
ARTICLE

Single-cell transcriptome profiling of the
vaginal wall in women with severe anterior
vaginal prolapse
Yaqian Li 1,9, Qing-Yang Zhang 2,3,9, Bao-Fa Sun2,4,5,6,9, Yidi Ma7, Ye Zhang7, Min Wang8, Congcong Ma7,

Honghui Shi7, Zhijing Sun7, Juan Chen7, Yun-Gui Yang 2,4,5,6✉ & Lan Zhu 7✉

Anterior vaginal prolapse (AVP) is the most common form of pelvic organ prolapse (POP)

and has deleterious effects on women’s health. Despite recent advances in AVP diagnosis

and treatment, a cell atlas of the vaginal wall in AVP has not been constructed. Here, we

employ single-cell RNA-seq to construct a transcriptomic atlas of 81,026 individual cells in

the vaginal wall from AVP and control samples and identify 11 cell types. We reveal aberrant

gene expression in diverse cell types in AVP. Extracellular matrix (ECM) dysregulation and

immune reactions involvement are identified in both non-immune and immune cell types. In

addition, we find that several transcription factors associated with ECM and immune reg-

ulation are activated in AVP. Furthermore, we reveal dysregulated cell–cell communication

patterns in AVP. Taken together, this work provides a valuable resource for deciphering the

cellular heterogeneity and the molecular mechanisms underlying severe AVP.
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Pelvic organ prolapse (POP) is a major health issue for
women in which pelvic organs, such as the uterus, bladder
and rectum, protrude from the vagina due to weakness of

the supportive tissue, leading to bladder and bowel dysfunction1,2.
Symptomatic POP significantly affects quality of life, causing
discomfort, pain, and embarrassment3. The prevalence of symp-
tomatic POP is 6–9.6% in women aged >20 years and 30–40% in
postmenopausal women3,4. The lifetime risk of undergoing sur-
gery for prolapse is 11−20%5,6. Despite the high incidence of
POP, little is known about its pathophysiological course. There-
fore, investigation of the pathophysiological changes and mole-
cular mechanism in POP is urgently needed.

Anterior vaginal prolapse (AVP) is the most frequently
occurring form of POP. Recently, some studies have reported that
the thickness, mechanical properties and structural composition
of the vaginal wall are altered in women with POP7,8. Weakness
of the vaginal wall is considered to be a possible cause of prolapse.
Histological and biochemical alterations in the vaginal wall have
been widely studied, revealing that the main constituents in
vaginal connective tissues—collagen and elastin fibers—are
altered and that an imbalance in matrix metalloproteinases
(MMPs) and tissue inhibitors of metalloproteinase (TIMPs) leads
to dysregulation of extracellular matrix (ECM) metabolism,
which in turn influences the architectural remodeling of the
vaginal muscularis propria9. However, these findings have been
identified mainly by immunohistochemistry and western blotting
and only partially represent the changes in the vaginal wall in
POP. Some researchers have investigated genome and tran-
scriptome alterations in the prolapsed vaginal wall10–13. Their
findings indicated that changes in the immune response, estrogen
related receptor expression, signaling pathways or other candidate
genes (LAMC1, LOXL-1, and Fibulin-5) potentially mediate the
development of POP14–19, implying explanations for the patho-
genesis of POP at the gene level10,20. Although previous studies
have documented histological alterations and potential critical
genes, this evidence is not strong enough to confirm and decipher
the genetic and molecular mechanisms of POP. Thus, more
comprehensive and in-depth investigations of specific and explicit
molecular mechanisms need to be conducted to provide useful
insights into POP pathogenesis.

The cellular composition of the vaginal wall is complex,
comprising primarily fibroblasts and smooth muscle cells
(SMCs), which play important roles in the extracellular integrity
and mechanical stretching of the anterior vaginal wall21,22.
However, the complete cell type composition and aspects of
cellular heterogeneity leading to vaginal prolapse remain largely
unknown. Vaginal fibroblastic cells derived from prolapsed tis-
sues display altered functional characteristics23,24 in vitro and
alterations in the expression of some genes compared with
fibroblastic cells derived from non-prolapsed sites24–26. In addi-
tion, the muscle fibers appear disrupted and altered, suggesting
that they eventually contribute to the dynamic function of the
vaginal wall27. Although this study demonstrated that these two
cell types in the vaginal wall may play critical roles in the etiology
of prolapse, they focused only on a certain type of vaginal cell and
ignored cellular heterogeneity. Moreover, to understand the
molecular mechanism underlying the prolapse process, it is
important to investigate the cellular composition and cell type-
specific changes in gene expression in normal and prolapsed
vaginal walls. Hence, systematic and in-depth studies on cell type-
specific composition and function need to be carried out to
evaluate the detailed molecular mechanisms underlying severe
POP in order to comprehensively understand the etiology of
prolapse.

The rapid development of single-cell RNA sequencing
(scRNA-seq), which enables specific profiling of cell populations

and gene expression at the single-cell level, allows us to investi-
gate the composition of cells involved in the pathogenesis of AVP
and elucidates cell type-specific molecular alterations at the
single-cell level. Our study provides a comprehensive atlas of
transcriptome data for vaginal cell types in normal and prolapsed
human vaginas. Notably, we reveal alterations in gene expression
at the level of cell type specificity and reveal the roles of vaginal
cells in ECM remodeling and the immune response during pro-
lapse. We demonstrate the changes in both non-immune and
immune cells in the etiology of POP. Thus, our work provides a
comprehensive understanding of the molecular mechanism of
prolapse at the single-cell level and enhances the understanding
of the pathophysiological process of severe AVP, which offers
insights for improving current preventative and therapeutic
strategies of this disorder.

