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Data fusion and multivariate analysis for
food authenticity analysis

Yunhe Hong1, Nicholas Birse1, Brian Quinn1, Yicong Li1, Wenyang Jia 1,
Philip McCarron1, Di Wu1, Gonçalo Rosas da Silva1, Lynn Vanhaecke1,2,
Saskia van Ruth3,4 & Christopher T. Elliott 1,5

Amid-level data fusion coupled with multivariate analysis approach is applied
to dual-platform mass spectrometry data sets using Rapid Evaporative Ioni-
zationMass Spectrometry and InductivelyCoupledPlasmaMass Spectrometry
to determine the correct classification of salmon origin and production
methods. Salmon (n = 522) from five different regions and two production
methods are used in the study. The method achieves a cross-validation clas-
sification accuracy of 100% and all test samples (n = 17) have their origins
correctly determined, which is not possible with single-platform methods.
Eighteen robust lipid markers and nine elemental markers are found, which
provide robust evidence of the provenance of the salmon. Thus, we demon-
strate that our mid-level data fusion - multivariate analysis strategy greatly
improves the ability to correctly identify the geographical origin and pro-
duction method of salmon, and this innovative approach can be applied to
many other food authenticity applications.

Worldwide salmon consumption is three times higher than it was in
19801. What was once considered a delicacy is now one of the most
popular fish species in the United States (US)2, Europe (EU)3, and Asian
countries4. Atlantic and Pacific salmon are the two major sources of
salmon in theworld. Nearly 70%of all salmonproduction is farmed and
in 2020, over 2.6 million tonnes of farmed salmon were produced,
compared to only around 550,000 tonnes of wild salmon1. Salmon
prices can be volatile5 but have more than doubled over the last 10
years, and are now higher thanmany comparable commodities6. Large
scale aquaculture is used to produce Atlantic salmon in the Northern
and Southern hemispheres, and has become the most commonly
farmed fish in the Western world7,8.

The major salmon consumption regions are the EU followed by
the US, Brazil, China, Russia, and Japan9. When consumers in China
were questioned, it was found that quality and value were the most
important factors when purchasing salmon. Fitty seven percent of

respondents believed that Alaskanwild salmon tasted better than the
farm-raised variety, indicating that Chinese consumers were more
interested in purchasing wild caught salmon10. Japanese consumers
enjoy the world’s most diversified salmon market. The price of sal-
mon in this market is determined by the total supply and demand of
all fish species11. A report showed that in some North American
regions, seafood consumers have a preference for wild salmon over
farmed salmon12. However, they may not receive the type and quality
of salmon for which they paid. Hu et al.13 using DNA barcoding and
DNA mini-barcoding methods revealed a 25% mislabelling rate in
Vancouver fish products. Amajor issue is that salmon can travel from
an Alaskan fishing boat to a Chinese processing plant, and then to a
retail outlet in New York, while information about the fish, such as
where it came from and whether it was caught or farmed, can get lost
or fraudulently amended as it travels along this most complex of
supply chains14.
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In the scientific literature, measures to identify fishmislabelling is
common in the authenticity research arena15. DNA barcoding was used
to identify the market replacement of Atlantic salmon for Pacific
salmon16. Most recently, Deconinck et al.17 presented a Droplet Digital
PCR method for identification and quantification of the percentage of
Atlantic salmon in processed and mixed food products, enabling the
identification and semi-quantification of salmon-specific tissue in
processed food products containing multiple species. Over recent
years, mass spectrometry (MS) has become amore popular as a tool in
food authenticity research. Fiorino et al.18 described aDirectAnalysis in
Real Time – High Resolution Mass Spectrometry (DART-HRMS)
method for wild-type and farmed salmon discrimination. Whilst pre-
vious studies have reported salmon authenticity analysis techniques,
these methods are subject to lengthy sample preparation procedures,
and failed to achieve a sufficient accuracy level in terms of geo-
graphical traceability19. A near-infrared spectroscopy and an ICP-MS
method were developed, combined with chemometric approaches to
determine discrimination between Chilean-farmed and Norway-origin
salmon20. More recently Chang et al.21 published an LC-HRMSmethod
for discriminating against Atlantic salmon origin from Norway and
Chile. Salmon geographical origin authenticity monitoring is needed,
but the provenance and numbers of samples required to develop and
validate untargeted-based methods must be carefully considered as
this will have a huge influence on the robustness of any procedure
developed.

The cruising growth pattern of salmon makes their eating quality
highly influenced by the growing environment, diet, and acute stress
responses22, so a single analytical approach is highly unlikely to pro-
vide all the information needed to ensure authenticity. Rapid Eva-
porative Ionisation Mass Spectrometry (REIMS) is a technique which
has been shown to provide real-time, in-situ analyses without the need
for any sample pre-treatment, and has demonstrated excellent per-
formances in a range of food authenticity applications, and most
particularly in fish analyses23,24. Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) was considered as the first choice of instru-
ment platforms to conduct elemental analysis, and it has been shown
to be a powerful technique for food authenticity testing, having been
used to determine the geographical origin of various food products
such as rice25, tea26, and honey27.

Recent studies have shown that data fusion coupled with che-
mometric approaches can effectively assess and classify the quality of
foodstuffs, indicating the significant potential of data fusion-
multivariate statistical analysis in food authenticity research28–30.
Robert et al.31 investigated the predictive ability of Raman and infrared
spectroscopy coupled with data fusion strategies, for assessing the
quality of red meat. A study conducted by Ottavian et al.32 provided
confirmation that data fusion strategies can be effectively utilised to
improve classification accuracy in fresh and frozen-thawed fish dis-
crimination. Nevertheless, no prior research on the combined utilisa-
tion of ICP-MS and REIMS coupled with data fusion and multivariate
analysis approach for authenticating the salmonorigin andproduction
method has been undertaken.

