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An open resource combining multi-contrast
MRI and microscopy in the macaque brain

Amy F. D. Howard 1 , Istvan N. Huszar1, Adele Smart 1,2, Michiel Cottaar 1,
Greg Daubney3, Taylor Hanayik1, Alexandre A. Khrapitchev 4,
Rogier B. Mars 1,5, Jeroen Mollink1, Connor Scott 2, Nicola R. Sibson 4,
Jerome Sallet3, Saad Jbabdi1,6 & Karla L. Miller 1,6

Understanding brain structure and function often requires combining data
across different modalities and scales to link microscale cellular structures to
macroscale features of whole brain organisation. Here we introduce the Big-
Mac dataset, a resource combining in vivo MRI, extensive postmortem MRI
and multi-contrast microscopy for multimodal characterisation of a single
wholemacaque brain. The data spansmodalities (MRI andmicroscopy), tissue
states (in vivo and postmortem), and four orders of spatial magnitude, from
microscopy images with micrometre or sub-micrometre resolution, to MRI
signals on the order of millimetres. Crucially, the MRI and microscopy images
are carefully co-registered together to facilitate quantitative multimodal ana-
lyses. Here we detail the acquisition, curation, and first release of the data, that
together make BigMac a unique, openly-disseminated resource available to
researchers worldwide. Further, we demonstrate example analyses and
opportunities afforded by the data, including improvement of connectivity
estimates from ultra-high angular resolution diffusion MRI, neuroanatomical
insight provided by polarised light imaging and myelin-stained histology, and
the joint analysis of MRI and microscopy data for reconstruction of the
microscopy-inspired connectome. All data and code are made openly
available.

Our ability to characterise brain connectivity has been greatly
advanced by the scientific community’s open access to big data. Big
data can employ large cohorts to examine both inter- and intra-subject
variability (in e.g. the UK Biobank1 or Human Connectome Project2), or
aim to characterise a single brain in exquisite detail3. Here we intro-
duce “The BigMac Dataset” —Big data in aMacaque brain—a resource
that combines in vivoMRI with extensive postmortemMRI and whole-
brain, multi-contrast microscopy data in a single macaque brain. Big-
Macconsists of in vivodata acquiredovermultiple sessions, over 270 h

postmortem MRI scanning, over 1000 h of microscopy data acquisi-
tion and several terabytes of raw data.

The BigMac dataset combinesmultimodal data frombothMRI and
microscopy to explicitly address issues of sensitivity and specificity in
MRI. MRI is a powerful non-invasive method that can inform on whole-
brain structure and function, which can in turn be related to cognition,
behaviour or medical outcomes. However, MRI also faces several lim-
itations. In vivo signals are typically noisy and confounded by artefacts
due to physiological effects and technical bottlenecks related to
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hardware limitations or the requirement for short scan times. Further-
more, MRI signals are often an indirect measure of the brain features of
interest, making interpretation challenging. Diffusion MRI maps the
microscopic motion of water molecules as they randomly move
through tissue, to infer structural connectivity or changes in cellular
morphology. These analyses require complex computational signal
modelling with many strong assumptions about how the tissue micro-
structure relates to the diffusion signal, which if inaccurate, can bias
model outputs. Crucially, the measurements are averaged over milli-
metres of tissue and so inference on brain structure or function at the
micrometer scale is hard, if not ill-posed. Consequently, characterisa-
tion of the connectome using MRI alone faces significant limitations.

Alternatively, connectome data can be acquired via light micro-
scopy, which is frequently used to study brain structure with micro-
metre or sub-micrometre resolution. Typically, thin tissue sections are
processed to visualise specific cellular structures where this high
‘specificity’ approach has applications from basic neuroanatomy to
disease mechanisms. Microscopy is however often limited to inter-
rogating small, ex vivo tissue sections and thus has limited applications
in vivo. Nonetheless, when microscopy is combined with MRI, it
affords the opportunity for multi-scale neuroscience, interconnecting
microscopic cellular processes with macroscopic MRI signals.