Results
Single-cell transcriptome atlas and cell typing in POP and
control samples. To understand the cellular diversity and
molecular features of the human vaginal wall in POP patients,
we used standard methods to isolate vaginal wall cells from the
prolapsed anterior vaginal wall of 16 AVP patients and
the normal anterior vaginal wall of 5 control individuals under-
going hysterectomy and then performed scRNA-seq using 10×
Chromium Genomics protocols (Fig. 1a). The overall pelvic organ
prolapse quantification (POP-Q) stage of AVP was 3-4 (Fig. 1b
and Table 1 and Supplementary Data 1). Histological and mor-
phological changes were confirmed with haematoxylin and eosin
(H&E) staining and α-SMA immunohistochemical (IHC) stain-
ing, which assessed alterations in smooth muscle (Fig. 1c
and Supplementary Fig. 2a). As expected, the morphology of
each layer in the POP samples was altered compared with
that in the control samples, and the muscularis exhibited atrophy.
The extensive changes in the prolapsed vagina at the tissue
level prompted us to investigate the molecular mechanism
underlying POP.

After an initial quality control step (see “Methods”), we
obtained a total of 81,026 single cells from normal and prolapsed
vaginal walls, in which the expression of a median of 1600 genes
per cell could be detected (Supplementary Fig. 1a). Of these
81,026 single cells, 65,434 cells originated from prolapsed vaginal
walls, and 15,592 cells originated from normal vaginal walls
(Supplementary Fig. 1b). To define cell types, we first processed
the 10× data using Seurat R packages for quality control,
normalization and batch effect correction and then performed
doublet removal with DoubletFinder (see “Methods”). Then, the
principal component analysis was applied for dimensionality
reduction. We further used unsupervised graph clustering to
partition the cells into clusters and visualized the clusters via
uniform manifold approximation and projection (UMAP) (Fig. 1d
and Supplementary Fig. 1b). To determine the cellular identity of
each cluster, we generated cluster-specific marker genes via
differential gene expression analysis (Supplementary Data 2 and
Supplementary Data 3). In most cases, well-known cell type
markers, such as LUM for fibroblasts28, TAGLN for smooth
muscle cells29, and AIF1 for macrophages30,31, were used to
determine the cellular identity of the clusters (Fig. 1e, f and
Supplementary Fig. 1c). In addition to the well-known markers,
we also identified multiple additional markers, for example,
FBLN1 for fibroblasts and MT1A and PLN for smooth muscle
cells (Supplementary Data 3). In total, 11 cell types were
identified in POP and control samples based on the canonical
markers: epithelial cells, fibroblasts, smooth muscle cells,
myoepithelial cells, endothelial cells, lymphatic endothelial cells,
macrophages, T cells, B cells, plasma B cells and mast cells. The

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20358-y

2 NATURE COMMUNICATIONS |           (2021) 12:87 | https://doi.org/10.1038/s41467-020-20358-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


two most abundant cell types were fibroblasts (55.49%) and
smooth muscle cells (17.97%), consistent with the known cellular
composition of connective tissues. Notably, we identified 5
immune cell types, among which macrophages were the third
most abundant cell type. Then, we identified highly expressed
genes in each cell type and performed gene ontology (GO) on
these genes. The results further confirmed the accuracy of the cell

definitions (Supplementary Fig. 1d). To validate the presence of
some representative cell types, we performed immunostaining for
non-immune cells and flow cytometric analysis for immune cells
(Supplementary Fig. 2b, c). Taken together, we revealed the
cellular composition of the vaginal wall and provided a
comprehensive representation of vaginal wall cells for further
studies of prolapse.
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To delineate percentage changes in the cellular composition in
POP, we compared scRNA-seq profiles between control and POP
samples in accordance with a previous method (see “Methods”)32.
The cell types with altered proportions in the prolapsed vaginal
wall are shown in Supplementary Fig. 2d. Globally, the
proportion of epithelial cells was increased in the prolapsed
vaginal wall, indicating that epithelial cells may show hyperplasia
or hyperkeratinization, as previously reported22. Conversely, the
proportion of smooth muscle cells in POP samples was decreased,
partially consistent with histological observations indicating that
prolapse induces atrophy of the muscularis. The proportions of
fibroblasts and macrophages were similar between the POP and
control samples, suggesting that abnormal gene expression in
these cells may be more important than changes in their
proportions in the pathological mechanism of prolapse. Com-
bined with the results obtained by immunostaining and
fluorescence-activated cell sorting (FACS) (Supplementary
Fig. 2e), these data support the idea that epithelial cells and
smooth muscle cells are altered in the prolapsed vagina. Thus, the
cell type-specific mechanism in POP needs to be explored.

Cell type-specific aberrant gene expression in POP samples. To
simultaneously define gene expression changes at the global and
cellular levels, we also performed bulk RNA-seq of POP and
control samples in parallel. In the bulk RNA-seq samples, 1190
upregulated genes and 1355 downregulated genes were detected
in POP samples (Fig. 2a and Supplementary Data 4). To further
investigate the biological function of these genes, functional
enrichment analysis was performed on the upregulated and
downregulated genes (Fig. 2b and Supplementary Data 5). The

results indicated that cornification and epidermal cell differ-
entiation were specifically activated in POP, whereas the genes
downregulated in POP were mainly enriched in cell chemotaxis,
leukocyte migration, and so on. Taken together, these results
indicate that dysregulation of multiple molecular functions may
be related to vaginal wall prolapse in POP.

To explore specific aberrancies in the expression of molecules
in each cell type in the prolapsed vaginal wall, we evaluated
changes in the expression of representative reported POP-related
genes in the cell layer (Fig. 2c). COL9A1, shown to be upregulated
in bulk RNA-seq, was upregulated mainly in fibroblasts, whereas
its expression was unchanged in other cells. Conversely, CXCL1
gene expression was downregulated in most cell types and
upregulated in macrophages and mast cells. These differences
reflect cellular heterogeneity in gene expression changes, further
suggesting that investigating gene expression changes in each cell
type in the prolapsed vaginal wall in POP is important.