The focus of the present study was to establish how best to
determine the authenticity of salmon in terms of its geographical
origins and differentiate wild from farmed origins. Two different mass
spectrometry platforms were employed to undertake lipidomic and
elementomic approaches and the data generated was subjected to
advanced chemometric modelling and machine learning.

A large number (n = 522) of salmon samples of known provenance
were collected from four regions (Alaska, Norway, Iceland, and Scot-
land) and two production methods (farmed and wild caught). These
were analysed to identify and characterise biomarkers based on their
lipid and elemental profiles that could be used to verify salmon origins
and productionmethod. Amultivariate data analysismethodbased on
mid-level data fusion was used to demonstrate how this technique can

be used to provide an accurate, science-based approach to verifying
the traceability of salmon. Seventeen salmon samples purchased from
a number of UK-based supermarkets were used to evaluate the
robustness and credibility of this method.

Results
Profiling of REIMS data for salmon analysis
To explore the ability to identify specific salmon growing regions,
principal compound analysis (PCA) was adopted as a linear unsu-
pervised feature extractionmethod for reducing the dimensionality of
REIMS data. The resulting spectral data were pre-processed before
being subjected to PCA. The results, shown in Fig. 1a, demonstrate the
relative differences among the four regions included in the study
(Alaska, Norway, Iceland, and Scotland). Loading plots were used to
reveal the individual principal component composition in the PCA
(Fig. 1b). The loading functions (Fig. 1c) for mass data show the con-
tribution of individual mass spectrometric peaks to the second prin-
cipal component (PC2). The loading plot peaks correspond to fatty
acids (including both unsaturated and branched fatty acids) dia-
cylglycerophosphoglycerols (GP0401), diacylglycerophosphocholines
(GP0101), and triradylglycerols (GL0301) species with tentative iden-
tifications being made by use of the LipidMaps database33.

The Icelandic salmon group was clearly divided into two sections
in the PCA plot (Fig. 1a). One of these pertained to 90 samples of wild-
caught salmon, with the remaining 50 samples being from farmed
origin. A chemometric model (Fig. 1d) was created to classify salmon
samples from Iceland as either ‘wild salmon’ or ‘farmed salmon’, and
the PCA score plot clearly shows substantial differences between these
two salmon groups. CV-ANOVA results of the PCA model showed that
there was a significant difference between Icelandic farmed and wild
salmon groups (p <0.001). Figure 1e shows the loading plot between
PC1 and PC2, which again clearly demonstrates differences across all
five groups, as does the mass spectra from all the groups of salmon
samples (Supplementary Fig. S1).

Supervised modelling was then undertaken, making use of
Orthogonal Partial Least Squares – Discriminant Analysis (OPLS-DA),
Partial Least Squares – Discriminant Analysis (PLS-DA), and Principal
Component Analysis-Linear Discriminant Analysis (PCA-LDA) model-
ling was undertaken. This was to identify individual chemical markers
which had the largest ion intensity variations between each salmon
group. OPLS-DA (Supplementary Fig. S2) modelling of the Iceland wild
salmon and farmed salmon groups showed the clearest differences
between the two classes and was used in biomarker selection and
identification. Multiple S-plots were generated by comparing one
groupwith the remaining four groups in order to identify the chemical
markers that are unique to each individual group. This was repeated a
further four times until each group was analysed individually against a
combination of the remaining groups, resulting in five S-plots being
generated (Supplementary Fig. S3).

As shown in Table 1, ion intensity variations of a total of 18
candidate biomarkers enabled the differentiation the five salmon
groupings. However, the identification of the origin of salmon
cannot be based solely on these biomarkers (Supplementary Fig.
S6) due to the number of features being too small to get high
accuracy. MS scan data was used to tentatively identify the bio-
markers, initially identified according to HRMS compound identi-
fication system Tier 1–4 proposed by Schymanski et al.34, which
were then compared to lipid groups in the LipidMaps database33.
These biomarkers were tentatively identified as lipid groups
belonging to unsaturated fatty acids, primary amides, branched
fatty acids, N-acyl amines, diacylglycerophosphoglycerols, dia-
cylglycerophosphocholines, and triacylglycerols. As the goal of this
work was not to investigate the positions of C=C bonds or the
presence of chain branching for the detected FA the site of the
carbon-carbon pi bonds were not further identified.
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Among the 18 biomarker lipids, eight (FA 15:1, FA 18:3, FA 20:5, FA
22:6, FA 22:1, FA 18:2, FA 18:1, NA 7:0) were found to be representative
biomarkers in at least three salmon groups (Supplementary Table S1),
for example, mass bin 327.3 contained a biomarker found in all five
salmon groups that could be used to differentiate those groups based
on the intensity of that compound. Since these eight lipids were
common in salmon, the relative content of them in the five salmon
groups were assessed respectively (Fig. 2a). The fatty acid profiles
amongst the groups of salmon showed differences, and when the
farmed group (Norwegian, Scottish, and Icelandic) were compared
with the wild group (Alaskan and Icelandic), the latter group demon-
strated higher levels of health-promoting omega-3 fatty acids: DHA (FA
22:6), EPA (FA 20:5), and FA 22:1, but lower levels of ALA (FA 18:3). The
branched fatty acids (FA 18:1, FA 18:2, FA 18:3) in Norwegian salmon,
Scottish salmon, and Icelandic farmed salmon were present at higher
levels than in Alaskan salmon and Icelandic wild salmon. The observed
variances foundweremost likely due to differences in the diets ofwild-
caught versus farmed salmon. The increaseduseof oils in salmon feeds
obtained from the seeds of soy, flax, and rape, rich in FA such as 18:1,
18:2, and 18:3, concentrations FA 18:2 and 18:3 have been reported to

be more abundant in farmed salmon18, which was consistent with the
data generated in the present study.

