased system costs. By using the mean annual electricity
demand to remove this component of variability, we find 13
plants with combined capacity of 6509MWe with correlation
coefficients in the range of −0.21 to −0.27 (large plants including
Rugeley, Didcot, Ironbridge). That is to say that increased system
prices are weakly and inversely correlated with capacity
availability at these individual locations.
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Discussion
Despite progressive policies to decarbonize the electricity system
in Great Britain, even the current stock of thermal plants
dependent on freshwater leaves the system moderately vulnerable
to low flows. All plants are expected to be negatively impacted
with power plant unavailability factor doubling to tripling for the
majority of plants. Even severe droughts are not expected to bring
the risk of blackout to Great Britain, but nonetheless curtailments
in production of thermal plants can and is shown to bring
additional costs to the electricity market. Quantified here for the
first time for Great Britain, the impacts on electricity prices are
found to be in the order of £60 million per year annualized cost in
the baseline scenario. However, this is found to be most sensitive
to the level of renewables production in the month affected by
low flows. For example, an unseasonably sunny and windy Sep-
tember with high renewables production during a drought could
result in anywhere between £40 and £140 million in additional
costs for that month alone, compared with the same case with no
drought. Months with low renewables would also be more
expensive, but the impacts of drought less influential on cost. This
finding comes in line with a recent study showing increased

variability in costs and emissions intensity for Europe in scenarios
of high variable renewables penetration27.

Currently, the gradual decommissioning of thermal power
plants in Great Britain, particularly coal plants, is expected to
reduce the risks of drought. However, despite recent headlines of
coal-free days, Great Britain remains reliant on water-dependent
thermal power and it remains to be seen whether the system
could operate coal- or thermal-free in autumn months, when the
most severe low flow impacts are expected and when demands
begin to rise. To focus this assessment more squarely on the low
flows risk, the generation capacity and demand has been static in
the sense that no long-term changes, for example, due to
decommissioning, new plants, population growth or technologi-
cal change, are simulated. Future work may try to incorporate
these with different scenarios of energy policy and societal
change, noting in particular the difficulties in knowing where
future power plants, and of what type, will be located.

In the coming decades, with either retrofit or development of
plants with carbon capture and storage (CCS), as has long been
expected, the risks can expected to increase. Two aspects of
potential CCS development are worth noting. Firstly, wet-cooled
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CCS plants are in the order of 50–75% more water-intensive than
conventional plants, thus higher water demands possibly harder
to satisfy under drought conditions. CCS plants are also expected
to be developed in CCS clusters, thus spatially concentrating these
water demands and leaving them vulnerable to localized
drought20. Secondly, CCS plants would likely aim to operate as
baseload generation, so cost impacts may occur more frequently.

With CCS development, the expected impacts of climate
change should also be accounted for. The results indicate more
than doubling of the annualised cumulative capacity unavailable
in the FF scenario (4.7–11.4 TWh per year), and 30% additional
capacity unavailable during extreme 99th percentile days
(6999–9070MWe). Whilst the price impacts over short timescales
tends to fall within the variability of other fluctuating price effects,
such as demand and renewables supply, the impacts of drought
over prolonged periods are always negative and accumulate
quietly. The differences in plant availability across producers
(Fig. 2) reveals for the first time the spatial heterogeneity of

drought risk for the power sector, with implications both at the
local level for individual producers but also at the systems level
for a wider range of actors. We see that whilst a few plants are
minimally impacted under climate change, approximately two
thirds could expect a doubling to tripling of capacity unavail-
ability in the future.

Finally, this analysis indicates that substantial uncertainty
arising from the natural variability of the climate and the
hydrological cycles should be taken into account when assessing
the risks of drought on the electricity sector—an aspect that, with
few exceptions (e.g. refs. 3,20), has been perpetually ignored in this
field. The findings of this study indicate greater uncertainties in
the risk of cumulative impact (e.g. annual curtailments), as
opposed to the risk associated with extreme drought events, the
severity of which appears to plateau (e.g. 1-in-1000 years from the
return period analysis (Fig. 5e)). Other indirect costs exist that
have not been accounted, for example missed opportunity costs
for both producers during low flows or other water users unable
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to use power sector water allocations when power plants are able
but not required to generate.

