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Contrasting impacts of forests on cloud cover
based on satellite observations
Ru Xu1,2, Yan Li 1,2✉, Adriaan J. Teuling 3, Lei Zhao 4,5, Dominick V. Spracklen 6,

Luis Garcia-Carreras 7, Ronny Meier 8,9, Liang Chen 10, Youtong Zheng 11,12, Huiqing Lin 1,2 &

Bojie Fu 1,13

Forests play a pivotal role in regulating climate and sustaining the hydrological cycle. The

biophysical impacts of forests on clouds, however, remain unclear. Here, we use satellite data

to show that forests in different regions have opposite effects on summer cloud cover. We

find enhanced clouds over most temperate and boreal forests but inhibited clouds over

Amazon, Central Africa, and Southeast US. The spatial variation in the sign of cloud effects is

driven by sensible heating, where cloud enhancement is more likely to occur over forests with

larger sensible heat, and cloud inhibition over forests with smaller sensible heat. Ongoing

forest cover loss has led to cloud increase over forest loss hotspots in the Amazon

(+0.78%), Indonesia (+1.19%), and Southeast US (+ 0.09%), but cloud reduction in East

Siberia (-0.20%) from 2002-2018. Our data-driven assessment improves mechanistic

understanding of forest-cloud interactions, which remain uncertain in Earth system models.
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Forests regulate climate and sustain the hydrological cycle
through biophysical processes1,2. These processes are tightly
linked to land surface properties, such as albedo, roughness,

and canopy conductance that affect the exchange of energy and
water between the land and the atmosphere1,2. The direct bio-
physical impacts of forests on surface temperature have been
extensively studied, revealing a latitudinal transition from tropical
cooling to boreal warming3–5. However, less attention has been
paid to its indirect impacts on clouds and precipitation, two
physically linked key components in the hydrological cycle. How
clouds and precipitation respond to land cover change has been
poorly constrained and presents one of the major challenges in
climate change assessment6.

Global climate models (GCMs) have predicted a reduction in
precipitation and a frequent decrease in cloud cover resulting
from large-scale deforestation, with the greatest decrease in tro-
pical regions7–9. Although these results generally support that
vegetation enhances clouds and precipitation at large-scales10,11,
especially in the tropics, these continental- or global-scale land
clearing experiments implemented in models with a relatively
coarse resolution are not consistent with the ongoing small-scale
land activities in the real world. Results from these GCM
experiments are often complicated by mixing the local-scale
intrinsic biophysical mechanism3 with the nonlocal feedbacks
triggered by the large-scale land cover change in the climate
system, making it hardly comparable with observations12,13.

In contrast to cloud and precipitation reduction simulated in
the GCM experiments7,8,14, high-resolution regional climate
models15,16 and empirical analyses using satellite imagery17,18

reported that small-scale deforestation increases rather than
decreases clouds and precipitation in the Amazon due to land
surface heterogeneity19. These results revealed inhibited clouds
over some forests (e.g., West Africa20) at a realistic scale which
seemingly contradicts the highly hypothetical GCM results21 and
the enhanced cloud observations over forests in other regions
(e.g., western Europe22 and Central America23).

These inconsistent findings among modeling and observational
studies highlight the large uncertainty in cloud and convection
representations in climate models24,25 as well as the complexity of
forest–cloud interactions, which involve different mechanisms
across different scales with varying regional importance26. The
global pattern of forest impacts on cloud cover, especially how it
is shaped by the interplay of different mechanisms, remain largely
unresolved.

In this study, we use multi-source satellite observations of high
spatial resolution and long-term global coverage to assess the cloud
effects of forests across the globe. Furthermore, we explore the
potential mechanisms and quantify the cloud effects of forest loss in
the past two decades. Our results reveal the contrasting cloud effects
of global forests due to moist convection and mesoscale circulation
processes, in which sensible heat plays a critical role in differ-
entiating the sign of cloud effect. We find the emergence of ongoing
forest loss as an important driver for local cloud cover change,
leading to opposite changes in different regions.

Results
Potential effects of forests on cloud cover. Using a space-for-
time approach, we define the potential cloud effect of forests as the
multiyear mean cloud difference between unchanged forests and
nearby non-forest pixels (ΔCloud=Cloudforest − Cloudnonforest).
Here, the cloud effect is measured by cloud cover fraction derived
from Moderate Resolution Imaging Spectroradiometer (MODIS)
and Meteosat Second Generation (MSG) satellite data, which
represent the occurrence frequency of clouds over a period of time
with a valid range of 0–1 (Supplementary Fig. 1). The positive and

negative ΔCloud denote enhanced and inhibited cloud cover over
forests, respectively. ΔCloud is estimated globally through a
moving window sized at 0.45 × 0.45° (9 × 9 cells) near locations
that underwent forest cover change during the study period (see
Methods). This approach can minimize cloud effects resulting
from large-scale circulation/climate changes, which affect both
forests and non-forest. The climatological approach also effectively
removes stochastic cloud differences between forests and non-
forest caused by individual meteorological events and wind
direction changes. Here we first focus on boreal summer months
(JJA), during which we expect to observe the most pronounced
cloud differences between forests and non-forest22 for the majority
of the northern hemisphere, while results for other seasons are
presented later.

Forests exhibit regionally varying effects on JJA cloud cover
based on MODIS data (overpass at 13:30 local time, Fig. 1a). Most
temperate and boreal forests in Eurasia and North America have
higher cloud fractions than non-forest, indicating a cloud
enhancement effect (positive ΔCloud) accounting for 63.21% of
all grid samples with a global mean magnitude of +0.0133. In
contrast, forests in South Amazon, Central Africa, and Southeast
US have lower cloud fractions than nearby non-forest, signifying
a cloud inhibition effect (negative ΔCloud) over the forest with a
global mean magnitude of −0.0115. The strength of these
contrasting cloud effects (i.e., cloud enhancement and inhibition)
follows a latitudinal dependency with the largest magnitude in the
tropical regions and diminished toward higher latitudes (Fig. 1b).
This is likely due to preferential conditions for convection
development at low latitudes, as indicated by their high
convective available potential energy, which decreases at higher
latitudes27. Our additional sensitivity tests indicate that the global
pattern of ΔCloud holds when estimated using alternative
window sizes (Supplementary Fig. 2) and split time periods
(2002–2007, 2008–2013, 2014–2018, Supplementary Fig. 3),
suggesting the robustness of results to scale of a local window
and interannual variability of cloud cover.