Such research ideally requires data that (i) combines com-
plementary MRI and microscopy data; (ii) relates high-quality post-
mortemMRI andmicroscopy to in vivo MRI; (iii) facilitates whole brain
analysis with densely sampled data throughout; (iv) has co-registered
MRI and microscopy data to facilitate meaningful voxelwise compar-
isons, and (v) provides the above in a single specimen. The latter is
essential as only when combining data from the same brain can we be
sure that we are not over generalising, or ignoring important inter-
subject variations. Few existing open datasets fulfil all these require-
ments. For example, existing data combining MRI and microscopy in
the same tissue sample are often limited to small tissue sections4–6, a
singlemicroscopy contrast orminimalMRI data7, or compare data from
different tissue samples, overlooking considerable between-brains
variability. The BigMac dataset aims to address each of these goals,
combining co-registered in vivo MRI, extensive postmortem MRI and
whole-brain multi-contrast microscopy data in a single macaque brain.

The BigMac dataset is interesting from both an anatomical and
methodological viewpoint. For those interested in microstructural
neuroanatomy, the densely sampledmulti-contrastmicroscopy can be
used to examine both the myelo- and cyto-architecture in great detail
and develop novel atlases or parcellations. For those interested in
multi-scale neuroscience, BigMac provides whole brain multimodal
data spanning four orders of magnitude with which we can link
microscale cellular structures to macroscale features of brain organi-
sation and function. For those interested in diffusion modelling, the
comprehensively sampled diffusionMRI space—which is co-registered
to microscopy data—can be used to drive protocol optimisation,
advance computational modelling of the tissue microstructure or
brain connectivity, and provide direct validation of many current
and future diffusion MRI models and analysis methods8,9. Finally,
for those interested in machine- or deep-learning approaches, the
BigMac dataset will support the development of novel algorithms
which jointly model MRI andmicroscopy data10,11, for example, to map
quantitative imaging biomarkers to specific features of the tissue
microstructure.

This paper documents the first release of the BigMac dataset. The
open data includes in vivo and postmortemMRI, aswell as whole brain
microscopy data from polarised light imaging12–14 and myelin-stained
histology15, both of which provide detailed information about tissue
myeloarchitecture16. Here we detail the multi-faceted data acquisition
and curation, and conduct some of the first analyses which demon-
strate the data quality and unique information or analyses afforded by
BigMac.

Results
First we provide an overview of the data included in BigMac. We then
explore the BigMac data from various viewpoints including (i) how
ultra-high angular resolution diffusion imaging affects connectivity
estimates, (ii) how microscopy can be used to detail the myeloarchi-
tecture of the brain, (iii) the quality ofMRI-microscopy co-registration,
(iv) voxelwise comparisons of MRI and microscopy metrics, and (v) a
method for performing hybridMRI-microscopy tractography. Here we
primarily analyse the postmortem data in BigMac, where translating
our work to the in vivo domain is the focus of future work.

Data summary
Figure 1 gives an overview of the BigMac dataset, with further acqui-
sition details provided in Table 1. Importantly, the BigMac dataset
includes in vivo data combining behavioural data with diffusion MRI
(1mm isotropic resolution), task fMRI (2mm isotropic), resting-state
fMRI (2mm isotropic) and structural MRI (0.5mm isotropic) acquired
over multiple scan sessions17,18. This provides an excellent opportunity
to link high-quality postmortem MRI and microscopy data (detailed
structural connectivity) to in vivo data (structural and functional
connectivity) within the same brain.