There are two aspects which further studies could add mean-
ingful contributions although would require particularly detailed
analysis beyond the efforts of this paper. Firstly, characterising
the impacts of the historical hydroclimatic record in the context
of the baseline simulations would be useful although with no
publicly available records of drought-related power plant cur-
tailments it remains a challenge. The second aspect would be
improved characterisation of other water users and electricity
producers, noting however that this does complicate analysis of
specifically the drought-related impacts on the power sector. For
example, better simulation of the growing proportion of variable
renewables production, the impacts (positive and negative) on
prices, and overall welfare loss.

This contribution provides the essential baseline understanding
of meteorological drought risk on thermal capacity in Great
Britain, with significant advances in the way that hydroclimate
variability, uncertainty and impacts on welfare loss are under-
stood—from the plant-level operations to grid-level electricity
prices and societal welfare loss. Further work can build on these
estimates to determine relative co-benefits and tradeoffs of
behaviour and adaptation options both within the electricity
sector and the wider water sector. These may be both technical
adaptations at the unit level, or regulatory instruments to opti-
mise water allocation within catchments, for example allocation
trading between users and reservoir operation, though we do not
expect these to have a significant effect on flows for the power
plants considered. Without enhanced representation of these
linkages both between the two critical sectors and across scales
from plant-level operations to grid-level impacts, communication
of climate risks to the energy sector and identification of bene-
ficial and proportionate adaptation measures will be inadequate.

Methods
Climate and hydrology. To assess the risk of low flows, large sets of climate
timeseries were generated using the Weather@Home climate simulation system
(W@H)28. W@H comprises an atmospheric global climate model, HadAM3P, and
a regional climate model, HadRM3P, for generating dynamically downscaled
projections, over the region of interest at 0.22° resolution (~25 km). W@H229 was
adapted to produce 100 unique 30-year projections for three time slices: (i) one
historical baseline (1975–2004); and two forced by the RCP 8.5 emission scenario
(ii) NF (2020–2049) and (iii) FF (2070–2099). The outputs are mostly available at
daily resolution, for 14 common climate variables including air temperature, bias-
corrected precipitation, evaporation, wind speed, radiation, air pressure, soil
moisture content and heat fluxes.

We used the hydrological model, DECIPHeR30, to simulate river flows from the
W@H climate projections. DECIPHeR is a flexible hydrological modelling
framework that explicitly characterises connectivity and fluxes across the
landscape. It has previously been applied to 1366 gauges across Great Britain and
shown to achieve good model performance in replicating hydrological behaviour
across a range of catchments and flow conditions. DECIPHeR groups together
similar parts of the landscape into hydrological response units (HRUs) to minimise
run times of the model and enable it to run large ensembles of climate simulations
and provide probabilistic flow simulations essential for risk analysis. In this study
HRUs are classified by three classes of slope, accumulated area and the W@H
climate grid to ensure the spatial variability of climatic inputs was represented.
DECIPHeR was set up for 24 flow gauges located closest to the 32 power plants of
interest (Supplementary Fig. 5). To calibrate the model, daily observed data of
precipitation, potential evapotranspiration (PET) and discharge for a 30-year
period from January 1, 1973 to December 31, 2003 were used to run and assess the
model (Supplementary Fig. 1). National gridded 1 km2 estimates of rainfall and
PET from the CEH gridded estimates of areal rainfall (CEH-GEAR; refs. 31,32) and
CHESS-PE33 datasets were aggregated to the W@H grid and used to drive the
model. For each gauge 10,000 parameter sets were sampled in a Monte Carlo
simulation using wide parameter ranges tested in previous studies [13]. Model
performance was evaluated against observed flow at each of the gauges from
January 1, 1974 to December 31, 2003 using log Nash–Sutcliffe efficiency34 and
root mean squared error, finding the former was best to reproduce flows below the
10th percentile flow (Q90), our flow range of interest (Fig. 7). To represent
hydrological model uncertainty, we then used the 100 best performing
parameterisations (1%) to simulate flows for each of the W@H climate timeseries.
This resulted in a total of 720,000 30-year daily flow simulations, consisting of 100
hydrological model parameterizations for each of the 100 30-year W@H
projections for three time slices and 24 gauges.