Next, to identify gene dysregulation in POP at the level of cell
type specificity, we detected differentially expressed genes (DEGs)
in each cell type between POP and control samples. Several
hundred to thousands of DEGs were detected in each cell type
(Supplementary Fig. 3a and Supplementary Data 6). The number
of upregulated genes was higher than the number of down-
regulated genes in all cell types except for epithelial cells,
lymphatic endothelial cells, B cells, plasma B cells and mast cells
(Supplementary Fig. 3b). Notably, each cell type contained some
cell type-specific upregulated and downregulated genes (Supple-
mentary Fig. 3a). Functional enrichment analysis indicated that
the terms ECM organization and immune reaction were enriched
in DEGs in both non-immune and immune cell types (Fig. 2d, e).

Fig. 1 Diverse cell types in the vaginal wall delineated by Single-cell RNA-seq analysis. a Schematic of tissue dissociation, cell isolation, sequencing, and
downstream bioinformatics analysis. b Representative pictures of patients with anterior vaginal prolapse. c Representative H&E staining of the vaginal wall
in control and POP samples (control, three patients; POP, four patients). d UMAP plots of the major vaginal wall cell populations. Each point depicts a
single cell, colored according to cell types (left). The chart showing the number and percentage of each cell type (right). e Heatmap showing the relative
expression of top 10 genes in each cell type. The canonical markers for each cell type are color-coded and shown on the right. f Violin plots displaying the
expression of canonical markers for each cell type (control, n= 5 patients; POP, n= 16 patients). The horizontal line within each box represents the
median, and the top and bottom of each box indicate the 75th and 25th percentile. Two-sided Wilcoxon rank-sum test was applied to test the significance
of the gene expression with p-value < 0.05. EP epithelial cell, FIB fibroblasts, SMC smooth muscle cells, MEP myoepithelial cells, EC endothelial cells, LEC
lymphatic endothelial cells, MΦ macrophages, TC T cells, BC B cells, PB plasma B cells, MAST mast cells.

Table 1 Statistical analysis of clinical characteristics of participants.

Variable POP group (n= 16) Control group
(n= 5)

p-value

Age, mean ± SD, years 65.25 ± 8.40 59.80 ± 4.44 0.185a

Body mass index, mean ± SD, kg/m2 24.88 ± 2.62 25.49 ± 2.60 0.654a

Gravidity, median (interquartile), per child 3 (2–4.75) 2 (1.5–4) 0.500b

Parity, median (interquartile), per child 2 (1–2) 1 (1–1) 0.040b

Postmenopausald, n (%) 16 (100.0%) 5 (100.0%) –
Time since menopause, mean ± SD, years 15.25 ± 9.38 9.20 ± 6.14 0.195a

Hormone replacement therapy, n (%) 1 (6.3%) 0 (0.0%) 1.000c

Chronic cervicitis or vaginitis history, n (%) 0 (0.0%) 0 (0.0%) –
History of malignancy, n (%) 2 (12.5%) 2 (40.0%) 0.228c

Smoking habit, n (%) 0 (0.0%) 0 (0.0%) –
Hypertension, n (%) 3 (18.8%) 2 (40.0%) 0.553c

Diabetes mellitus, n (%) 2 (12.5%) 0 (0.0%) 1.000c

Immune disorders historye, n (%) 0 (0.0%) 0 (0.0%) –

Descriptive data are given as numbers (%), means ± standard deviations, or medians (interquartile ranges).
aTwo-tailed unpaired Student t-test of the age, body mass index, and time since menopause.
bMann–Whitney Utest (two-sided) was used to compare differences in different groups.
cA two-tailed χ2 test was used to compare differences in categorical variables. Boldface entries indicate p≤ 0.05 (statistically significant). Statistical analysis was performed using the software package
SPSS (Version 25.0, SPSS Inc., Chicago, Illinois, USA).
dPostmenopausal was defined as at least 1 year after the cessation of menses.
eImmune disorders history included a history of asthma and autoimmune diseases such as systemic lupus erythematosus, rheumatic disease, or osteoarthritis, etc.
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The enrichment of the term ECM organization and disassembly
in most cell types suggested that diverse types of vaginal cells are
widely involved in ECM dysregulation. In particular, the terms
collagen catabolic process and collagen fibril organization were
enriched in upregulated genes in smooth muscle cells from POP
samples, while muscle system process was enriched in down-
regulated genes, implying that the phenotypic function of smooth

muscle cells might switch and play a vital role in collagen
metabolism when prolapse occurs, consistent with previous
studies reporting that smooth muscle cells undergo an aberrant
switch from a contractile to a synthetic ECM phenotype and
contribute to the distensibility and fragility of the prolapsed
vaginal wall33. Another notable finding was the enrichment of
immune reaction disorders in DEGs in multiple cell types from
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POP samples. In immune cells from POP samples, the
upregulated genes were enriched in immune response terms
such as leukocyte migration and platelet degranulation. More-
over, the upregulated genes in fibroblasts and smooth muscle cells
from POP samples were enriched in terms such as cytokine
secretion and T cell activation (Fig. 2d, e). These data were
consistent with those in previous reports indicating that immune
cells participate in complicated interplay with non-immune cells
and the ECM upon tissue injury34,35. However, these studies did
not examine the prolapsed vaginal wall or suggest the vital role of
the immune response in the prolapse process. Together, these
results indicate that most cell types participate in ECM
dysregulation and immune reaction disorder in the prolapsed
vaginal wall during the prolapse process.

We then focused on the cell type-specific expression patterns of
known genes related to POP, such as COL1A1 and COL3A1,
related to ECM components36; and MMP1 and MMP2, related to
matrix metalloproteinases36–38 (Supplementary Fig. 4). Notably,
beyond fibrillar collagens, the expression of ECM molecules such
as glycoproteins and proteoglycans have extensive changes
(Fig. 2f). For example, genes encoding ECM molecules (such as
FN1, LUM and DCN) or receptors for cellular uptake of
hyaluronan (HA) and collagen (such as LYVE1 and MRC2) were
extensively upregulated in most cell types in POP samples.
Notably, two types of collagen endocytic receptors (MRC1 and
MRC2), HA degradation genes (e.g., HYAL2, HYAL3) and HA
receptors (e.g., LYVE1), which regulate inflammation by
transducing signals from the ECM, were upregulated in
macrophages. Previous studies have reported that macrophages
and fibroblasts are responsible for the participation of ECM or
collagen modulators in various diseases34,39; therefore, we
speculated that fibroblasts and macrophages may play vital roles
in ECM dysregulation and immune disorder in POP.