Ex vivo, a comprehensive MRI dataset (~270 h scanning time) was
acquired which includes high resolution (0.3mm isotropic) structural
images and extensive diffusionMRI data at two spatial resolutions (0.6
and 1mm isotropic). The 0.6mmdata includes 128 gradient directions
at b = 4ms/μm2, whilst the 1mm data includes 250 gradient directions
at b = 4ms/μm2 and 1000 gradient directions at b = 7 and 10ms/μm2

(‘ultra-HARDI data’). This ultra-HARDI data is complemented by diffu-
sion data with spherical tensor encoding at b-values of b = 4, 7, and
10ms/μm2 for advanced microstructural imaging. Images with negli-
gible diffusion weighting (b ~ 0ms/μm2) and a T1 map were also
acquired. ThepostmortemMRdata in BigMac serves two specific aims.
First, the postmortem data acts as a crucial intermediary between in
vivo diffusion MRI and postmortemmicroscopy: the postmortem and
in vivo MRI are similar in nature (i.e. both are MRI signals) but image
the tissue in different states (postmortem, fixed tissue versus in vivo),
whereas the postmortem MRI and microscopy share a similar tissue
state, though the signals are different. Second, compared to in vivo
MRI, the postmortem data is of particularly high quality. It benefits
from being acquired on a small-bore preclinical scanner at higher field
strength with exceptionally long scan times, and avoids signal
instabilities from physiological movement that can fundamentally
limit the signal-to-noise ratio (SNR).

After scanning, the entire brain was sectioned along the anterior-
posterior axis, with consecutive sections allocated to one of six
microscopy contrasts (Table 1). These sections were sequentially
allocated to polarised light imaging, to visualise the orientation of
myelinated fibres12–14, histological staining of myelin (Gallyas silver) or
Nissl bodies (Cresyl violet), or kept for complementary staining that is
to be decided. These unassigned sections were returned to formalin
and stored for longevity. The PLI and histology-stained slides were
then imaged at high resolution (4 or 0.28μm/pixel) and co-registered
to the MRI19.

Through this extensive, multimodal, multi-contrast acquisition,
the BigMac dataset aims to provide a detailed characterisation of the
macaque connectome, where the data and analysis tools are openly
disseminated to the scientific community (c.f. Data and Code
Availability).

Ultra-high angular resolution diffusion imaging
The postmortem diffusion MRI protocol had three main objectives
(Table 5.1): (i) high angular resolution imaging (a), (ii) high spatial
resolution imaging (b), and (iii) combining linear and spherical tensor
encoding (c). The diffusion MRI data includes two spatial resolutions:
high resolution 0.6mm data at b = 4ms/μm2 as well as 1mm data at
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b-values of 4, 7 and 10ms/μm2 (Fig. 1). Here the 0.6mm protocol was
designed to strike a good balance between spatial and angular reso-
lution. In comparison, the 1mm protocol facilitates the characterisa-
tion of complex fibre geometries through amore extreme sampling of
q-space, with multiple b-values—where the reduced resolution pro-
vides increased SNR at high b—and either 250 or 1000 gradient
directions per shell. In addition, at 1mmwe were able to acquire 1000
gradient directions (‘ultra-HARDI data’) in the outer two shells within
an achievable scan time (<1 week). Figure 2a shows the diffusion signal
from a single voxel, demonstrating how with 1000 gradient directions
we are able to examine the 3D signal profile in great detail.

We first examined whether having high angular resolution pro-
vided unique microstructural information with regards to fibre orien-
tations and structural connectivity. Here, the Ball and Stick model20,21

was used to estimate the fibre orientations from data acquired at dif-
ferent b-values (b = 4, 7 or 10ms/μm2) and varied angular resolution
(64 − 1000gradient directions). Examiningwhitematter voxels, Fig. 2b
shows how as the angular resolution of the data was increased, the Ball
and Stick model estimated an increasing number of voxels with mul-
tiple fibre populations (Fig. 2b top) and that the fibre orientations were
estimated with increased precision (Fig. 2b bottom). Both effects were
most striking in the tertiary fibres, suggesting that high angular reso-
lution data can resolve less dominant fibre populations which are
overlooked in lower angular resolution data, and which could have
important functional or structural profiles.