Power plant availability. We use a set of 32 power plants, all of which are thermo-
electric (coal, combined cycle gas turbines, municipal and industrial waste incin-
eration and biomass), water-dependent plants cooled by either evaporative or
hybrid cooling systems using water from freshwater bodies and ranging in
nameplate capacity between 35 and 2400MWe (refs. 35,36, Supplementary Table 4,
Supplementary Fig. 5). Power plant availability is calculated at each of 33 power
plants on a daily basis, by comparing simulated flows from DECIPHeR at each
gauge with the hands off flow reductions determined by the environmental flow
requirements and sectoral allocations. The EU Water Framework Directive also
regulates water temperatures, although these have minimal impact on water use for
evaporative cooling (as opposed to once through cooling) and thus are not con-
sidered here. Likewise, coastal thermo-electric power plants are also not con-
strained by freshwater availability. The current system plus (CSP) soft hands off
flow regulatory regime for withdrawals from freshwater bodies was simulated, as
proposed by UK Government during the abstraction reform process37–39. CSP
incorporates sectoral allocations and environmental flow requirements, as calcu-
lated in ref. 38, with 10–20% allocated for EFR at Q90 depending on the ecological
sensitivity of the waterbody to abstraction38,40. If the no go below flow discharge is
reached, typically set at 75% of the Q99.9, all abstraction must stop.

From Q90 and up to that point, sectoral (and individual user) allocations are
incrementally reduced (hands off flows), such that at Q99, only 10% of a user’s
normal allocation is available. Since power plants are unlikely to operate at less
than 30% nameplate capacity, in effect a power plant’s availability becomes 0 when
the flow hits Q97 (Supplementary Table 1). Figure 3c of the results illustrates how
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seemingly small plant-level impacts accumulate during more severe drought events
that impact multiple units.

Supply curves. The UK electricity supply market is designed for competition to
promote least-cost for the consumer. This means for each half hour period of every
day, suppliers bid to fulfil the expected, albeit unknown, demand. The cheapest
supply is contracted to fulfil the demand, where the supply curve intersects the
demand curve, so suppliers who have bid too high will not be called upon to
generate. The price of electricity paid to all suppliers is the most expensive suc-
cessful bid, known as the strike price. Note that suppliers bid based on their short-
run marginal cost (SRMC), which is different to the levelized cost of electricity. For
non-thermal renewables and nuclear, SRMC is very low as there are no or very
little operational costs. For fuel-consuming plants, like coal and gas, SRMC is more
dependent on the fuel costs. Nonetheless, it is impossible to obtain the true short-
run marginal supply curve as the data are commercially sensitive.

To simulate the system, we developed a bespoke short-run marginal supply
curve for generation capacity representing 893 power plants, with a cumulative
nameplate capacity of 86,880 MW based on the Digest of UK Energy Statistics36.
We used SRMC (Supplementary Table 5) from the National Grid Electricity
Scenario Illustrator (ELSI) model, which is an integrated power market economic
dispatch model41. SRMC were assigned to each unit based on central operational
cost estimates for 35 technology types42. However, for the simulation in this study,
a plant-by-plant ordered supply curve is necessary for the partial equilibrium
calculation of the strike price. Thus, cost variation was added to each individual
unit depending on the age (see Supplementary Note 1), such that newer (and more
efficient) units would have marginally lower operational costs than older plants.

Wind and solar have the lowest short-run costs (once installed, operation costs
are basically zero) yet their output (capacity factor) is never actually equivalent to
the nameplate capacity due to the variable wind and solar radiation conditions.
Thus, the unadjusted supply curve is adjusted to represent low, medium and high
estimate levels of combined wind and solar generation, in a method similarly used
in ELSI and the UK Government’s Dynamic Dispatch Model43. Using daily
production values from the years 2013 to 201644, 10th, 50th and 90th percentile
daily production values for wind and solar were calculated (Supplementary Fig. 6),
for each month, yielding three adjusted supply curves per month, 36 in total
(Supplementary Fig. 7). For the rest of the generation capacity from other sources,
capacity availability is assumed to be 100%, except for when thermal capacity is
impacted by low flows as described above. This enables us to the test the sensitivity
of low to high renewables production scenarios, whilst keeping the meteorological
impacts more strictly focused on the electricity production impacted by low flows.
Other studies investigating the variability of renewables explore this issue more
comprehensively45,46. We also assessed the sensitivity to fuel prices, adjusted ±25%
for coal, gas, biomass and oil (Supplementary Table 5, Supplementary Fig. 8).