Similar spatial and latitudinal patterns can also be seen from
geostationary MSG satellite data with high temporal resolution
(i.e., hourly) but non-global coverage. At 14:00 local time, cloud
inhibition is stronger in Central Africa while weaker in the
Amazon regions compared to MODIS data (Fig. 1c, d). The
hourly MSG cloud data reveal a pronounced diurnal cycle in the
cloud effects (Fig. 1e and Supplementary Fig. 4). Consistent with
the daytime prevalence of convection, the maximum effect during
the entire day (the largest ΔCloud regardless of sign) occurs
mostly during daytime (6 a.m. to 18 p.m. 70%), especially during
the afternoon (12 to 18 p.m., 48%) in tropical regions.

The estimated cloud effects of forests could be confounded by
orographic clouds because of the dual influences of topography
on forest distribution and cloud formation. Human impacts
resulted in a global tendency of existing forests to be located at
more complex terrain with a higher elevation than non-forest28.
The high elevation per se could facilitate cloud formation through
the orographic lifting of moist air29, leading to increased cloud
cover over the forest located at a higher altitude (Supplementary
Fig. 5). To isolate the orographic cloud effect, we decompose
ΔCloud into contributions of tree cover and elevation (Supple-
mentary Fig. 6). We find that the global pattern of ΔCloud is
dominated by tree cover induced cloud effects (41% grid boxes
for cloud enhancement and 22% for cloud inhibition), followed
by elevation-induced cloud effects (30%), and unexplained effects
due to other factors (7%) (Fig. 1f). This confirms that most
observed cloud effects are robust features attributable to tree
cover rather than topography and other factors.

The MODIS and MSG cloud cover data provide a combined
measure of cloud cover fraction, but they do not separate different
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cloud types. By utilizing Sentinel-5P cloud data and a cloud
classification scheme30, we are able to estimate cloud effects of
forests with respect to different cloud types (see Methods). We
find that globally, cloud effects are dominated by convective
clouds in 45.01% of grid boxes, largely contributed by shallow
convective stratocumulus clouds (39.10%) (Supplementary Fig. 7).
Regionally, the convection dominance becomes more prominent,
contributing to 70.43% of cloud effects in the Amazon region.

These further confirm that the cloud effects of forests studied here
are primarily convection-driven, as also implied by MODIS and
MSG results.

In terms of seasonality, there are notable and region-specific
variations in ΔCloud from both MODIS and MSG data (Fig. 2 and
Supplementary Fig. 8). The maximum cloud effects appear in local
summer for most areas of the northern hemisphere (JJA, June to
August) and the mid-latitudes of the southern hemisphere

Fig. 1 The potential effects of forests on June-August (JJA) cloud cover fraction and their attribution. The potential effect is defined as the differences in
cloud cover fraction between forests and nearby non-forest (ΔCloud) from MODIS and MSG satellites that detect clouds. a Potential effects of forests on
cloud cover fraction based on MODIS data from 2002 to 2018 (overpass at 13:30 local time) and b their latitudinal patterns with cloud enhancement and
inhibition effects separated. c, d Potential effects of forests on cloud cover fraction based on hourly MSG data from 2004 to 2013 (overpass at 14:00 local
time) and e the timing of the maximum effect during a day. The numbers in panels b and d show the percentage of cloud enhancement (red) and inhibition
(blue). f Attribution of cloud effects of forests to tree cover and elevation based on MODIS and MSG data. The five attribution categories include tree cover
induced cloud increase (Tree+) and decrease (Tree−), orography induced cloud increase (Orography+) and decrease (Orography−), and other
unexplained effects. The percentage of each attribution category is calculated based on the MODIS results.
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(DJF, December to February). In the tropics, this occurs during
the dry-wet transition, consistent with existing evidence16,18,31,32,
cloud inhibition in the Amazon is stronger during the dry season
(May to November) than in the wet season, although their timings
of maximum effect differ (September for MODIS and July for
MSG). Interestingly, cloud inhibition in Central Africa exhibits a
larger effect during the dry season in MSG data (predominant JJA)
but during the wet season in MODIS data (mixed JJA and MAM).
In temperate regions, cloud inhibition in the Southeast US is larger
in summer, while cloud enhancement in Europe shows a slight
decline during the snow-free period.

The mechanisms of contrasting cloud effects of forests. While
different biophysical processes are involved in the forest–cloud
interactions, it has been unclear which factors determine the
spatial occurrences of cloud enhancement and inhibition over

different forests. The geographic variations in specific land cover
types of the global forest and non-forest vegetation types show
little spatial resemblance to ΔCloud (Supplementary Fig. 9). In
terms of biophysical differences, forests generally have reduced
albedo, higher roughness, lower land surface temperature (LST),
increased evapotranspiration, and soil moisture compared to
non-forest vegetation4,5. However, these differences are common
to almost all forests and cannot explain the contrasting cloud
effects, as indicated by their mismatched spatial patterns with
ΔCloud (Supplementary Fig. 10).