Abnormal transcription factor regulation in POP samples. To
assess the expression status of transcription factors (TFs) in the
normal vaginal wall and identify potential transcription factors
modulating the differential expression of genes in POP samples,
single-cell regulatory network inference and clustering (SCENIC)
was performed. Through this approach, we predicted the cell
type-specific transcription factors in the vaginal wall in normal
samples. These transcription factors were active in specific
cell types and regulated cell type-specific functions (Supplemen-
tary Fig. 5a). For example, the transcription factor WT1 was
active in fibroblasts, and genes regulated by WT1 were enriched
in terms related to actin filament behavior (Supplementary
Fig. 5a, b). In addition, TBX2, regulating smooth muscle cell
chemotaxis and fibroblast activation, was active specifically in
smooth muscle cells.

As fibroblasts, smooth muscle cells, and macrophages pre-
sented more aberrant DEGs than other cell types and the most
obvious relationship with ECM dysregulation and immune
disorder, we further detected the abnormally activated transcrip-
tion factors in these three cell types in POP samples (Fig. 3a–c).
HOXD11 was highly expressed in all three cell types in POP

samples, and genes regulated by HOXD11 were mainly enriched
in reproductive structure development and upregulated in POP
samples. These results indicated that HOXD11 might play an
important role in governing the involvement of these three cell
types in ECM organization and the prolapse process. Previous
studies have reported that members of the HOX family, especially
HOXA genes controlling the reproductive system and collagen
metabolism, is required for embryonic development40,41. More-
over, IRF4, IRF8 and members of the FOS/JUN family were highly
expressed in fibroblasts, smooth muscle cells and macrophages,
respectively, in POP samples. IRF4 and IRF8 have immune-
specific regulatory roles, while the FOS/JUN family can enhance
the inflammatory responses of macrophages. Target genes of
these transcription factors were upregulated and enriched in
functions, including regulation of leukocyte cell–cell adhesion,
regulation of immune effector process, and neutrophil-mediated
differentiation. In summary, we identified dysregulation of several
important candidate transcription factors regulating DEGs and
functions in POP.

Determination of aberrant cell–cell communication patterns in
POP samples. To define the intercellular communication net-
works within the vaginal wall, we first investigated the expression
of ligand–receptor pairs in each cell type in control samples
(Supplementary Fig. 6a). Fibroblasts and endothelial cells parti-
cipate in the highest level of cell–cell communication. GO
enrichment analysis indicated that ligands were involved in ECM
organization and regulation of chemotaxis and that receptors
were enriched in leukocyte migration, cell-matrix adhesion, and
cell chemotaxis (Supplementary Fig. 6b, c). Specifically, we ana-
lyzed the interactions of fibroblasts, smooth muscle cells, and
macrophages with other cell types (Supplementary Fig. 6d). The
ligand–receptor pairs between fibroblasts/smooth muscle cells
and non-immune cells were enriched mainly in ECM organiza-
tion, cell-matrix adhesion and other terms.

We then detected altered cell-cell communication in POP
samples compared to control samples. In POP samples, the
interactions of fibroblasts with other cell types were decreased
and those of smooth muscle cells were increased (Fig. 4a),
indicating weaker and stronger interactions, respectively, for
these two cell types in POP. Most of the gained interactions for
fibroblasts and other cell types were enriched in fibrinolysis; in
smooth muscle cells, the gained interactions were enriched in HA
metabolic process (Fig. 4b), consistent with the findings for genes
with upregulated expression (such as FN1, LUM, and LYVE1).
Moreover, interactions of macrophages with fibroblasts and
smooth muscle cells were increased, implying enhanced interplay
among these three cell types (Fig. 4a). The gained interactions
between macrophages and other cell types were enriched in ECM
organization and regulation of wound healing (Fig. 4b), indicat-
ing the involvement of macrophages in ECM regulation and the
immune response in the prolapsed vaginal wall.

In addition, to demonstrate the crosstalk among these three cell
types, we evaluated the expression patterns of ligand–receptor
pairs among these three cell types. Intercellular communication of

Fig. 2 Aberrant Gene Expression Profiles in cell type-specific manners in POP. a Volcano plot showing the differentially expressed genes (DEG) in bulk
RNA-seq data. b Bar plots displaying the gene ontology (GO) enrichment of up- or downregulated genes in POP (Control, n= 5 patients; POP, n= 16
patients). Fisher’s exact tests (two-side) were performed. p-value < 0.05 was defined as statistically significant. c Dot plots showing the relative expression
change of specific genes across different cell types. The size indicates the Log2FC values (POP/control). d and e Heatmap showing the representative gene
ontology enriched in upregulated (d) or downregulated (e) genes in each cell type. The default fgsea algorithm on 1000 permutations with p-value < 0.05
was utilized. f Heatmap showing the relative expression for representative reported POP-related genes and other representative genes in each cell type in
POP samples than that in control samples. EP epithelial cell, FIB fibroblasts, SMC smooth muscle cells, MEP myoepithelial cells, EC endothelial cells, LEC
lymphatic endothelial cells, MΦ macrophages, TC T cells, BC B cells, PB plasma B cells, MAST mast cells.
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Fig. 3 Single-cell network inference reveals candidate differential expression of transcription factors among major cell types. a–c Representative
upregulated TFs in the POP samples, which regulate ECM regulation and immune modulation and so on in fibroblasts (a), smooth muscle cells (b) and
macrophages (c), respectively. The networks consist of several transcriptional factors and their target genes, color-coded by representative GO enrichment
terms. The terms were listed on the right. The red square nodes represent TFs, and the round nodes represent target genes. Heatmaps of TFs and target
genes expression were also shown on the left or the top. Con control, POP pelvic organ prolapse, TF transcription factors.
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smooth muscle cells and macrophages was increased in POP
samples compared with control samples (Fig. 4c). Consistent with
the results of DEG analysis, the gained interactions among these
three cell types included cytokines and their receptors (Fig. 4d).
For example, IL18-CD48 are pro-inflammatory cytokines, and
their interaction was gained in fibroblasts and immune cells in
POP samples. IL1B–IL1R1 interactions involved in inflammatory