Electricity demand model. We estimate a statistical model of daily electricity
demand and strike price, including weather variables as co-variates. There is ample
empirical data for electricity demand and price, so we use a machine-learning
gradient boosting regression trees algorithm47,48 with the Huber loss function49,
chosen for its ability to handle mixed datatypes and robustness to outliers when
compared with squared error loss. The input variables for training the model were
minimum, mean and maximum air temperature, mean wind speed, mean

windchill, month, week number and day type (weekday or weekend). Windchill
was calculated using temperature and wind speed inputs50. For observed climate
variables, we used the UK Met Office MIDAS dataset51 for 2012–2017 inclusive, to
derive a single GB climate timeseries, by population-weighting52 weather station
data from 13 urban-area weather stations corresponding to the 13 most populous
urban areas in Great Britain (Supplementary Table 2). The effect of this is sig-
nificant with adjustment of −3 to +4 °C for the temperature timeseries compared
with the unweighted average (Supplementary Fig. 2). Public holidays were also
removed to improve model fit.

For input daily electricity demand, we re-sampled 5-min electricity production
and demand data from Elexon/Sheffield University and processed by Gridwatch44.
We used the k-folds (k= 10) cross-validation method53 to validate the model
performance against unseen independent data (Supplementary Fig. 3). The model
is trained and tested multiple times on k subsamples of the data, achieving r2

coefficient of 0.81, cross-validation score of 0.87 and percentage bias in overall
electricity demand of −0.08%. Performance of the model was assessed in further
ways to determine suitable representation of key features. These include fit of the
load duration curve (LDC) (Fig. 8), representing seasonal, monthly and weekly
profiles (Fig. 9, Supplementary Fig. 4), in addition to the statistical measures used
in the cross-validation (Supplementary Fig. 3) and the methods. The LDC fits the
observed period well, closely tracking the median LDC for the period (Fig. 8a). In
addition, the climate uncertainty in grey lines all fall within the expanded observed
uncertainty range (pink), which includes not only weather variability but also
considerable socioeconomic factors. Slightly warming temperatures under climate
change, not including socioeconomic changes and responses, we can see a slight
flattening of the LDC with slightly less electricity used in wintertime (Fig. 8b).
Percentage values of deviation are small across the distribution (Supplementary
Table 3,, Supplementary Fig. 4). In timeseries format, the model output regular and
cyclical, representing the key seasonal behaviour, as well as the weekly profile with
lower demands at weekends (Fig. 9c).

To generate daily electricity demand for the simulations, the daily gridded
climate output data from W@H2 was population weighted using data from as
inputs for the model (Supplementary Table 2).

Simulating price impacts. The merit order supply curve is typically determined by
individual producers bidding (committing units) to provide a certain level of power
at a designated time period and for a minimum price. Initial market supply price
(strike price) is calculated at the intersection of demand with the supply curve. All
plants that have bid below this supply price on the curve are now contracted to
supply and will be paid the full strike price per unit of electricity supplied. This
arrangement minimizes costs to the consumer whilst paying all suppliers the same
commodity price.

When capacity is unavailable due to the low flows, the model removes this
capacity from the supply curve on a daily basis. Depending on which plants are
impacted and their position on the merit order, this shifts various parts of the curve
to the left, resulting in a higher strike price to meet the same demand, as more
expensive capacity has filled the gap. The new strike price is now paid to all
suppliers up to that demand. In normal markets, changing prices would result in
slight adjustments to demand, due to price–demand elasticities. However, this is
not the case in the short term for wholesale electricity markets, because consumers
are buffered by the retail market, for which the prices are only adjusted on much
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longer timescales, e.g. every few months or even annually when customers renew
their contracts.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Majority of input data are available open access from the references cited and in the
Supplementary Information. The hydrological output is archived open access at the
University of Bristol data repository, at https://doi.org/10.5523/
bris.1ojfuekso3i422qmp2s8jb02p4. Output results are available open access from the
IIASA Data Repository at https://dare.iiasa.ac.at/55/. All data used to make manuscript
figures are provided in the Source Data file.

Code availability
Code is available from the authors upon reasonable request.
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