We find that the sensible heat difference between forest and
non-forest (ΔH) is an effective differentiator for the sign of cloud
effect among other land surface properties33. This is obtained by
analyzing the relationship between ΔCloud and ΔH derived from
three independent datasets based on satellite4, a simulation of the
Community Land Model (CLM) version 5 (ref. 34), and 28 paired
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forest and non-forest flux sites35 (Fig. 3a–c). Both the satellite and
the CLM results indicate that cloud inhibition (negative ΔCloud)
mainly occurs at locations where forests exhibit a smaller sensible
heat flux than non-forest (negative ΔH), including southern
Amazon36, Central Africa, and the Southeast US (marked by three
circles in Fig. 3a, b). By contrast, cloud enhancement (positive
ΔCloud) in the rest of the world broadly corresponds to locations
with higher sensible heating over forests (positive ΔH), despite few
inconsistencies in southern Europe among the considered
datasets. Such a spatial co-occurrence is further confirmed by
the positive relationship between observed ΔH from paired flux
sites and MODIS ΔCloud (ρ= 0.34, Fig. 3d), and those between
ΔH derived from satellite/CLM and MODIS ΔCloud (weaker but
statistically significant), suggesting that cloud enhancement is
more likely to occur when sensible heat over the forest is larger
than nearby non-forest, and cloud inhibition occurs when sensible
heat over the forest is smaller. Further evidence comes from
closely tracked seasonality between ΔH and ΔCloud at paired flux
sites (Supplementary Fig. 11). The larger sensible heat over forests
corresponds to greater cloud enhancement (e.g., Europe), whereas
the lower sensible heat over forests correspond to stronger cloud
inhibition (e.g., Southeast US and Amazon).

The spatial patterns of ΔH reflect the biophysical and climatic
controls on energy redistribution in forest and non-forest along
with latitude and moisture levels37,38. Forests at low latitudes

under humid climates have smaller Bowen ratios as most
available energy goes into latent heat rather than sensible heat,
resulting in even smaller sensible heat compared to non-forest. In
comparison, forests at higher latitudes under drier climates have
larger Bowen ratios leading to the opposite effect. The collective
evidence strongly suggests a central role of sensible heat in
convection triggering and cloud formation33. A higher sensible
heat relative to nearby landscape is indicative of a preferable
condition for convection and cloud development, though it is
initiated by different mechanisms for the enhanced and inhibited
cloud cover over forests.

The mechanisms of enhanced cloud over forests are associated
with several interconnected processes operating at different scales
that are conducive to the growth of moist convection (Fig. 4a).
Compared with non-forest vegetation, forests usually exhibit high
evapotranspiration5, which provides abundant water vapor
supply for cloud formation and sustains moisture recycling over
large-scales39,40. The low albedo and high roughness of forests
promote a greater fraction of incoming solar energy partitioned
into turbulent heat fluxes, increasing turbulent mixing and
convective instability in the boundary layer16,32,41. At small
scales, the differential roughness between forest and non-forest
induces frictional convergence in downwind direction22,42.
Enhanced sensible heating, which typically occurs over the forest
relative to non-forest vegetation35, serves as a major lifting

Fig. 3 The sensible heat difference between forests and non-forest and its relationship with cloud effects. a Potential effects of forests on cloud cover
from MODIS and MSG data (duplicates from Fig. 1a, b). b The sensible heat differences between forests and non-forest (ΔH) estimated from satellite
data4, Community Land Model (CLM), and c Twenty-eight paired forest and non-forest flux sites (including one Amazon pair not shown on the map, see
Supplementary Table 1). The three circles marked in a and b denote the locations of cloud inhibition which correspond to the negative ΔH in Amazon,
Central Africa, and Southeast US. The connection lines with a dot in panel c indicate the location of flux tower clusters where multiple flux pairs are close in
distance. d The relationship between sensible heat (ΔH) and cloud differences between forest and non-forest (ΔCloud) at paired flux towers. The cloud
effects at paired flux site locations are extracted from ΔCloud aggregated to 1° based on MODIS data. The line is fitted by geometric mean regression80.
The Spearman’s correlation coefficient (ρ), which is a nonparametric measure of rank correlation, is calculated by the spearmanr function of scipy.stats
module in Python with its p value (p) determined by a two-tail t-test.
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mechanism to initiate convection and the growth of boundary
layer32,33, and the formation of a “forest-breeze” analogous to a
sea-breeze. Specifically, the high sensible heat elevates the
atmospheric boundary layer (ABL) such that the lifting
condensation level (LCL) is lower than the ABL depth18,32,40,
thereby supporting low-level cloud formation.

The mechanisms of inhibited cloud cover over the forest and
enhanced cloud cover over nearby non-forest, are likely linked to
an opposite mesoscale circulation triggered by heat and moisture
anomalies of heterogeneous landscape between forests and non-
forest43 (Fig. 4b). Differential heating between forests (cooler,
wetter) and non-forest (warmer, drier) creates a thermally-driven
mesoscale circulation with downward flow over forests. The rising
airflow over non-forest initiates convective clouds while the
subsidence branch over forests outweighs moist convection
processes and inhibits cloud development44. The warmer
deforested areas with larger sensible heat flux, combined with
increased atmospheric instability16 can reinforce mesoscale
circulation and provide a favorable environment for cloud
formation15,32,45. Moreover, the cloud effects, once developed,
tend to dampen the sensible heat flux differences from which they
originate. The inhibited cloud cover (with lower sensible heat)
over forests, in turn, enhances sensible heat as the land surface

receives more incoming shortwave radiation. It also implies a
memory effect as the cloud effects detected at the satellite
overpass time reflect the flux differences accumulated earlier
during the morning and noon, while the developed cloud effects
dampen the flux differences in the afternoon.

The development of mesoscale circulation depends on the
length scale of the land heterogeneity. Mesoscale circulation is
sensitive to spatial scale and is typically generated at scales of
10–100 km16,41. To investigate the sensitivity of cloud inhibition
effect induced by mesoscale circulation to spatial scale, we re-
estimated ΔCloud using MODIS cloud data resampled to
different spatial resolutions. We find that with reduced resolu-
tions of cloud data, the spatial coverage of cloud inhibition
shrinks from ~37% at 0.05° to ~24–28% at 1°, while cloud
enhancement becomes more dominant (from 63% to ~76–72%)
(Supplementary Fig. 12 and Supplementary Table 2). This implies
that at coarser scales (e.g., typical GCM spatial resolutions), at
which mesoscale processes become less important (i.e., less cloud
inhibition), observation- and model-based results tend to
converge on cloud enhancement of forests.