Differences in the estimated fibre populations from the Ball and
Stick model from high angular resolution data may have

downstream effects on tractography-based structural connectivity
estimates. Here we hypothesised that increased angular resolution
should result in superior fibre tracking through crossing fibre
regions, improving the reconstruction of long range connections.
Using probabilistic tractography (probtrackX21) we reconstructed a
dense connectivity matrix for the 82 cortical regions of interest
(ROIs) included in the Kötter and Wanke Regional Map (RM)
parcellation22–24. Figure 2c shows the fractional increase in the
number of streamlines from the matrix with 1000 gradient direc-
tions and that with 64 gradient directions ((N1000 − N64)/N64). The
ultra-high angular resolution dataset estimates more streamlines
reaching almost every pair of ROIs. There is a particularly high
number of additional streamlines between many interhemispheric
connections (green box). A notable exception to this overall pattern
is that parietal and premotor regions (coded yellow-orange on the
depicted brain surface) do not show a large increase in inter-
hemispheric connectivity with higher angular resolution (turquoise
box) but do show increased connections to other regions in the
same hemisphere (blue box). Many homotopic regions (where we
expect there to be true connections) have a > 1.8-fold increase,
where we tend to see a larger effect in more lateral homotopic
regions. Those with a > 50-fold increase include the ventral part of
the anterior visual area (VACv), the inferior temporal cortex (TCi)
and the central temporal cortex (TCc), (see Supplementary Figs. 1–3
for a more detailed discussion of these results). The high angular
resolution data produced notably longer streamlines, with a > 5-fold
increase in the number of streamlines whose length was >50mm.

Fig. 1 | A summary of the data in the BigMac dataset. A single macaque monkey
was scannedboth in vivo andpostmortem.The in vivoMRI data includes structural,
task functional MRI (fMRI), resting fMRI and diffusion MRI. The postmortem dif-
fusion MRI data contains up to 1000 gradient directions for b-values of 4, 7 and
10ms/μm2 and two spatial resolutions (0.6 and 1mm isotropic). A T1 map and data

with spherical tensor encodingwere also collected. For comparison, polarised light
imaging and histology provide high-resolution information about the tissue
microstructure at 4μm/pix and 0.28μm/pix respectively. In total, the postmortem
MRI acquisition constituted around 270 h scanning time and the microscopy data
took >1000h to acquire.

Article https://doi.org/10.1038/s41467-023-39916-1

Nature Communications |         (2023) 14:4320 3



Finally, Fig. 2d compares tractography reconstruction of the
superior longitudinal fasciculus (SLF) II from data with high angular
resolution (top), low angular resolution but high b-value (middle) or
high spatial resolution (bottom). Although this tract is not difficult to
reconstruct in human data, it’s reconstruction can be challenging in
the macaque. Here anatomically constrained probabilistic tracto-
graphy was performed using XTRACT25 with predefined seed, target
and exclusion masks. In Fig. 2d we use a fairly high threshold
(0.01 = 1%) on the normalised tract density mask to isolate the tract
centre (i.e. the voxels with the highest density of streamlines). In the
ultra-HARDI data, the high angular resolution and contrast allows us to
reconstruct the tract with a single, uniform core. We observe a higher
density of streamlines extending the main tract body into the frontal
and posterior regions, following the expected spatial extent and con-
nectivity of the SLF II. Neither the tract from lower angular or high
spatial resolution data have the same anterior-posterior reach. Instead
these tracts appears to have a systematic false positive offshoot (yel-
low arrows) extending to the superior cortex, which may be indicative
of streamlines crossing to the SLF I26.

Together, these results suggest that higher angular resolution
data may be advantageous when trying to reconstruct long range or
inter-hemispheric connections which likely track through crossing
fibre regions.

Microscopy characterisation of brain myeloarchitecture
After scanning, the whole brain was sectioned along the anterior-
posterior axis, with consecutive sections allocated to either polarised
light imaging12–14 or one of five histology contrasts. Each microscopy
contrast includes ~ 200 slides spanning the entire brain, with 350μm

separation between consecutive slides with the same contrast. As
microscopy imaging takes many hundreds of hours, the first data
release includes PLI andmyelin-stained histology (Gallyas15) as detailed
below; additional histological stains will be added to the BigMac
resource as these data are acquired.