Norway, the world’s largest producer of farmed Atlantic salmon35,
has the highest relative content of FA 18:1, 18:2, and 18:3 in their farmed
salmon, whilst in terms of unsaturated fatty acid content, Norwegian
salmon also performed well. It is interesting to observe that, following
Alaskan salmon, Norwegian farmed salmon achieved the second
highest relative content in FA 15:1 amongst the five groups, likely a
result of the increasing research focus on salmon feed components36.
Salmon diets have been shown to have a direct impact onmuscle lipid
and fatty acid composition as well as growth performance37,38. Giu-
seppina et al.18 showed that the international standardisation of
aquaculture practices adopted for salmon may remove differences at
the FA level attributable to the geographic location. The combination
of lipidomics and elementomics analyses is, therefore, more likely to
be a reliable and robust method for determining the provenance of
salmon.

The PCA score plot shows the chemical compounds of each
sample group. R2 and Q2 values of 0.957 and 0.93, suggested that the
PCA model was both robust and had good predictive ability towards

Fig. 1 | REIMS lipidomic fingerprints of Alaskan salmon, Icelandic salmon,
Norwegian salmon, and Scottish salmon reveal distinct differences amongst
the classes. a PCA score plot amongst Alaskan salmon, Icelandic salmon, Norwe-
gian salmon, and Scottish salmon: Intra-group differences were seen in the PCA
model for the Iceland group (light blue dot). PC1 and PC3 are shown for clarity. PC1
contributed to 38.37% of the total explained variations, and PC3 has 15.26%

contribution in the total explained variations. b PC1 and PC3 loading plot amongst
4 salmon groups. c PC2 loading plot amongst 4 salmon groups, which had 24.0%
contribution in the total explained variations. d PCA score plot between Icelandic
farmed salmon and Icelandic wild salmon. e PC1 and PC2 loading plot between
Icelandic wild and farmed salmon.
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additional data points. PCA-LDAmodelling has previously been shown
to performwell with REIMSdata39. As a result of this an LDAmodel was
built using a reference database populated by mass spectra featuring
fish lipid types of salmon origin discrimination, followed by an
assessment of the modelling using a leave-20%-out cross-validation.
The PCA-LDA (Fig. 2c) models showed a more distinct separation
amongst Alaskan salmon, Icelandic farmed salmon, Icelandic wild sal-
mon, Norwegian salmon, and Scottish salmon.

The application of REIMS for the rapid profiling of salmon origin
was demonstrated, and the lipid fingerprints of salmon from five dif-
ferent origins and twoproductionmethodswere successfully acquired
for the first time in the present study. Eight lipids were identified as
representative biomarkers, out of a total of 5500 HRMS components.
Leave 20% out cross-validation provided a 100% identification accu-
racy on salmon samples when using the LDA model (Supplementary
Table S2).

This model was used to identify the origins of salmon purchased
from a number of UK-based supermarkets (n = 17). Potential outliers
were found in three test samples (Supplementary Tables S2 and S6).
These outliers were Scottish-farmed salmon samples. The three out-
lying results were checked with the retail suppliers and full traceability
for each was confirmed, thus indicating analytical errors rather than
mislabelling had occurred and an overall success rate of 82.4% correct
identification was attributed to this study.

Elemental composition differentiation of salmon from a range
of geographical origins
A screening method was established using ICP-MS for the following
elements analysis: Li, Be, B, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga,Ge, As, Se, Rb, Sr, Y, Nb,Mo, Ag, Cd, In, Sn, Sb, Cs,
Ba, Tb, Ho, Ta, W, Re, Hg, Tl, Pb, Bi, U. PCA and hierarchical clustering
analysis was undertaken on the data to achieve the overall element
difference of salmon from the various origins of samples obtained
(data were separated into five groups: Alaskan salmon, Icelandic
farmed salmon, Icelandic wild salmon, Norwegian salmon, and Scot-
tish salmon). The PCA score plot shows the elements distribution of
each group, representing that the elements differences among five
groups (Fig. 3a). The values of R2X and Q2, 0.98 and 0.85, respectively,
were obtained, thereby indicating that the PCAmodel was both robust

and stable. TheOPLS-DAwas used as a supervisedmodel to assess data
from the ICP–MSplatform (Fig. 3b). The results revealed that therewas
good separation amongst the five groups. The OPLS-DA resulted in all
elements components with R2X = 1, R2Y =0.76, and Q2 (cum) =0.74.
This strongly suggested that the OPLS-DA model had a strong cap-
ability to explain sample differences and demonstrated how the dis-
tribution of elements in salmon varied amongst the five sample
groups.

Before further data analysis, the elements with excessively high
concentrations and those with quantitative results that were below
limit of detection were removed. The remaining 20 elements were
selected from the raw ICP-MS data; Li, B, Al, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, As, Se, Rb, Sr, Nb, Mo, Cd, Cs, and Ta. A Kruskal–Wallis one-way
analysis of variance was used to assess data from the ICP-MS to eval-
uate the difference of the elements in salmon flesh amongst the five
groups. The significance level was set to 0.05 with the confidence
interval set to 95%. The results showed therewere significant elemental
differences across the five groups when theywere compared (Table 2).