The strength and position of mesoscale circulation, as well as
the resultant cloud effect, are influenced by synoptic conditions as
well. Mesoscale circulations get intensified under weak synoptic
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conditions, because large wind flow eliminates the thermal
gradient generated by land heterogeneity16. For example, the
cloud inhibition effect in Amazon forests becomes stronger
during the dry season when synoptic winds are weaker and the
LST gradient is larger5,15,18. Under moderate winds conditions,
due to low-level advection, the convergence over the forest could
be shifted along the wind direction, causing enhanced convection
downwind and suppressed convection upwind of the forest22,45.
The variations in cloud effects due to varying synoptic conditions
are most prominent at fine temporal scales for a specific region,

which may not necessarily be manifested in our global pattern
derived at climatological scales.

The mesoscale circulation mechanisms associated with the
inhibited clouds over forests echo a large body of research in
land–atmosphere interactions emphasizing the critical role of
surface fluxes and soil moisture anomalies in the atmospheric
boundary layer, clouds, and precipitation processes46,47. The
preference of convective clouds and precipitation over drier soils
identified in previous studies using observations48,49, analytic
models50, and numerical simulations51 is in line with the

Fig. 5 Impacts of forest loss on JJA cloud cover based on MODIS data from 2002 to 2018. a The accumulated forest loss fraction from 2001 to 2018.
b The actual cloud impact of forest loss (ΔCloudloss), defined as the mean cloud difference between forest loss location and nearby unchanged forests from
2002 to 2018. Four hotspot regions that experienced intensive forest loss are highlighted in panels c to r, showing their forest loss fractions, mean
ΔCloudloss during the study period, and regional and temporal trends of ΔCloudloss between 2002 and 2018 (column-wise). The cloud impacts in forest
loss hotspot regions are estimated from grid boxes with tree cover loss fraction >0.05. The green dashed line in the last column (f, j, n, r) shows the annual
tree cover difference between forest loss location and nearby unchanged forests (ΔTree); the solid blue line shows the temporal trends of ΔCloudloss (unit:
%/year); and the thin blue line and text show the linear fitted trend and its p value.
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enhanced clouds over regions of higher sensible heat flux, as we
show here for forest and non-forest transitions. Interestingly, the
preferences of clouds over non-forest found in Southeast US,
Amazon, and Central Africa of our study also roughly correspond
to those reported to exhibit a temporal preference of afternoon
rain with drier soil conditions (Central US, West Amazon, and
parts of the Sahel and Equatorial Africa)49.

Cloud effects of forest loss over the last two decades. Forest
cover loss has been rapidly occurring globally over the last two
decades, especially in tropical regions owing to continuous
deforestation (Fig. 5a)52,53. These changes are expected to cause
different cloud responses in forests with enhanced or inhibited
cloud effects. We quantify the actual cloud impact of forest loss
that has already occurred by comparing cloud fraction at loca-
tions that underwent net tree cover losses with nearby unchanged
forests since 2000 (Fig. 5b) in four hotspot regions of forest loss
(Fig. 5c, g, k, o).

During the study period, forest loss enhanced cloud cover in
three of those hotspot regions. The mean cloud cover fractions at
forest-loss locations (tree cover loss >0.05) are on average 0.011,
0.005, and 0.007 higher than nearby unchanged forests in the
Amazon, Indonesia, and Southeast US, respectively (Fig. 5d, h, i).
Furthermore, cloud enhancement in these forest loss hotspots
became increasingly stronger with the decline and fragmentation
of tree cover54, which translates into total cloud fraction increases
of 0.78% (0.046%/year, p < 0.01), 1.19% (0.070%/year, p < 0.01),
and 0.09% (0.005%/year, p= 0.40) throughout 2002 to 2018 for
Amazon, Indonesia, and Southeast US hotspots, respectively (3rd
and 4th column in Fig. 5). Note that in the Amazon, forest loss
legacy before 2001 had already caused lower tree cover (ΔTree <
−0.1) in 2002, which is responsible for the enhanced cloud cover
(positive ΔCloudloss) observed over the forest loss locations at the
beginning of the study period (Fig. 5f). However, enhanced clouds
over deforested regions require the retaining of nearby forest
patches over which clouds are reduced. As the scale of
deforestation increases with fewer forest patches left, the
mesoscale circulation induced cloud enhancement over defor-
ested locations would decrease and ultimately transit to a cloud
reduction regime14,45,55,56. Unlike other hotspots, East Siberia is a
region where forest loss induced cloud cover reduction. The mean
cloud cover is 0.004 lower than nearby unchanged forests over the
forest loss location (Fig. 5p). The cloud reduction also exhibited a
strengthening trend, resulting in a total reduction in cloud cover
fraction of −0.20% (−0.012%/year, p= 0.16) from 2002 to 2018
(Fig. 5q, r). These results provide strong evidence that ongoing
forest loss could emerge as an important driver for local cloud
cover change, especially over areas with intensive forest loss56,57.
However, due to the decreasing magnitude of cloud effect and
increasing cloud interannual variability toward higher latitudes
(Fig. 1 and Supplementary Fig. 1), the signal-to-noise ratio of the
cloud effect also decreases at higher latitudes, making forest loss
induced cloud cover changes there less detectable than those
occurring at lower latitudes.