activation were also gained in smooth muscle cells and some cell
types. Notably, the differential interactions among these three cell
types were involved in tissue regeneration and matrix organiza-
tion. For instance, TGFB1–TGFBR2 interaction, which partici-
pates in tissue remodeling, was gained in smooth muscle cells and
other cell types. TIMP1–CD63 interaction, which regulates ECM
degradation and remodeling, was gained in macrophages and
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non-immune cells. These data indicate that the interactions
involved in immune regulation are widespread in fibroblasts,
smooth muscle cells and macrophages and that the regulatory
ability of smooth muscle cells and macrophages in tissue
remodeling and matrix organization is enhanced upon prolapse.
Herein, abnormal cell-cell communication patterns were shown
to occur during vaginal wall prolapse, especially in fibroblasts,
smooth muscle cells and macrophages, and the interactions are
mainly related to ECM remodeling and immune modulation.

Identification of cell subtypes and cellular alterations in POP
samples. We next explored the subtypes of some specific cell
types. Fibroblasts are the most abundant cell type in the vaginal
wall, and have historically been suggested to represent a hetero-
geneous population. However, the extent of fibroblast hetero-
geneity in POP is unexplored. In our samples, vaginal fibroblasts
were detected, and 7 distinct subtypes were acquired by sub-
clustering (Fig. 5a and Supplementary Fig. 7a). Most clusters were
found in all samples (Fig. 5b, Supplementary Fig. 7b, Supple-
mentary Data 7 and Supplementary Data 8). Proportionally,
subtypes 1 and 3 were strongly enriched in POP samples, and
subtypes 2, 6, and 7 were enriched in control samples (Supple-
mentary Fig. 7c). We then evaluated the expression patterns of
known genes related to POP, the collagen family, MMPs and
TIMPs in the subtypes and found that the expression patterns of
these genes differed in each subtype (Supplementary Fig. 7d). For
example, COL1A1, COL1A2, COL5A3, COL6A1, COL6A2, and
COL6A3 were specifically highly expressed in subtype 7 but
downregulated in subtype 5 in POP samples. As different col-
lagens have different roles in the ECM, these differences suggest
functional specialization of fibroblast clusters. Meanwhile, we also
investigated the gene expression on transcription factors and
ligand–receptor pairs of each subtypes compared with control
samples. The important transcription factors and ligand–receptor
pairs that were identified in cell clusters exhibited different
expression patterns in each subtype (Fig. 5c). For example, MRC1
and MRC2, DEGs related to collagen endocytosis, were highly
expressed mainly in subtype 7, while transcription factors related
to reproductive structure development (e.g., HOXD11) were
expressed in subtype 1. Ligand–receptor interaction participants
such as HGF and CD44 were present in subtypes 7 and 5,
respectively. Taken together, these results demonstrate that the
contributions of fibroblast subtypes differ and further confirm the
heterogeneity of fibroblasts.

Similarly, we classified smooth muscle cells into four
transcriptionally distinct subtypes (Fig. 5d, e, Supplementary
Fig. 8a–c, Supplementary Data 7 and Supplementary Data 8),
which were present in all samples. Proportionally, subtype 3 was
strongly enriched in POP samples, and subtype 2 was enriched in
control samples (Supplementary Fig. 8d). Moreover, DEGs,
transcription factors and ligand–receptor interaction pairs were
also specifically expressed in some subtypes in POP samples
compared to cell cluster (Fig. 5f).

Further, macrophages could be classified into five transcrip-
tionally distinct subtypes that were present in all samples (Fig. 5g,
h, Supplementary Fig. 9a, b, Supplementary Data 7 and
Supplementary Data 8). Proportionally, subtypes 1 and 5 were
strongly enriched in POP samples, and subtype 4 was enriched in
control samples (Supplementary Fig. 9c). Most DEGs and
transcription factors were highly expressed mainly in subtype 5,
while the interactions of ligand–receptor pairs such as TNFSF12-
TNFRSF12A, participants in another ligand–receptor pair, were
present in subtypes 1, 3, and 5 and subtypes 3 and 4, respectively
(Fig. 5i). Macrophages are conventionally polarized into M1
(inflammatory) and M2 (anti-inflammatory/phagocytic)

phenotypes42, which perform different functions in normal and
pathological processes—especially the M2 phenotype, which is
consistently involved in tissue remodeling and wound healing43.
Notably, M2 macrophages were proportionally increased in POP
samples (Supplementary Fig. 9d). To identify the functions of the
two different phenotypes, we performed GO enrichment analyses
and revealed that phagocytic macrophages were mainly related to
the response to transforming growth factor beta and collagen
fibril organization (Supplementary Fig. 9e).

Finally, to provide fundamental data for future work and
transcriptome profiles for analysis, we performed clustering
analysis for epithelial cells, endothelial cells, and T cells in vaginal
walls and detected five, three and three subtypes, respectively, of
these three cell types (Supplementary Fig. 10a–f). Among
endothelial cells, venule endothelial cells, capillary endothelial
cells and arterial endothelial cells were identified (Supplementary
Fig. 10c, d). Among T cells, central memory T cells, effector
memory CD8+ T cells and cytotoxic CD8+ T cells were found
(Supplementary Fig. 10e, f).