The intergroup differences of these 20 elements present in the
five groups of salmon samples were then determined. Heatmaps were
constructed using normalised concentrations for samples from
countries of origin to define their differential expression determina-
tions to reveal the unique relationships amongst the different salmon
origins. These have been shown in a heatmap (Fig. 3c). The ICP-MSdata
was normalised by rescaling using the min-max normalisationmethod
(rescaling the range of features to scale the range in [0, 1]). Elements
were clustered into five major sample groups: Alaskan salmon, Ice-
landic farmed salmon, Icelandic wild salmon, Norwegian salmon, and
Scottish salmon. The gradual changes in pink, white, and blue reflect
when an element concentration in salmon goes from high to low and
depicts the substantial differences in Li, B, V, Fe, Co, Zn, Se, As, and Cd
levels across the five groups.

Element pairwise comparison analysis was used to further evalu-
ate the difference between the five groups (Fig. 4). The results showed
that there was no statistically significant difference in lithium levels
between Alaskan and Icelandic-farmed salmon samples (p =0.28). The
boron content was substantially lower in Icelandic-wild salmon than in
the other four groups, and the vanadium content was lower in the
Icelandic-farmed salmon. In Alaskan and Icelandic wild salmon

Table 1 | Putative identifications of identified biomarkers and the ion found to bemost significant for the separation of salmon
from different geographical origin in the chemometric models

Metabolism Ion bin category (Da) Chemical composition Accurate mass (Da) Lipid identifier

Unsaturated fatty acids [FA0103] 127.1 C7H12O2 127.0759 FA 7:1

239.1 C15H28O2 239.2011 FA 15:1

277.3 C18H30O2 277.2168 FA 18:3

301.3 C20H30O2 301.2168 FA 20:5

327.3 C22H32O2 327.2324 FA 22:6

337.3 C22H42O2 337.3107 FA 22:1

Branched fatty acids [FA0102] 255.3 C16H32O2 255.2324 FA 16:0

279.3 C18H32O2 279.2330 FA 18:2

281.3 C18H34O2 281.2481 FA 18:1

309.3 C20H38O2 309.2794 FA 20:1

Primary amides 280.3 C14H23N3O3 280.1667 –

282.3 C18H37NO 282.2797 –

N-acyl amines [FA0802] 128.1 C7H15NO 128.1075 NA 7:0

222.1 C14H25NO 222.1863 NA 14:2

338.3 C20H37NO3 338.2701 NA 20:2

Diacylglycerophosphoglycerols 745.5 C40H75O10P 745.5020 PG 34:2

Diacylglycerophosphocholines 790.5 C45H78NO8P 790.5387 PC 37:6

Triacylglycerols 909.5 C60H94O6 909.6972 TG 57:11
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samples, the iron levels were higher than the three farmed salmon
groups. Cobalt showed no significant difference in concentrations
between Norwegian salmon and Scottish salmon (p =0.14). Alaskan
salmon had the lowest cobalt content amongst all groups. The zinc
levels in Alaskan salmon, Icelandic wild salmon, and Icelandic-farmed
salmon were higher than that of salmon produced in Scotland and
Norway. There was no significant difference in zinc concentrations
between Alaskan salmon and Icelandic-farmed salmon (p =0.62).
Alaskan and Icelandic wild salmon groups were shown to have greater
selenium levels than the other three groups.

The results also showed the salmon samples from Iceland
(including farmed and wild) had higher arsenic content than those
sourced in Norway and Scotland. It is not overly surprising to find
arsenic in salmon, as marine organisms consumed by this species can
contain high levels of arsenic40. The toxicity of arsenic is not solely
associated with the total concentration, but also depends on the
arsenic species present, because the bioavailability and bioaccumula-
tion in marine organisms are influenced by arsenic speciation40.

Cadmium was also detected in all five groups of salmon samples,
with clearly higher levels in Alaskan and Icelandic wild salmon (Fig. 4).
There have been no previous reports of cadmium detection in salmon.
Cadmiumposes a greater health hazard due to the very poor excretion
in the human body, and the International Agency for Research on

Cancer has classified cadmium as a human carcinogen (group I)41. Wild
salmon was observed to have higher levels of Fe, Zn, and Se.

The OPLS-DA model was evaluated using five-fold cross-valida-
tion. Li, B, V, Fe, Co, Zn, Se, As, and Cd were found as markers. How-
ever, it was found to be difficult to distinguish the origin of test
samples using only nine elemental markers (Supplementary Fig. S7).
Thus, using whole data set, a classification accuracy of 96.9% was
achieved for differentiation amongst five groups of salmon samples
(Supplementary Table S3). Of the 17 retail samples, only 11 had their
origins correctly identified (65.5% accuracy). The misclassification
results were observed in six samples (Supplementary Tables S3 and
S4). In contrast to the REIMS classification results which had issues
with Scottish salmon identification, all six ICP-MS misclassifications
were wild Alaska salmon samples.

Data fusion and multivariate analysis profiling of salmon geo-
graphical traceability
The experimental and data analysis procedure is depicted in Fig. 5.
Data acquisition of salmon samples using REIMS and ICP-MS was car-
ried out. Low-level data fusion and mid-level data fusion techniques
were employed to determine the most appropriate data fusion
method. Subsequently, six chemometric models were analysed and
optimised in order to select the most suitable for authenticity analysis

Fig. 2 | Main effects of lipid differences on salmon geographical identification.
aHistogramof lipid biomarkers amongst Alaskan salmon, Icelandic farmed salmon,
Icelandic wild salmon, Norwegian salmon, and Scottish salmon. b PCA score plot

and c LDA plot of REIMS spectral data (m/z 200–1200) obtained from five salmon
groups. For Mass spectra fingerprints of five groups, see Supplementary Fig. S1.
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of the salmon origin and production type. The selected model was
then used to perform this analysis.