Discussion
This study offers global-scale observational evidence for con-
trasting cloud effects of forests and advances our mechanistic
understanding of forest–cloud interactions. The cloud effects
estimated in our study reflect the local impact of forests on cloud
cover and is, therefore, more representative of real-world small-
scale forest cover change, without generating the large-scale cli-
mate feedbacks which are usually triggered in GCM
experiments3,12. The local perspective allows us to identify the
role of mesoscale circulation which is limited to small scales, a

feature that cannot be resolved by global climate models and is
likely the cause of the discrepancy in clouds and precipitation
responses between climate model and observational studies, as
also shown for soil moisture25. Although cloud processes are far
more complicated than reflected in the cloud cover observations,
our analysis provides a first-order approximation and benchmark
for the forest–cloud interactions at fine scales. These results can
help constrain convection and cloud processes in climate models
which are often parameterized and subject to large uncertainty.

It is worth noting that the estimated cloud effects, despite their
broad agreement in the global pattern across datasets, can differ
in magnitude and even in sign in certain regions (e.g., the
inconsistent cloud effects and their seasonality in Central Africa),
suggesting cloud data are a key uncertainty source for our ana-
lysis. The cloud effects of forests estimated in a recent study58

based on a different MODIS-derived cloud dataset59 (produced
by a different retrieval algorithm) revealed a similar global
dominance of cloud enhancement and regional prevalence of
cloud inhibition (e.g., in Amazon). Yet regional inconsistencies
remained for Southeast US and Central Africa, where the iden-
tified cloud inhibition could be weakened or absent with alter-
native cloud data (ref. 58 and Supplementary Fig. 13). This
emphasizes the need of using multi-source cloud data to improve
the robustness of the estimated cloud effects while reducing the
uncertainty from data. Nevertheless, the occurrence of cloud
inhibition in these regions is indirectly supported by lower sen-
sible heat over forests, which is in line with the mesoscale cir-
culation mechanism, as well as the consistency between potential
cloud inhibition and the actual cloud increase over forest loss
locations (i.e., Southeast US hotspot). While more direct obser-
vational evidence is always desirable to help resolve incon-
sistencies, the lack of observations in regions like Central Africa,
which have received less attention than the Amazon, hinders
comparisons against other available evidence. This highlights the
importance of dedicated observational efforts in specific regions,
especially those understudied, to provide complementary infor-
mation to our global-scale analysis.

Given the tight coupling of cloud and precipitation processes,
the cloud impact of forest cover change may translate into pre-
cipitation impact60. Observational evidence exists in the Amazon
where the cloud increase in deforested areas has been accom-
panied by a precipitation increase61,62. Although it is hard to
directly detect the precipitation impact of deforestation from
observations8, the cloud impact derived from high-resolution
satellite data could provide helpful inference to potential pre-
cipitation change, especially in tropical regions where convective
rainfall is dominant63. However, the distinct roles of different
cloud types (e.g., shallow cumulus clouds or deep convective
clouds) in precipitation and radiative processes complicate the
inference from clouds to precipitation changes. Therefore, the
extent to which forest loss induced cloud change translates to
precipitation may depend on their regional-, seasonal-, and cloud
type-specific interactions and require further investigation.

Our results show ongoing forest cover loss has become an
important driver of local cloud change over areas with intensive
forest loss, which could potentially modify precipitation
patterns56,57,64 and in turn, impose additional feedbacks to (either
amplify or dampen) temperature change through clouds’ radia-
tive effects58,65. Retaining forest patches could enhance cloud
cover over nearby agricultural lands through mesoscale circula-
tion (e.g., in the Amazon)—with positive benefits of reduced
temperature and possibly increased rainfall. Conversely, the
reduction in cloud cover over remaining forest patches may
reduce the resilience of the forest to future climate change66.
Moreover, the changing forest cover owing to either deforesta-
tion, increased tree vulnerability under future warming67,68, or
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afforestation58 will not only affect local climate and hydrology,
but also cause remote impacts on distant regions through
moisture recycling and advection69 and have other ecological and
socioeconomic implications56,70. An accurate prediction of these
impacts would benefit from an improved understanding of
forest–cloud interactions, which could be facilitated by the
cooperation of remote sensing of high spatial-temporal resolu-
tions and climate models that can better characterize mesoscale
cloud processes.

Methods
Cloud cover and environmental datasets. The monthly mean MODIS cloud
fraction at 0.05° used in this study was computed from the daily cloud mask data
(“cloudy” label for the bits 0–1 of “state_1 km” band) included in the MODIS
Surface Reflectance product (MYD09GA.006, overpass at local time of 13:30) of
Aqua from 2002 to 2018, using the reduceResolution function with “mean”
aggregation method on Google Earth Engine (https://earthengine.google.com/).
The 1-km cloud mask was produced based on the MOD35_L2 cloud mask product,
which had been extensively validated71,72. Before computing cloud fractions, a
snow/ice flag (the bit 12 of “state_1km” band) was used to remove snow or ice
pixels in the cloud record because the high reflectivity of snow/ice degrades the
accuracy of cloud detection, especially during winter in the northern hemisphere.
Therefore, the estimated cloud effect would have larger uncertainty in boreal winter
than in summer.

To complement MODIS-based cloud analyses, we used the Meteosat Second
Generation (MSG) hourly cloud fraction data of 2004–2013 at a spatial resolution
of 0.05°. The Coordinated Universal Time (UTC) of the raw MSG hourly cloud
cover data was converted to local time before being used for analysis.

The cloud fraction from Sentinel-5P Near Real-Time (NRTI) data product was
used in this analysis. This dataset is available from 2018-07-05 at a spatial
resolution of 0.01° and it has an overpass time of 13:30 similar to MODIS. The
Sentinel-5P cloud data, although having a short period of 2 years, allows for the
separation of cloud effects into different cloud types, with the help of a cloud
classification scheme based on cloud top pressure and cloud optical depth
information30.

Environmental variables include evapotranspiration (ET, MOD16A2 V6), land
surface temperature (LST, MYD11A1 V6) from MODIS, and soil moisture (SM)
from the TerraClimate dataset. All these environmental variables were averaged
into monthly means at 0.05° resolution.