Polarised light imaging (PLI)12–14 utilises the birefringence of
myelin to estimate the primary fibre orientation per microscopy pixel.
Figure 3a shows example PLI from different locations along the
anterior-posterior axis where image 1 is the most anterior and image 8
themost posterior. Herewe see themyelinated fibres in high detail at a
resolution of 4μmper pixel. The orientations are colour-coded in HSV
(hue-saturation-value) space, where the hue is dependent on the fibre
orientation and the value is related to the tissue birefringence. The PLI
data can, for example, track white matter fibres fanning across the
cortex (3a, i), bundles projecting between deep greymatter structures
such as the globus pallidus and the putamen (ii), as well as pontocer-
ebellar fibres extending from the basilar sulcus and around the pons
(iii). Further the PLI can differentiate cortical layers which differ in the
orientation and density of myelinated axons ((i), white arrow).

In the cerebellum (3a,iv) we see i) clear delineation of the dentate
nucleus (white arrow) and ii) how the PLI data separates themolecular
and granular layers of the cerebellar cortex27; themolecular layer is the
top, outermost layer of the cerebellar cortex (Fig. 3b green arrows) and
the granular layer (yellow arrows) lies between themolecular layer and
the white matter. Notably, in many regions the molecular layer shows
fairly strong birefringence, with in-plane angles parallel to the cortical
surface. In comparison, the molecular layer at the gyri crown (blue
arrows) tend to have low birefringence. Although the birefringence in
the granular layer is low, we can observe individually identifiable fibres

Table 1 | A summary of the postmortem MRI and multi-contrast microscopy data in the BigMac dataset

Postmortem 
MRI

Resolution 
(mm iso) 

b-value
(ms/μm2)

# 
directions
(linear)

# averages
(spherical)

# b=0 
volumes

δ/Δ 
(ms)

TE/TR
(ms/s)

Structural 0.3 - - - - - 7.8 / 0.097
T1 maps 0.6 - - - - - 8 / 10

Diffusion MRI 0.6 4 128 - 8 7/13 25.4 / 10
Diffusion MRI 1 4 250 - 10 14/24 42.5 / 3.5
Diffusion MRI 1 7 1000 - 40 14/24 42.5 / 3.5
Diffusion MRI 1 10 1000 - 40 14/24 42.5 / 3.5
Diffusion MRI 1 4 - 30 1 - 42.5 / 6.4
Diffusion MRI 1 4 50 - 2 14/24 42.5 / 6.4
Diffusion MRI 1 7 - 30 1 - 42.5 / 6.4
Diffusion MRI 1 7 50 - 2 14/24 42.5 / 6.4
Diffusion MRI 1 10 - 30 1 - 42.5 / 6.4
Diffusion MRI 1 10 50 - 2 14/24 42.5 / 6.4

a) High spatial resolution, b) Ultra-high angular resolution (ultra-HARDI), c) Combining linear & spherical tensor encoding

Microscopy Thickness (μm) Staining Visualisation Imaging resolution
Polarised Light 

Imaging
50 None Myelinated fibres 4 μm/pix

Histology 50 Cresyl violet Nissl bodies -
Histology 50 - - -
Histology 50 Gallyas silver Myelin 0.28 μm/pix
Histology 100 - - -

Unstained 50 - - -

a)

b)

c)

Thepostmortemdiffusion data includes three protocolswhich canbroadly bedescribed as achieving a) high spatial resolution, b) ultra-highangular resolution, and c) combining linear and spherical
tensor encoded data. The first data release includes PLI and myelin-stained histology (Gallyas); additional histological stains will be added to the BigMac resource as these data are acquired. iso
isotropic; # number; DW diffusion-weighted; TE echo time; TR repetition time; ‘linear’ and ‘spherical’ indicate diffusion MRI acquired with linear and spherical tensor encoding.
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orfibrebundleswhichgenerally extend from thewhitematter and into
the molecular layer. This pattern is observed in many but not all areas
of the cerebellar cortex.