To test for the geographic origins of salmon, two types of mass
spectrometry datasets (one from REIMS, one from ICP-MS) were
used formodel training and evaluation. For REIMS, data parsing was
performed: (i) background subtraction and a (<1 × 10−5) total ion
count intensity threshold was used to remove background noise
and low intensity compounds which cab introduce excess variability
into themodelling process, (ii) apply lockmass correction, to ensure
any drift in mass spectrometer stability between samples and cross
different days is minimised to improve modelling performance, (iii)
binning HRMSmass data at 0.2 Da to reduce the number of variables
used in the modelling process, whist simultaneously increasing the
level of feature alignment between individual samples. Accordingly,
5500 data points were obtained from each sample. For ICP-MS, a
certified reference material (CRM), which included 20 elements,
was used to normalise the original data and monitor instrument
performance.

Two types of data fusion were compared; low-level data fusion
and mid-level data fusion. Low-level data fusion combines several
sources of raw data to produce new raw data (Fig. 6a). The first 5
Principle Compounds (PCs) explained 90.3% of the variation in the
original dataset (R2X cumulative = 0.90), demonstrating the success of
the low-level data fusion. Moreover, with Q2 values of 0.90, the PCA
modelwas shown tohave ahigh capability to explain the salmongroup
differences. And the first 23 PCs explained 95% of the variation in the
original dataset (R2X cumulative = 0.95), and the predictive ability of
the model is Q2 = 0.94.

Mid-level data fusion was based on data dimensionality reduction
in this research. The reduction algorithms seek to alleviate the pro-
blems associated with dimensionality by reducing data complexity,
and thus improving data quality42. PCA has historically been the most
commonly usedmethod for dimensionality reduction43. The results of
the PCA of REIMS and ICP-MS data were analysed respectively, and
subsequently PCs was used as an unsupervised data compression
technique for dimensionality reduction when fusing the two datasets.
The number of components was determined by examining the
cumulative explained variance ratio as a function of the number of
components. The first eight components contain approximately 85%
of the variance from the ICP-MS data (Fig. 6c), whilst 226 components
would be needed to retain 85% of the REIMS data variance (Fig. 6d).
Figure 6b shows the 234 selected variables, 226 ofwhichwere from the
5500REIMS and eight from the 20 ICP-MS. R2 andQ2 values of 1.00 and
0.98 respectively indicates that the PCAmodel has a high capability to
explain the salmon group differences. Mid-level data fusion was con-
sidered a better choice for REIMS and ICP-MS data, since it was found
that this can not only reduce data processing time but also improve
data prediction performance and model robustness.

In order to compare the performance of different classification
algorithms on different data training sample strategies, six metabo-
lomic models, k-nearest neighbours (k-NN), PLS-DA, OPLS-DA, LDA,
Support Vector Machines (SVM), and Random Forest (RF) were
investigated in search of optimal combinations of analytical modelling
methods to identify the geographical origin of salmon (Fig. 6e–h). The
primary motivation for testing classification algorithms of various
types (linear/non-linear) was to select the best means of determining

Fig. 3 | Differentially element analysis between Alaskan salmon, Icelandic
farmed salmon, Icelandic wild salmon, Norwegian salmon, and Scottish sal-
mon. a Score plot of the PCA identified elements in five salmon groups. bOPLS-DA

for discrimination of salmon geographical origins. c Heatmap of the Alaskan sal-
mon, Icelandic farmed salmon, Icelandic wild salmon, Norwegian salmon, and
Scottish salmon, 20 elements are indicated above the heatmap.
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the country of salmon origin. To increase the computing efficiency, a
dataset containing mid-level data fusion was used.

For salmon origin determination (Table 3), 100% accuracy was
obtained by the LDA (Supplementary Fig. S4a), PLS-DA (Supplemen-
tary Fig. S4b), OPLS-DA (Supplementary Fig. S4c), and RF (Fig. 5h)
models. The SVM classifier provided a high accuracy of 98.6%. The
least well performing classifier was k-NN with 85.5% accuracy. Thus, at
the optimum performance threshold, the mid-level data fusion based
on salmon geographical traceability method achieved a 100% correct

classification rate on four types of supervised models (LDA, PLS-DA,
OPLS-DA, and RF), while eliminating false identification, relative to a
conventional classification workflow. The combination of REIMS and
ICP-MS analysis methods retained the majority of both lipid and ele-
mental information from the salmon samples.

The developedmodels were applied to evaluate the 17 previously
described retail salmon samples used to test the models. The PLS-DA
andOPLS-DAmodels obtained 100% accuracyon all six replicates from
all of these samples. The PLS-DA classifier showed a good fit in this

Fig. 4 | Elements pairwise comparison analysis in five salmon groups. The figure illustrates the significant variations in the levels of Li, B, V, Fe, Co, Zn, Se, As, and Cd
across the five salmon groups. Wild salmon groups were found to exhibit elevated levels of Fe, Zn, Se, and Cd compared to farmed groups.