Discussion
The prevalence of symptomatic POP, which interferes with
women’s physical and mental well-being, is 9.6% in women aged
>20 years and 15.7% in women aged >50 years in China and
increases with advancing age3,4. However, its pathophysiology is
not completely clear. Thus, it is highly desirable to explore the
molecular mechanisms pivotal for vaginal wall prolapse in POP.
In this study, we presented the first single-cell survey of various
cell types in the anterior vaginal wall of POP patients and elu-
cidated the cell type composition and cell type-specific gene
expression signatures in the prolapsed vaginal wall, providing
insights into the mechanisms related to vaginal prolapse in POP.
Notably, 11 cell types, including 6 conventional cells in con-
nective tissue and 5 types of immune cells, were identified.
Importantly, we defined the transcriptional signatures and the
DEGs in each cell type and discovered that ECM organization
and immune and inflammation reactions were upregulated in
most cell types, suggesting synergistic effects of vaginal cell types
in POP. Furthermore, we identified alterations in transcription
factors and cell-cell communication in POP. Taken together,
these observations provide insights into POP and identify targets
explaining the pathological processes of POP and developing
related therapeutic strategies.

Here, we obtained anterior vaginal wall samples from both
patients with POP and control individuals and successfully
mapped the first single-cell transcriptome atlas, providing high-
quality data to reveal in-depth POP-related alterations in gene
expression in each cell type and subtype at the single-cell level.
The cell types in POP samples were the same as those in control
samples, while the major alterations were seen in gene expression
in each cell type. Although important biological processes and
putative candidate genes most likely linked with POP develop-
ment, such as ECM remodeling and related genes, have been
revealed via bulk RNA-seq10,12,20, due to cell type heterogeneity,
bulk RNA-seq results might not identify whether these changes
are intrinsic molecular changes or simply reflect changes in the
proportions of cell types. Our study confirmed the gene expres-
sion changes in each cell type and found that some genes were
dysregulated in most cell types; moreover, some cell type-specific
upregulated and downregulated genes were identified. Notably,
ECM or structural organization was upregulated in most cell
types. In addition, immune reaction disorder and immune cell
dysfunction were identified in the prolapsed vaginal wall of POP.
Immune and inflammatory cells can engage in complex interplay
with resident non-immune cells and the ECM of tissue during
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tissue injury35,44. The ECM and the immune system are inter-
twined, which may promote ECM repair and regeneration or
exacerbate these conditions through increased and sustained
inflammation. However, this process has not been reported in the
prolapsed vagina. Our work revealed the insight into ECM dys-
regulation in the prolapsed vagina.

Considering that transcription factors regulate gene expression,
we identified multiple previously unreported transcription factors

related to POP, such as HOXD11, CREB3L1, IRF4, and IRF8.
The transcription factor HOXD11, which targets genes involved
in reproductive structure development, was upregulated in
fibroblasts, smooth muscle cells and macrophages in POP sam-
ples compared with control samples. In addition, we identified
transcription factors related to collagen fibril organization (such
as CREB3L1) that were upregulated in smooth muscle cells in
POP samples. Strikingly, immune response-related transcription
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Fig. 5 Subclustering of major cell types in the vaginal wall reveals cellular heterogeneity. a UMAP plot showing the distribution of seven distinct
fibroblasts subtypes in control and POP samples. b Bar plots showing the percentage of seven fibroblast subtypes in each POP patient (n= 16 patients).
c Relative expression of representative DEGs, TFs and ligand–receptor pairs among seven subtypes in POP samples than that in control samples.
d Subclustering of smooth muscle cells further identified four distinct subtypes. e Bar plots showing the percentage of four smooth muscle cells subtypes in
each POP patient (n= 16 patients). f Relative expression of representative DEGs, TFs and ligand–receptor pairs among four subtypes in POP samples than
that in control samples. g Subclustering of macrophages further identified five distinct subtypes. h Bar plots showing the percentage of five macrophages
subtypes in each POP patient (n= 16 patients). i Relative expression of representative DEGs, TFs and ligand–receptor pairs among five subtypes in POP
samples than that in control samples. P, POP.
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factors were widely upregulated in both fibroblasts and smooth
muscle cells, implying the potential synergistic effect of fibroblasts
and smooth muscle cells on immune reactions when prolapse.

Cell–cell communication is important for various biological
processes. We found that intercellular communication was altered
in POP. Interactions between smooth muscle cells, fibroblasts and
macrophages in POP samples were increased compared with
those in control samples. In addition, interactions regarding
immune regulation and cytokine secretion were gained in fibro-
blasts and smooth muscle cells. Moreover, tissue remodeling-
related interactions such as the TGFB1–TGFBR2 interaction were
gained between smooth muscle cells and some cell types, indi-
cating that these cells participate in ECM and tissue modeling.
The phenotypic switch from smooth muscle cells to myofibro-
blasts could be the underlying cause of structural changes in the
muscularis33.

Overall, this study provides comprehensive single-cell tran-
scriptome atlas for deciphering the gene expression landscapes of
heterogeneous cell types in the anterior vaginal wall of POP and
broadens our understanding of cell identities and cell type-
specific gene alterations in POP. The single-cell transcriptome
atlas from POP and control samples presented here can be a great
resource for POP research. Moreover, we revealed the critical
genes and key transcription factors that might coordinately reg-
ulate POP development. In addition, we discovered that altered
cell-cell communication may result in the disorder of normal
cellular function. Thus, these findings are potentially valuable for
understanding the critical molecular mechanism underlying POP
and improving current preventative and therapeutic strategies for
this disorder.