Elevation data are from SRTM Digital Elevation Data at 0.05° resolution. Land
cover data include MODIS (MOD12C1) and European Space Agency (ESA) global
land cover products, which were aggregated to 0.05°.

Defining forest cover change. To define forest/non-forest and forest cover
change, we used the Global forest cover (GFC) product which provides global tree
cover for the year 2000 (baseline), yearly forest loss from 2001 to 2018, and forest
gain from 2000–2012 at 30 m resolution53. The GFC data were aggregated to
fractions at 0.05°. Net forest cover change was calculated as the sum of the loss and
gain accumulated throughout the study period. Pixels with net forest cover change
fractions smaller than 0.05 are considered to be “unchanged” and greater than 0.05
are considered to be “changed”. Unchanged forests and unchanged non-forest were
defined as pixels with baseline tree cover fraction greater or less than 0.5 and with
net forest change <0.05. For unchanged non-forest, pixels classified as water, snow/
ice, or wetland were excluded using the major composite of MODIS land cover
from 2002 to 2005 with the International Geosphere-Biosphere Program (IGBP)
classification scheme. For “changed” forest pixels, forest loss was identified as those
with a net forest loss >0.15. Forest loss defined this way is expected to pose a
stronger signal on clouds than that with a lower threshold, and thus improves the
detectability of cloud impact against natural variability of cloud cover.

Estimating potential and actual impacts of forest loss on cloud cover. The
potential effect of forest on cloud (ΔCloud) was quantified as the mean cloud
difference between unchanged forests and nearby non-forest as:

ΔCloud ¼ Cloudforest � Cloudnonforest ð1Þ

where Cloudforest and Cloudnonforest are multiyear or yearly mean cloud fractions
averaged over unchanged forest and unchanged non-forest pixels, respectively.
ΔCloud defined this way, with the reversed sign, represents the potential impact of
forest loss on cloud cover at a given location. The methodology is designed to
isolate the cloud effects of land surface conditions from those caused by meteor-
ological conditions. It refers to local cloud impact (caused by land surface condi-
tions) because effects from synoptic conditions and large-scale circulation changes/
climate changes (meteorological conditions) are shared by both forest and non-
forest and are therefore minimized through subtraction. If there is no effect of
forests on cloud cover, the resulting ΔCloud would show random patterns with
mixed positive and negative values instead of a systematic pattern, which indicates
a cloud preference over forests or non-forest.

To implement Eq. 1, we used a moving window approach to search for
comparison samples between forest and nearby non-forest pixels at locations that
underwent “forest change” (i.e., net forest change >0.05) across the globe73. Each
moving window was sized at 9 × 9 pixels (0.45° × 0.45°) and two adjacent windows
were half-overlapped with a distance of 5 pixels (i.e., the centers of two windows
were 5 pixels apart along latitudinal and longitudinal direction). To avoid cloud
inhibition effects from water bodies74, water pixels and their one-pixel buffer zone
were masked out in the window searching strategy for ΔCloud. Therefore, ΔCloud
can be calculated using unchanged forest and non-forest pixels within each moving
window. This window searching strategy ensures the proximity of the forest and
non-forest pixels to pixels that underwent forest change, making the estimated
potential effect more representative of the actual forest change impact. To test the
sensitivity of ΔCloud to window size and time period, ΔCloud was also estimated
using alternative window sizes: 11 × 11 (0.55° × 0.55°), 21 × 21 (1.05° × 1.05°),
51 × 51 (2.55° × 2.55°) pixels and different periods (2002–2007, 2008–2013, and
2014–2018). The resulting ΔCloud was similar to results with the window size of
9 × 9 (0.45° × 0.45°) and among split time periods (Supplementary Figs. 2, 3).
Unlike using direct comparison in cloud cover (and other biophysical variables)
between forest and non-forest, an alternative method is to utilize the regression
coefficients of cloud cover (dependent variable) to land cover fraction (independent
variable) and estimate cloud effects assuming 100% land conversion, as adopted by
ref. 58. The alternative regression-based approach is mathematically more
complicated, and its implementation involves non-trivial post-processing
compared with our method while producing qualitatively similar results.

A similar window searching strategy was applied to estimate the differences
between forests and non-forest in LST (ΔLST), ET (ΔET), and soil moisture (ΔSM)
(Supplementary Fig. 10).

The cloud impact estimated as the cloud differences between forest and non-
forest could be confounded by their differences in topography, which is known to
be an important factor for cloud formation. To minimize the topographic
influence, we calculated the standard deviation (s.d.) of elevation within each
moving window and removed samples with s.d. >100 m from the analysis. This
filtering effectively excluded comparison samples over complex terrain such as
mountainous regions so that the retained samples came from relatively flat areas.

The actual effect of forest loss on cloud (ΔCloudloss) was quantified as the cloud
cover difference between forest loss (Cloudloss) and nearby unchanged forest pixels
(Cloudforest) using the same window searching strategy as the potential effect
(Eq. 2).

ΔCloudloss ¼ Cloudloss � Cloudforest ð2Þ
where ΔCloudloss is the actual impact of forest loss on cloud cover, Cloudloss and
Cloudforest are the multiyear or yearly mean cloud cover averaged over forest loss
and unchanged forest pixels, respectively. The actual impact (deforested vs. forests)
shows good spatial resemblance to the potential effect (non-forest vs. forests,
ΔCloud with the reversed sign), suggesting that the potential effect can provide a
priori prediction of possible cloud change induced by forest loss (the correlation of
the spatial pattern is 0.44, p < 0.05).

To quantify the progressive tree cover changes caused by forest loss, we
calculated tree cover differences between forest loss and unchanged forest pixels
following Eq. 3,

4Treeyear = Tree2000loss �Tree2000forest
� �

+ ∑
year

2001
Treelossloss�Treelossforest
� �

ð3Þ
where ΔTreeyear is the tree cover difference between forest loss and unchanged
forest pixels at a given year. It is the sum of the tree cover difference in the baseline
year 2000 (Tree2000loss− Tree2000forest) and the accumulated yearly forest loss
differences from 2001 until a given year (the sigma term of Eq. 3).