Fig. 5 | The procedure of data fusion coupled to the chemometric model
approach. Data acquisition was carried out using REIMS and ICP-MS methods.
Data fusionandmodelingwere then conducted. PLS-DA andOPLS-DA, identified as

the optimal models in this research, proved to be effective for analyzing the tra-
ceability of salmon origin.
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case, with R2X =0.92, R2Y = 0.99 and Q2 = 0.97, indicating that it was
not overfitted and had good prediction capabilities. Additionally,
OPLS-DA model parameters of R2X, R2Y, and Q2 had values of 0.87,
0.97, and 0.96 respectively; this showed that the model had a good fit
with acceptable predictability. Whereas the other models (k-NN, LDA,
RF, and SVM)didnot perform aswell andweredeemednot sufficiently
reliable for salmon authenticity testing in termsof origin (Table 3). The
k-NN model classified all the 17 samples as outliers. LDA, RF, and SVM
models also misclassified several replicates of seven, two, and two

samples, respectively, into different groups. Thus, these were also
deemed as being unreliable for salmon authenticity testing.

The original 3D PLS-DA and OPLS-DAmodel are shown in Fig. 7a,
c (522 samples were used to build the models). The good separation
in the plots as well as the high correct classification rates by using
PLS-DA andOPLS-DAmodel. Sixteen of the 17 samples were correctly
classified Fig. 7b, d. One unknown sample labelled origin “Norway
and/or Scotland” were automatically classified into the Scot-
tish group.

Fig. 6 | Unsupervised salmon origin differentiation based on different data
fusion strategy, and Supervised learning parameter optimisation based on
mid-level data fusion strategy. a Low-level data fusion, using min-max normal-
isation, PCA scoreplot of 5 salmongroupswithdatamin-maxnormalisation.bMid-
level data fusion PCA score plot of 5 salmon groups. c ICP-MS principal compound
accumulated explained variance plot. d REIMS principal compound accumulated
explained varianceplot. eThe k value evaluationof k-NNmodel based onmid-level
data fusion, k values between 1 and 20were tested to find the optimal parameter of
the k-NN classifier using different sub-datasets in this study. The optimal k for the

k-NN classifier was chosen as k = 5. f Plot cumulative R2 and Q2 per component for
the PLS-DA model based on mid-level data fusion. Components 1–50 were com-
puted for parameter optimisation, and 25 was determined to be the optimal
component number.gNumber of predictors of RF classifier influenced the correct
classification rate, npredic 1–200 were tested for five groups to find the best
parameters for the RF classifier. npredic = 15 was found to be the best value for RF
classifiers, based onmid-level data fusion. h RF classifier correct classification rate
was influenced by the number of trees, Ntree = 500 was found to be the best value
for RF classifiers, based on mid-level data fusion.
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Discussion
The salmon samples used in the study came from five very important
salmon harvesting regions; the North Pacific (Alaska-wild) and North
Atlantic (Iceland-wild and farmed, Scotland-farmed, and Norway-
farmed) regions. The PacificOceanprovides habitat for several species
of salmon44, five species of salmon are more likely harvested in Alaska
waters (chinook [Oncorhynchus tshawytscha], chum [Oncorhynchus
keta], pink [Oncorhynchus gorbuscha], sockeye [Oncorhynchus nerka]
and coho [Oncorhynchus kisutch])45.Wild sockeye samples fromAlaska
were used in the present study as it is the most common wild salmon
species sold in theUKmarket. TheAtlanticOceanhas onlyone species,
Salmo salar, which was sourced from Norway, Iceland, and Scotland
for this study46.

The aim of this study was to determine if the combination of
REIMS, ICP-MS, data fusion, and multivariate data analysis could
provide a powerful tool for salmon geographical origin and pro-
duction method authentication. The performance of this unique
combination was evaluated by using a large number of salmon

samples collected with robust and reliable metadata over two years
(2020–2022). The data obtained from both REIMS and ICP-MS were
of sufficient quality to differentiate the geographical origin and
productionmethod of these salmon samples. Classification accuracy
for the differentiation of Alaskan wild salmon, Icelandic wild salmon,
Icelandic farmed salmon, Norwegian farmed salmon, and Scottish
farmed salmonwas found to be 100% in cross-validation using REIMS
(Supplementary Table S2) and 96.9% using ICP-MS (Supplementary
Table S3). However, using the gold standard validation technique of
non-targeted analysis, the samples obtained from UK retailers were
an additional element to the validation performed in the present
study, and the data obtained showed a single platformonly identified
14 of the 17 (REIMS) and 11 of the 17 (ICP-MS) test samples had their
origins correctly identified (Supplementary Table S4). The study was
augmented by the application of mid-level data fusion and multi-
variate analysis strategy. The principal components were extracted
from the raw data and performed mid-level data fusion. The applic-
ability of six chemometricsmodels (k-NN, LDA, RF, SVM, PLS-DA, and

Table3 |Model correct classification rate comparison results fromfive-fold cross-validationof 5 salmongroups, and theorigin
authenticity identification results of 17 test samples by using created model (6 replicants of each sample)

Model Group Alaska Iceland_Farmed Iceland_Wild Norway Scotland Outlier Correct rate (%)