Methods
Patient samples. All tissue samples used for this study were obtained with
informed consent from all patients and the procedures in this study were reviewed
and approved by the Ethics Committee of Peking Union Medical College Hospital
(JS-1605). Postmenopausal women undergoing hysterectomy surgery for POP and
other benign indications were enrolled. Participants with Pelvic Organ Prolapse
Quantification (POP-Q) stage III or IV in the anterior compartment with or
without other compartments prolapse were included in the study under the
diagnosis of the same experienced expert. Exclusion criteria were prior pelvic
reconstruction surgery, chronic pelvic inflammation, chronic debilitating disease,
autoimmune and connective tissue disorders or cancer. Women undergoing hys-
terectomy for benign gynecological reasons and without prolapse were enrolled as
control groups. All patients were non-smokers with similar parity. Age, parity and
other characteristics of patients were listed in Supplementary Data 1. Full thickness
(1 cm2) vaginal wall tissue biopsies were harvested from the pericervical region of
the anterior vaginal cuff after hysterectomy in the controls, and from the prolapsed
vaginal wall in the POP samples.

Tissue dissociation and preparation of single-cell suspensions. Fresh isolated
tissues were immediately placed in ice-cold DMEM (Wisent, 319-005-CL) with 1%
fetal bovine serum (FBS, Wisent, 086-150) and then transported on ice to preserve
viability. Vaginal wall tissues were washed 2-3 times with PBS and dissected on ice
to smaller pieces, then transferred to 10 mL digestion medium containing 1 mg/mL
Collagenase Type I (Gibco, 17100-017), 2 mg/mL Dispase II (Sigma-Aldrich,
D4693), 0.5 mg/mL Elastase (Solarbio, E8210) and 1 unit/mL DNase I (NEB,
M0303S) in PBS with 1% FBS. The tissue was enzymatically digested at 37 °C with
a shaking speed of 70 r.p.m for about 60 min. The dissociated cells were collected at
interval of 20 min to increase the cell yield and viability. Cell suspensions were
filtered using a 40-μm nylon cell strainer (Corning, 352340) and dissolved by the
RBC lysis buffer (Invitrogen, 00-4333-57) with 1 unit/mL DNase I to remove red
blood cells. Dissociated cells were washed with PBS containing 0.04% Bovine
Serum Albumin (BSA; Sigma-Aldrich, B2064) and centrifuged at 500 × g for 5 min
to obtain the cell pellet. The cell viability was determined by Trypan blue (Invi-
trogen, T10282) staining and then cells were suspended in PBS with 0.04% BSA at a
density of about 1 × 106 cells/mL and kept on ice for single-cell sequencing.

10× Single-cell library construction and sequencing. Single-cell suspensions
were converted to barcoded scRNA-seq libraries according to standard protocols of
the Chromium single-cell 3’ kit in order to capture 5000 to 10,000 cells/chip
position (V2 chemistry). All the remaining procedures including the library con-
struction were performed according to the standard manufacturer’s protocol. The

libraries were applied to pair-end sequencing with read lengths of 150nt on Illu-
mina HiSeq Xten platform.

scRNA-seq data processing and determination of the major cell types.
Droplet-based sequencing data were mapped to the GRCh37 human reference
genome through Cell Ranger Single-Cell Software Suite (version 2.1.0, 10x
Genomics) to generate digital gene expression matrices. The data from all
samples were read into the Seurat R package (version 3.1.2.9010)45 for the
further processing. Firstly, data filtering was conducted by retaining cells
expressed 500 and 3500 genes inclusive, and had mitochondrial content less
than 10 percent. Each library was scaled by library size and log-transformed
(using a size factor of 10,000 molecules per cell). The top 2000 highly variable
Genes (HVGs) were identified through the function “FindVariableGenes.” In
order to exclude multiple captures, which is a major concern in microdroplet-
based experiments, DoubletFinder (version 2.0.2)46 was employed to remove
top N cells with the highest pANN score for each library separately, where N
represents the doublet rates in HiSeqXten platform. Then all the datasets
were integrated using the “FindIntegrationAnchors” and “IntegrateData”
function in Seurat. Merged data were scaled to unit variance and zero mean. The
dimensionality of data was reduced by principal component analysis (PCA)47. A
K-nearest-neighbor graph was constructed based on the euclidean distance in
PCA space using the “FindNeighbors” function and Louvain algorithm was
applied to iteratively group cells together by “FindClusters” function with
optimal resolution on the optimal principal components. Visualization was
achieved by the UMAP48. Finally, specific markers in each cluster were iden-
tified by the “FindAllMarkers” function and clusters were assigned to known
cell types using the canonic markers. In addition, we filtered two clusters for
their tiny cell number. Subclustering for major cell types was performed in the
same way.

Differential gene expression analysis. Since droplet-based sequencing technique
only could capture a portion of the transcripts in any cell, which causes many
transcripts to be undetected and induces an excess of zero read counts, further-
more, it can also make the difference of gene expression even within cells of the
same type, all these problems leading to power issues in differential expression
(DE) analysis for single-cell RNA sequencing (scRNA-seq), especially the lowly
expressed genes. To address this issue, we implied the method that summed the
raw UMI counts from matrices for each gene in each cluster over groups of twenty
cells and treated these “pseudobulks” as technical replicates for further differential
gene expression analysis49. Differentially expressed genes between different groups
were determined by R package edgeR (version 3.18.1)50 with |Log2-fold change | >
0.5 and p-value < 0.05 as thresholds. Gene ontology enrichment analysis was per-
formed by clusterProfiler R package (version 3.13.0)51. Gene set enrichment ana-
lysis was carried out by fgsea R package (v1.8.0) with biological procession gene
sets (c5.bp.v6.2.symbols.gmt); The default fgsea algorithm on 1000 permutations
with p-value < 0.05 was utilized52.

SCENIC analysis. The SCENIC analysis was performed as described in previous
study53. Briefly, the expression matrix of raw UMI counts from each group (each
cluster or each sample) were used as input into the command-line interface
functions of pySCENIC (version 0.9.15)53. After default data filtering, GRNboost2
(arboreto 0.1.5) method54 was utilized to generate gene regulatory networks. The
cisTarget Human motif database v9 of regulatory features 10 kb centered on the
TSS were used to identify the enriched motifs via “ctx” function, and individual
cells were scored for motifs using the “aucell” function.