The comparison samples obtained from the window searching strategy for
potential and actual impacts were aggregated to 0.5° for display and further
analysis.

Cloud effects of forests separated into different cloud types. By using cloud
top pressure and cloud optical depth from the daily Sentinel-5P NRTI data, nine
cloud types were classified according to the ISCCP (International Satellite Cloud
Climatology Project) cloud classification scheme30. The classified cloud types were
1-cirrus, 2-cirrostratus, 3-deep convection, 4-altocumulus, 5-altostratus, 6-nim-
bostratus, 7-cumulus, 8-stratocumulus, and 9-stratus. Cloud types 1–3, 4–6, and
7–9 corresponded to low, mid-, and high-clouds, respectively. Cloud types 3, 7, and
8 were convective clouds and the latter two were shallow convective clouds. The
multiyear mean JJA total cloud fraction and fraction of each cloud type were
calculated during the available time period and were aggregated to 0.05° from the
original 0.01° resolution. We then applied the same moving window method to
estimate the cloud effects of forests for total cloud cover as well as for different
cloud types. The summed cloud effects of each cloud type equaled the total cloud
cover effects. We expected convective cloud types (types 3, 7, and 8) to be influ-
enced by forests, while other non-convective cloud types would not, so that their
ΔCloud would show a more random pattern. The dominant cloud type for cloud
effects of forests was determined by the cloud type whose ΔCloud had the same
sign as the total cloud effect and had the largest magnitude (Supplementary Fig. 7).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28161-7 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:670 | https://doi.org/10.1038/s41467-022-28161-7 | www.nature.com/naturecommunications 9

https://earthengine.google.com/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


We noted that there were regional differences in the cloud effects estimated
from Sentinel-5P and the magnitude of the effect was also smaller than the other
two datasets. For example, the Southeast US in MODIS was dominated by negative
ΔCloud (64.67%) whereas in Sentinel-5P it showed more positive ΔCloud (57.09%)
(Supplementary Fig. 13). The large spatial coverage of positive ΔCloud in Europe in
MODIS and MSG was slightly reduced with Sentinel-5P. These regional differences
might be linked to potential bias in cloud fractions of Sentinel-5P, because we
found that cloud fractions of Sentinel-5P were systematically lower than that of
both MODIS and MSG. However, the cloud effects of Sentinel-5P in the Amazon
were consistent with MODIS (80.95%) in terms of coverage, showing a prevailing
cloud inhibition (81.45%) (Supplementary Fig. 13). Cloud inhibition in Central
Africa with a spatial coverage of 51.84% was slightly more in line with the
widespread negative ΔCloud in MSG (67.56%) than in MODIS (36.40%).

Given these differences in the cloud effects among datasets, the results from
Sentinel-5P still provided strong support that convective clouds dominated the
cloud effects of forests at both global and regional scales (Supplementary Fig. 7).

Attribution of cloud effect of forests. Since cloud effects of forests may result
from contributions of both vegetation properties and orography, we used tree cover
and elevation as indicators to represent each of their effects. Elevation was selected
as an indicator of the orographic lifting mechanism. We acknowledge that the
reality is much more complicated than this highly simplified representation of the
orographic cloud effect. However, for a global-scale analysis, elevation could still
provide a first-order approximation of the orographic effect.

To decompose the potential cloud effect of forests into contributions from tree
cover and elevation, we first estimated sensitivities of cloud cover to tree cover and
elevation respectively, following a linear regression model defined in Eq. 4.

Cloud ¼ Stree ´ treeþ Sele ´ elevationþ c ð4Þ
where Stree and Sele were the sensitivities of cloud cover to tree cover and elevation
respectively, and the intercept c was unused in this study. The sensitivity parameters
were estimated for each moving window separately if it had a nonzero tree cover. The
estimated slope of cloud cover to elevation (Sele) was positive in the majority of the
world (Supplementary Fig. 6d), suggesting that a higher elevation indeed promotes
cloud formation. Next, we calculated tree cover differences (ΔTree) and elevation
differences (ΔEle) between unchanged forests and non-forest pixels similarly to
ΔCloud. Then the cloud differences induced by tree cover (ΔCloudtree) and by
elevation (ΔCloudele) can be obtained by multiplying their sensitivities by the
corresponding differences as Eqs. 5 and 6. The sensitivity and differences parameters
were averaged to 0.5° resolution before using in Eqs. 5 and 6 (Supplementary Fig. 6).

ΔCloudtree ¼ Stree ´ΔTree ð5Þ

ΔCloudele ¼ Sele ´ΔEle ð6Þ
The reconstructed ΔCloud given by the sum of ΔCloudtree and ΔCloudele

explained about 70% of the original ΔCloud.
To attribute ΔCloud to tree cover and elevation-induced cloud changes, we

compared the sign and magnitude of original ΔCloud, ΔCloudtree, and ΔCloudele. If
ΔCloudtree and ΔCloudele both had the same sign as ΔCloud, the one with greater
magnitude was classified as the dominant factor. If only one of ΔCloudtree and
ΔCloudele had the same sign as ΔCloud, the factor with the same sign was classified
as the dominant factor. If neither ΔCloudtree nor ΔCloudele had the same sign as
ΔCloud, the dominant factor was classified as others. As a result, the potential
cloud effects could be attributed to five classes: tree cover induced cloud increase
(Tree+) and decrease (Tree−), orography induced cloud increase (Orography+)
and decrease (Orography−), and others.

Linking cloud effect with sensible heat flux. Sensible heat data were obtained
from three independent sources: satellite estimate4, a Community Land Model
version 5 simulation75, and 30 paired forest and non-forest flux sites35.