KNN Alaska 57 1 15 20 6 0 85.47

Iceland_Farmed 0 47 0 3 0 0

Iceland_Wild 0 1 89 0 0 0

Norway 0 0 0 100 0 0

Scotland 0 1 5 24 153 0

Test samples 0 0 0 0 0 102 0

LDA Alaska 99 0 0 0 0 0 100

Iceland_Farmed 0 50 0 0 0 0

Iceland_Wild 0 0 90 0 0 0

Norway 0 0 0 100 0 0

Scotland 0 0 0 0 183 0

Test samples 25 1 1 1 35 39 58.83

RF Alaska 99 0 0 0 0 0 100

Iceland_Farmed 0 50 0 0 0 0

Iceland_Wild 0 0 90 0 0 0

Norway 0 0 0 100 0 0

Scotland 0 0 0 0 183 0

Test samples 41 1 1 0 53 6 92.16

SVM Alaska 96 0 1 0 2 0 98.64

Iceland_Farmed 0 47 0 0 3 0

Iceland_Wild 0 0 90 0 0 0

Norway 0 0 0 99 1 0

Scotland 0 0 0 0 183 0

Test samples 22 1 2 3 74 0 94.12

PLS-DA Alaska 99 0 0 0 0 0 100

Iceland_Farmed 0 50 0 0 0 0

Iceland_Wild 0 0 90 0 0 0

Norway 0 0 0 100 0 0

Scotland 0 0 0 0 183 0

Test samples 42 0 0 0 60 0 100

OPLS-DA Alaska 99 0 0 0 0 0 100

Iceland_Farmed 0 50 0 0 0 0

Iceland_Wild 0 0 90 0 0 0

Norway 0 0 0 100 0 0

Scotland 0 0 0 0 183 0

Test samples 42 0 0 0 60 0 100

Rows: labels, columns: predicted labels.
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OPLS-DA) in the authenticity analysis of salmon origin was investi-
gated. Results showed that the OPLS-DA and PLS-DA models, based
on the REIMS and ICP-MS data using mid-level data fusion, was able
to correctly assign authenticity in 100% of the retail samples. These
samples were an additional and real-world challenge to the testing as
they have gone through different forms of commercial processing,
storage, and packaging.

Data fusion has been shown to be an effective way to reduce the
computer processing time and resources needed for salmon origin
classification, while also minimising the errors associated with a very
large number of model operations. The PCA models were used to
extract and visualise the content of the data using a data fusion pro-
tocol. In comparison to modelling the data separately, the mid-level
approach showed improvements in data analysis on both identifica-
tion efficiency and classification accuracy. Thus, it has been demon-
strated, that a dual mass spectrometry - data fusion- multivariate
analysis approach to authenticity testing has resulted in the generation
of extremely reliable results which will serve to improve the identifi-
cation of mislabelling and reduce disputes amongst companies when
authenticity issues arise.

Methods
Samples
A total of 522 samples were sourced from trusted suppliers in four
countries: 99 from Alaska, 183 from Scotland, 100 from Norway, and
140 from Iceland. These salmon samples were collected and analysed
in four batches over a three-year time period (2020–2022). The sam-
ples were stored at −18 °C before analysis and fully thawed at room

temperature prior to sample analysis. Six replicates were analysed
from each sample for both instrument platforms. An extra 17 samples
were purchased from UK supermarkets at the end of May 2022, which
were checkedwith the retail suppliers and full traceability for eachwas
confirmed. According to the information on the labels of these 17 sal-
mon samples, 9 were from Scotland, 7 from Alaska, and 1 from Scot-
land and/or Norway. Sample ID and origins of 17 test samples are listed
in Supplementary Table S4.

REIMS-QToF analysis
In all trials, an Erbe VIO50C generator was used for electrosurgical
dissection (Erbe Elektromedizin GmbH, Tuebingen, Germany). The
generator was set to ‘autocut’ mode with a power output of 30W. A
3m long, 15mm diameter ultra-flexible tubing (evacuation/vent line)
was used to connect the REIMS source to an Erbe 20321-028 mono-
polar electrosurgical knife (Erbe Elektromedizin GmbH, Tuebingen,
Germany). AWaters REIMS sourcewas coupledorthogonally toWaters
Xevo G2-XS quadrupole time-of-flight mass spectrometer (Waters,
Wilmslow, Manchester, UK).

The mass spectrometer was calibrated with a 20 µL/min infusion
flow rate of 0.5mM sodium formate solution (90% IPA) at a mass
resolution of 15,000 full width at half maximum (FWHM) at m/z 600
before analysis. The heater bias was set to 40 volts and the cone vol-
tage set to 60 volts. Mass spectrometric analysis was performed in
negative ion polarity and sensitivity mode over a mass range of
100–1200m/z with a scan time of 0.5 s/scan. Leucine Enkephalin
(LeuEnk) (m/z 554.2615) (2 ng/µL) in isopropanol (IPA), infused using a
Waters Acquity UPLC I-class system (Waters, Milford, MA, USA) at a

Fig. 7 | Use PLS-DA and OPLS-DAmodel for salmon sample origin authenticity
analysis based on mid-level data fusion strategy. a Original PLS-DA model plot
createdbyusing 522 salmonsamples.bSampleorigin authenticity analysis by using
PLS-DAmodel (6 replicants of each sample). cOriginalOPLS-DA3Dplot.dOPLS-DA

model shown the results of salmonorigin authenticity identification (6 replicants of
each sample); 6b and 6d show that when this sample was defined as “Norway”-light
blue group, it was classified into the yellow group “Scotland.
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continuous flow rate of 200 µL/min, were set as lockmass solution for
accurate mass correction.

The data was acquired using MassLynx v4.2 (SCN966 & SCN1010)
(Waters, Wilmslow,Manchester, UK). Raw datasets were analysed with
Abstract Model Builder (AMX) v 1.0.1563.0 (Waters Research Centre,
Budapest, Hungary). Theprocessedmatrixgeneratedby theprototype
modelling software was exported to SIMCA 14.1 (Umetrics, Umea,
Sweden), where it was subjected to OPLS-DA, with the data mean
centred and Pareto scaled. S-plots and coefficients vs. VIP were used to
visualise OPLS-DA predictive results. The distinction between classes
will first be shown as differences in mass bins, from which the precise
mass of analytes (biomarkers) found within each mass bin can be
determined.