To hypothesise on the origin of the birefringence in themolecular
layer, we should consider the known architecture of the cerebellar
cortex (Fig. 3b right)27. The granular layer (between the white matter
and the molecular layer) contains cerebellar granule cells, some of the
smallest butmost numerous cells in the brain. The axon of the granule
cell extends vertically into themolecular layer, where it then splits into
twohorizontal branches in a ‘T-like’ fashion. These branches are known
as ‘parallel fibres’. The Purkinje cells sit with their soma in the ‘Purkinje
layer’, at the interface of the granular and molecular layer, and the

Purkinje dendritic tree extends into the molecular layer. The parallel
fibres of the granule cells run through the Purkinje dendrites, forming
synaptic connections with the Purkinje dendritic spine. Consequently,
it seems reasonable that these parallel fibres, running in line with the
cortical surface, could cause the coherently oriented birefringence of
the molecular layer. Similar conclusions were reached by Koike-Tani
et al.28who attributedhighbirefringence in themolecular layer of a late
stage chick embryonic cerebellum to the presence of densely packed,
non-myelinated parallel fibres.

Although PLI signal from brain tissue is typically associated with
the myelin, histological data did not support the presence of myeli-
nated fibres in the molecular layer (Fig. 3b left). Furthermore,

Fig. 2 | Ultra-high angular resolutionpostmortemdiffusionMRI allows us to (a)
characterise the diffusion signal in great detail, (b) find more tertiary popu-
lations and estimate fibre orientations with increased precision, (c) recon-
struct longer streamlines and increase inter-hemispheric connectivity,
particularly to the occipital and temporal lobe, and (d) reconstruct the SLF II
with increased confidence. a Each point represents the diffusion signal along a
single gradient direction. The voxel is shown from two orthogonal views. bThe Ball
andStickmodelwas fitted todatawith varying angular resolution. Both thenumber
of fibre populations, and the precision of the orientation estimates is plotted.
Boxplot interpretation: box limits indicate upper and lower quartiles, whilst whis-
kers indicate the range of data not considered as outliers. The white matter

mask included 30061 voxels for the b = 4ms/μm2 and 30690 voxels for b = 7 or
10ms/μm2 data. c Comparing connectivity matrices from 64 and 1000 gradient
datasets. Since the difference matrix is symmetric, the bottom half is used to
highlight interesting features: the green box indicates interhemispheric con-
nectivity, with the turquoise box showing connections between parietal and pre-
motor areas; the dark blue boxes show intrahemispheric connectivity of areas that
are separated along the inferior-superior axis. Streamlines whose length <10mm
are considered `short', 10–50mm are `mid' length and >50mm are `long'.
d Reconstruction of the superior longitudinal fasciculus (SLF) II using probabilistic
tractography.
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non-myelinated fibres often exhibit positive birefringencewith respect
to the longitudinal axis of the fibre due to the presence of axon
organelles and myelin membrane proteins, rather than negative bire-
fringence associated with the lipid bilayer of more heavily myelinated
fibres29,30. Such positive birefringence would result in PLI orientations
orthogonal to those observed30, as the “fast axis" of the medium out-
put from our PLI analysis would now indicate the radial rather than

longitudinal axis of the fibre. Here there could be two effects: (i) that
the PLI signal is sensitive to not only myelin, but also other aspects of
microstructure orientational coherence31, or (ii) that the parallel fibres
have some small amount of myelin which is detected by PLI but not
picked up by the histology stain. Indeed, though parallel fibres are
often assumed to be exclusively unmyelinated32, using electron
microscopy Wyatt et al.33 found myelinated fibres of 0.4–1.1μm
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diameter in the macaque molecular layer. Interestingly, Wyatt et al.
found a larger number ofmyelinated fibres in themolecular layer near
the Purkinje layer, and fewer towards the cortical surface. Conse-
quently, we might expect to see a gradient in the PLI signal across the
molecular layer, though this is not evident in the data. Future work is
required to fully understand the origin of this birefringence in the
molecular layer, though Fig. 3 provides some evidence for PLI sensi-
tivity to coherently orientated, anisotropic structures irrespective of
their degree of myelination28,34, that may be omitted from classic
myelin histology. Simulations of the PLI signal, for example based on
the fastPLI framework35, may help provide insight.