Satellite estimates provide changes in the combined sensible heat and ground
heat fluxes (H+G) under different land cover conversions at 1° spatial resolution
based on MODIS data (a total of 45 pairs of land conversions for “HG_IGBPdet”).
The combined fluxes of H+G were estimated as the residual of surface energy
components as described in ref. 4. Due to the small contribution of G to H+G, we
referred to “H+G” as “H” for simplicity in the following text and the main text. To
obtain sensible heat differences between forest and non-forest (ΔH) that are
compatible with ΔCloud, we extracted the dominant land cover type for unchanged
forest (e.g., evergreen broadleaf) and non-forest pixels (e.g., crop) within each
moving window from the ESA land cover product. The dominant land cover types
for forests and non-forest were upscaled to 1° resolution with the “major” method
(figure not shown for 1°, but a similar one for 0.5° is shown in Supplementary
Fig. 9). For each one-degree grid box with a dominant forest type (e.g., evergreen
broadleaf) and non-forest type (e.g., crop), ΔH can be extracted from the
corresponding sensible heat change value that matches the specific land conversion
(e.g., evergreen broadleaf to crop) at the same grid box from the 45 pairs of land
cover conversions defined within the “HG_IGBPdet” dataset.

CLM5 is the land component of a state-of-the-art earth system model
Community Earth System Model 2 (Ref. 34). The CLM5 simulation was conducted

at the spatial resolution of 0.5° from 1997 to 2010, driven by a revised climatology
GSWP3 as the atmospheric forcing (http://hydro.iis.utokyo.ac.jp/GSWP3/), with
the plant phenology prescribed from satellite products, the land cover of 2000, and
the separated soil columns configuration76,77. The years 1997 to 2001 were the
spinup period and excluded from the analysis (please see detailed description in
ref. 75). In CLM, different types of vegetation within a grid cell are represented as
separated tiles of different plant functional types (PFTs). We used subgrid PFT-
level model outputs to calculate sensible heat differences between different land
cover types within the same model grid. The subgrid tiles within a model grid cell
share the same atmospheric forcing, therefore replicating the assumption of similar
meteorological conditions of the space-for-time approach12. To match the CLM5
model resolution, the dominant land cover types for forests and non-forest of each
moving window were upscaled to 0.5° using the ESA land cover data
(Supplementary Fig. 9). Because CLM adopted a different land classification
scheme, we created a look-up table to convert CLM land cover to the IGBP
classification scheme (Supplementary Table 3). The differences in the sensible heat
flux (ΔH) between a specific forest and a non-forest type can be extracted from the
sensible heat values of the corresponding PFTs.

A total of 30 paired flux sites were used in this study to calculate sensible heat
differences between forest and non-forest (ΔH). Twenty-eight site pairs were
processed by ref. 35 using FLUXNET data and two additional Amazon site pairs
were from the ORNL archive78 (Supplementary Table 1). ΔH was calculated as
the mean sensible heat flux difference between the paired forest and non-forest
site during the daytime (8:00 to 16:00). ΔCloud for each site pair was extracted
from the central location of the line linking two sites. Unlike ΔCloud used in the
main analysis which was aggregated to 0.5°, we here used ΔCloud aggregated to
1° without the elevation s.d. criteria and the one-pixel water buffer removal to
increase available ΔCloud value for each site pair. When analyzing the
relationship between ΔH and ΔCloud, two flux pairs were excluded because the
matched ΔCloud was missing (pair 29) and an outlier in ΔH (pair 22 with
ΔH > 200W/m2).

Scale-dependency of potential cloud effect of forest. To investigate how the
potential cloud effect varies with spatial scale, we reprocessed the MODIS cloud
cover and GFC data into different spatial resolutions to emulate the scale change
(using “mean” for cloud cover and “major” method for forest cover). Specifically,
the 0.05° cloud and GFC data used in the main analysis were aggregated to coarser
resolutions (0.1°, 0.25°, 0.5°, and 1°) and ΔCloud was re-estimated with the window
searching strategy of slightly different configurations to accommodate the resolu-
tion change (Supplementary Fig. 12). The specific parameters of the window
searching strategy under different resolutions are provided in Supplementary
Table 2, including raw data resolution, window size, window distance, and display
resolution. For a given resolution, ΔCloud was estimated with two-parameter
combinations to ensure the robustness of the results.

Data availability
All processed data that support the findings are available at Figshare79. The MODIS
cloud cover date are available at https://lpdaac.usgs.gov/products/myd09gav006/. The
MSG cloud cover data are available at https://wui.cmsaf.eu/safira/action/
viewProduktSearch?menuName=PRODUKT_SUCHE/. The Sentinel-5P Near Real-
Time (NRTI) data are available at https://sentinel.esa.int/web/sentinel/user-guides/
sentinel-5p-tropomi. The forest cover change data are available at https://
data.globalforestwatch.org/documents/14228e6347c44f5691572169e9e107ad/explore.
The MODIS land cover products can be found at https://lpdaac.usgs.gov/products/
mcd12q1v006/. The ESA land cover products are available at http://maps.elie.ucl.ac.be/
CCI/viewer/download.php. The MODIS LST data are available at https://lpdaac.usgs.gov/
products/myd11a1v006/. The MODIS ET data are available at https://lpdaac.usgs.gov/
products/mod16a2v006/. The DEM data can be accessed from https://lpdaac.usgs.gov/
products/astgtmv003/. The soil moisture data come from https://www.climatologylab.
org/terraclimate.html. The FLUXNET data are available at https://fluxnet.org/. The
AMEIFLUX data are available at https://ameriflux.lbl.gov/. The ORNL flux data can be
found at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1174. Alternatively, the
MODIS, Sentinel, Forest cover change, and Soil moisture data are readily accessible on
Google Earth Engine (https://earthengine.google.com/).

Code availability
All codes of this study are available at Figshare79.
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