Cell–cell communication analysis. In order to explore cell-cell communication
networks via ligand–receptor interactions, we employed the similar analysis pro-
posed by Vento-Tormo et al.55. In our analysis, we initially filter out all
ligand–receptor pairs expressed in less than 10% of cells in each cell type popu-
lation based on a public repository of ligands, receptors and interactions database
CellPhoneDB. To identify the significant cell–cell interaction, we performed per-
mutation tests between two cell types mediated by a specific ligand–receptor pair
based on the mean gene expression of ligand from one cell type and the corre-
sponding receptor from another cell type, and p-value < 0.01 was considered sta-
tistically significant. This procedure was performed between all pairs of cell types.
Finally, the number of the significant ligand–receptor pairs represent the weights of
the edges between each pair of cell types.

Differential proportion analysis. Differential proportion analysis was performed
based on the ratio change across different conditions. First, we got the proportion
of each cell type or subtype by dividing the numbers of cells by the total number of
cells in different groups. Then, the Log2-fold change was calculated between control
and POP samples and |Log2-fold change | > 0.5 was considered as threshold for
significant change.

Bulk RNA-seq library preparation and sequencing. After quality control and
quantification of the RNA obtained from control and POP vaginal wall tissues,
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sequencing libraries were generated using KAPA Stranded mRNA-Seq Kit for
Illumina® Platforms according to the manufacturer’s recommendations. The
indexed libraries were sequenced on an Illumina Hiseq 2500 platform and 100 bp/
150 bp paired-end reads were generated.

Bulk-seq analysis. The quality of raw paired-end sequencing reads was checked by
FastQC (version 0.11.5). Genomic alignment was performed using HISAT2 (version
2.0.5)56 aligner to human reference genome (GRCm37/hg19; Ensembl version 72).
FeatureCounts (version 1.6.0)57 was employed to calculate the read counts of per gene.
Differentially expressed genes between samples were identified by edgeR R package
(version 3.18.1)50 with |Log2-fold change | >0.5 and p-value < 0.05 as thresholds.

Histology analysis. Vaginal wall tissues were harvested for histology analyses
according to the following standard procedures. Briefly, tissues were fixed in
formalin and dehydrated, then embedded in paraffin and cut into sections with
a thickness of 5 μm. Hematoxylin and eosin (H&E) stain were performed with
standard protocols to examine the tissue morphology change. Immunohis-
tochemistry and immunofluorescence staining were performed to characterize
main cell types. Paraffin-embedded tissue sections were deparaffinized and
rehydrated in graduated alcohol, then treated in 0.1 M sodium citrate buffer and
heated for 30 min for antigen retrieval. After cooling down, the endogenous
peroxidase activity was blocked by 3% (vol/vol) H2O2, and then the slides were
incubated with primary antibodies respectively. Parallel controls were run
with PBS. After incubation overnight, the sections were washed with PBS and
then subjected to the secondary antibodies. For immunohistochemistry stain-
ing, the sections were incubated by HRP-linked secondary antibodies and
visualized with diaminobenzidine (DAB) staining. Counterstaining was per-
formed with hematoxylin. For immunofluorescence staining, the sections were
incubated by DyLight 488/549 AffiniPure-conjugated secondary antibodies
(EarthOx) and counterstained with DAPI (Solarbio, s2110). The following
primary antibodies were used for immunostaining: alpha smooth muscle actin
(α-SMA, Abcam, ab32575, 1:300 for IHC; 1:200 for IF), smooth muscle protein
22-alpha (SM22-alpha, SM22, or Transgelin, Abcam, ab10135, 1:500), cyto-
keratin 14 (KRT14, Abcam, ab7800, 1:100), von willebrand factor (VWF,
Abcam, ab201336, 1:500), vimentin (VIM, Abcam, ab92547, 1:300). The per-
centages of positive regions were quantified using Image J. Control, n= 3
patients; POP, n= 4 patients.

Flow cytometry. Fresh vaginal wall tissues were dissociated using the single-cell
preparation procedures. After enzymatically digestion and washing, single cells
were resuspended in 100 μL Stain Buffer (Biolegend, 420201) freshly prepared with
3 μL of each antibody. Cells were stained for 30 min on ice, then washed with PBS
and resuspended at 1 × 106 cells/mL. T cells, B cells, and macrophages were
investigated using the following antibody panels: CD3 (Biolegend, 300316, 3:100),
CD19 (Biolegend, 302215, 3:100; 302218, 3:100), CD68 (Biolegend, 333806, 3:100).
Flow sorting was performed on a BD FACS Aria II flow cytometer, and data were
analyzed using FlowJo software (v.10.0.7, BD Biosciences). Control, n= 4 patients;
POP, n= 4 patients.

Statistical analysis. Data are presented as the means ± SEM. p-values were cal-
culated using a two-tailed Student’s t-test in histological analysis and FACS ana-
lysis. The statistical analysis of clinical characterization was performed using SPSS
25.0 and mentioned in the legend. p-value < 0.05 was considered statistically sig-
nificant. Two-side Wilcoxon rank-sum test with p-value < 0.05 was performed in
Supplementary Data 2 and Supplementary Data 3. Likelihood-ratio test with p-
value < 0.05 was performed in Supplementary Data 4 and Supplementary Data 6.
Fisher’s exact tests with p-value < 0.05 was applied in Supplementary Data 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data and processed data are available through the NCBI Gene
Expression Omnibus (GEO) under accession number “GSE151202” and at the Genome
Sequence Archive (GSA) with accession number “HRA000136”. These data have been
deposited in GSA under project PRJCA002344. All other data supporting the findings of
this study are available within the article and its Supplementary Information files or from
the corresponding authors upon reasonable request. Source data are provided with
this paper.

Code availability
All analysis codes are available on Github at https://github.com/zqyhyunbin/POP58.
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