Figure 4 a shows example images from myelin-stained histology
(Gallyas silver,15) included in the anterior BigMac brain. We see inter-
esting detail in both the white and grey matter where we can visualise
single, thin axons in detail due to both the sensitivity of the stain and
the sub-micrometre imaging resolution (0.28μm/pixel). In the digi-
tised images we can track complex patterns of fibre projection for
example, from the white matter into the cortex (i), between sub-
cortical structures (ii), within the highly complex geometry of the
hippocampus (iii) or through the deep white matter (iv). Furthermore,
in the deep white matter we see different tissue ‘textures’ as well as
large scale, ‘wave-like’ undulations of fibres in the corpus callosum (iv)
(see Supplementary Fig. 4 for an enlarged image). Though this a region
which is often considered coherently ordered with little fibre disper-
sion, these data corroborate previous observations of fibre dispersion
or incoherence in the corpus callosum4.

The myelin-stained slides were analysed using structure tensor
analysis36–39 to estimate the primary fibre orientation per microscopy
pixel (Fig. 4b). Figure 4c shows the primary fibre orientation derived
from the structure tensor analysis per ~40μm superpixel. The orien-
tations are colour-coded inHSV (hue-saturation-value) space similar to
PLI. Here, pixels in heavily stainedwhitematter are bright compared to
those in the lightly stained grey matter as the “value" was set to (1 − r),
where r is the grey-scalepixel intensity. This image is then compared to
an adjacent section imagedwith PLI (Fig. 4d).Despite the verydifferent
manner by which the orientation estimates were derived, the two
methods provide corroborating information in both the white matter,
where the myelin stain is very dense precluding the identification of
individual fibres, and the cortex, where myelinated fibres are less
dense. Furthermore, we see how the two modalities provide subtly
different information. For example, when a PLI pixel (at 4μm/pix
resolution) contains crossing fibre populations of approximately equal
weighting and perpendicular orientations, the PLI-derived in-plane
angle becomes uninformative, the PLI signal is low and the HSV image
dark. In Fig. 4e (right) we see how this results in a darker bands
appearing between fibre tracts of different orientations. For example,
where the pink and teal fibres intermingle, as indicated by the white
arrows. In these crossing fibre regions, the histology data has an order
of magnitude finer spatial resolution (at 0.28μm/pixel) and so can
likely resolve both fibre populations, the mean of which is shown in
Fig. 4b, c, e.

Co-registration of MRI and microscopy data
Our ability to meaningfully compare MRI and microscopy data is
greatly enhanced by having high quality multimodal data registration,

like that provided in BigMac. However, co-registration of the BigMac
MRI and microscopy data was highly challenging for a number of
reasons. Firstly, the spatial resolution of the data spans up to 4 orders
of scale, from microscopy images with sub-micrometre (histology) or
micrometre (PLI) resolution to the ~millimetreMRI data. Secondly, the
contrast between theMRI-microscopy images is substantially different
and may highlight different tissue features. For example, in both the
Gallyas and PLI images, neither the grey/white matter boundary nor
outer tissue edges are consistentlywell defined. Thirdly, the thin tissue
sections may be deformed during sectioning or microscopy pre-
processing (e.g. staining and/ormounting). For example, the tissue can
shrink or tear, or theremay be dirt or bubbles in themicroscopy slides.
Finally, the inherently 2D microscopy must be registered into the 3D
volume - a particularly difficult optimisation with many degrees of
freedom.

Figure 5 shows an example BigMac registration using TIRL, a new
MRI-microscopy registration tool by Huszar et al.19 that is specifically
designed to overcome the above challenges and facilitate accurate
MRI-microscopy co-registration. In BigMac, TIRL generated the map-
ping between microscopy and the structural MRI, and FSL tools
(FLIRT/FNIRT40,41) wereused for cross-modality registrationwithinMRI
(e.g. co-registering structural and diffusion MRI). TIRL utilises a
sequence of linear and non-linear transforms to register 2D micro-
scopy images into 3D MRI volumes. Further, the TIRL cost function is
basedon amodality independent neighbourhooddescriptor (MIND)42,
which is explicitly designed to capture correspondence in spatial
information in a way that is agnostic to image contrast. By con-
catenating the TIRL and FSL transforms, the TIRL platform could then
be used to map the high-resolution microscopy pixels into the 3D MR
volume in any MR domain, or MR voxels onto a 2D microscopy plane.
Figure 5b shows the quality of the TIRL transform where the MRI data
maps very closely to the microscopy image, both at the white/grey
matter boundaries (outlined in green) and the tissue edge (in orange).
Additional TIRL outputs are provided in Supplementary Fig. 5.