ICP-MS analysis
High-purity water (18.2mΩ) from a Milli-Q system (Merck-Millipore,
Billerica, MA, USA), 30% hydrogen peroxide and 67–69% nitric acid
(VWR, Lutterworth, UK) was used for sample preparation. Calibration
solutions were prepared (2% v/v HNO3) over the range 0.1, 1, 5, 10, 20,
50 and 100 ng/mL from serial dilutions of 10μg/mL certified multi-
element standards solution 2 and 4 (SPEX, Metuchen, NJ, USA), and
prepared weekly.

The following approach was used to digest salmon samples:
minced salmon were stored in 50-mL centrifuge tubes (Sarstedt,
Nümbrecht, Germany) before freeze-drying for 2 days using a Lablyo
freezedrier (Frozen in Time, York, UnitedKingdom). A 100-mg salmon
sample was weighed and transferred to a 50-mL polypropylene tube
before adding 2mL of 67–69% nitric acid, and the sample was left in a
fume hood to digest for at least 15 h.

A 2-mL aliquot of 30% hydrogen peroxide was added to each
sample before microwave digestion using a Mars 6 system (CEM,
Matthews,NC,USA) using the followingprotocol: Over a 35-minperiod
(0–5min: room temperature to 54 °C; 5–20min: held at 54 °C;
20–25min: 54 °C to 65 °C; 25–35min: held at 65 °C), the samples were
progressively heated to 95 °C. The temperature was then adjusted to
95 °C for another 30min. After cooling, the tubes were then filled to
20 g with 18mΩ H2O using a VWR SE622 balance (VWR, Leuven,
Germany).

The samples were analysed with Agilent 7850 (Model 8422A)
single-quadrupole ICP-MS (Agilent, Singapore) and Agilent 8900
(Model G3665A) triple-quadrupole ICP-MS (Agilent, Santa Clara, CA,
USA). A peristaltic pump connected to an Agilent MicroMist nebuliser
and an Agilent SPS4 autosampler was used to introduce samples into
the instrument. Agilent ICP-MS MassHunter 5.1 software was used to
acquire data, which was then processed using Agilent Online ICP-MS
software to create a matrix of elemental concentrations.

The accuracy was evaluated using a powdered standard reference
material (Certified Reference Material, RM8414, Canada), and each
worklist hadcontrol samples added at the beginning and end. A 10mg/
L Rh solution (used as an internal standard) was infused during data
acquisition and the analytical signal was divided by the internal stan-
dard signal using mathematical data processing.

Data simulation and modelling
Data fusion relates to the process of combining data blocks from
various sources into a single global model47. In general, the various
methods for fusing data that have been proposed in the literature are
broadly classified into three strategies, based on the level of the data
analytical flow at which fusion occurs: low-level, mid-level, and high-
level48,49.

Low-level data fusion strategy implies that thematrices describing
the individual blocks, after proper pre-processing, are concatenated to
build a single array which is then processed by the desired chemo-
metric technique50. Mass spectrometry data acquired by REIMS and
ICP-MS was exported into CSV files and analysed directly. The mid-

level strategy, fusion takes place at the level of features extracted from
various data blocks. These characteristics can be original variables
identified as relevant by a variable selection procedure, but factor
loadings are used in the majority of cases51,52. PCA scores were used to
describe the significant variation from the different blocks in this
research. High-level data fusion, operated at the decision level, was not
considered in this study because it is not commonly used.

PCA, an unsupervised technique, and the supervised techniques
k-NN, SVM, RF, LDA, OPLS-DA53, and PLS-DA54 were compared to
evaluate classification accuracy55. The k-NN regression computes the
mean of the function values of its nearest neighbours, and it is a
nonparametric method used for classification and regression25. The
efficiency of SVM classification has been verified in many case studies
since it was invented by Cortes and Vapnik24. Based on decision trees,
RF uses rules to split data56. The LDA model is based on determining
linear discriminant functions that maximise the ratio of between-class
variancewhileminimising the ratio ofwithin-class variance24. PLS-DA is
very similar to LDA, but with noise reduction and variable selection
advantages of PLS57. LDA and PLS-DA are two of the most frequently
used supervised pattern recognition methods for REIMS data
analysis33. OPLS-DA features an integrating orthogonal signal correc-
tion filter to separate systematic variations in the prediction (corre-
lated to Y) and orthogonal (uncorrelated to Y) components, to explain
the variation between and within groups58. As an extension of the
supervised PLS regressionmethod, OPLS-DAmodels have been widely
applied in food authenticity analysis53.

In all cases, the original data set was randomly divided into
training and validation sets. The five-fold cross-validation, leaving out
1/5 (20%) of the data, were used. We trained the model with 4/5 (80%)
of the data and used it to predict the classifications of the remaining
20%. The process was repeated five times, each time with a different
partition being predicted by a model trained with the other four
partitions.

All analysis was done using R, with the following packages:
ggplot2, ggsignif, ggpubr, RColorBrewer, caret, MASS, kknn, Hmisc,
randomForest, ropls, and kernlab.

Data availability
The authors declare that the Raw data and the Source data are pro-
vided with this paper. Datasets have also been deposited in Figshare
under accession link https://doi.org/10.6084/m9.figshare.22654477.
The data that support the plots within this paper and other finding of
this study are also available from the authors upon request. Source
data are provided with this paper.

Code availability
The code for the data fusion and multivariate analysis methods is
available from the authors with detailed explanations upon request.
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