Comparing fibre orientations from microscopy and MRI
With co-registered MRI and microscopy data, BigMac facilitates vox-
elwise comparisons of quantitative microstructural metrics extracted
from both modalities. Figure 6a shows example co-registered maps
from postmortem MRI and microscopy, where the DTI and myelin-
histology have been registered to the PLI reference image. Theprimary
axis of the diffusion tensor (V1)43 has been projected onto the PLI plane
and uses the same 2D colour map as the PLI. We observe excellent
agreement between V1 and the orientations derived from polarised
light imaging. This facilitates direct validation of orientation informa-
tion from MRI against microscopy, as illustrated in Fig. 6b. Here, the
diffusion signal has been modelled using a biophysical model, the Ball
and Rackets model (BAR)44, to extract a single, disperse fibre orienta-
tion distribution per voxel, which has then been projected onto the
microscopy plane. This is compared to co-registered fibre orientation
distributions from both PLI and Gallyas-stained histology. We observe
good correspondence of the dominant fibre orientations in both
coherent regions such as the corpus callosum and more complex
relationships in crossing fibre regions such as the centrum semiovale.
Here both orientational information, and the amount of fibre

Fig. 3 | Polarised light imaging in BigMac.The colours correspond to orientations
described by the 2D colour wheel in image (iv). Note, this is different from the
standard 3D colour representation in diffusion MRI. a Example PLI throughout the
brain. Image 1 =most anterior, 8 =most posterior of the images shown. The mye-
loarchitecture is viewed in great detail due to the 4μm / pixel PLI resolution. We
observe fibres projecting into the cortex (right hand panel part (i)), into and
through subcortical structures (ii), around the pons (iii) and across the cerebellum
(iv). Inset (i) comes from image 8, (ii) from image 3, (iii) from image 4 and (iv) from
image 6. In D, the blue arrows point to the gyri crown.bWehypothesise that the PLI

signal in the cerebellar molecular layer can be attributed to parallel fibres. b (left)
The yellow and green arrows point to the granular layer and the molecular layer
respectively. b (right) The structure of the cerebellar cortex. This highly simplified
schematic focuses solely on the granule and Purkinje cells, to illustrate the parallel
fibres in themolecular layer. Note, the dendritic tree of the Purkinje cells has highly
anisotropic dispersion. Here we see the axis of least dispersion, where the Purkinje
dendritic tree fans out most in the through-page orientation. PLI were acquired for
192 slides throughout the brain.
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dispersion can be compared. Indeed, the slightly higher levels of dis-
persion away from the midline of the corpus callosum may be related
to the ‘wave like’ fibre patterns observed in the myelin-stained histol-
ogy (Fig. 4d and Supplementary Fig. 4).

The fibre dispersion can then be quantified using the orientation
dispersion index (ODI), which ranges from 0 for perfectly aligned

fibres, to 1 for isotropic dispersion45. Figure 6c compares dispersion
estimates across many white matter voxels (top, covering 20 con-
secutive PLI and histology slides each), and a subset of voxels from the
centrum semiovale (bottom).We see fair correspondence between the
dispersion from myelin-stained histology and the diffusion model.
Estimates of dispersion from PLI appear less reliable, in line with

Fig. 4 | Gallyas silver stainedhistology inBigMac. a Example digitised slides.With
a spatial resolution of 0.28μm/pixel, we see the myelinated fibres is great detail
(i–vi), visualising single axons at the grey/white matter boundary (v–vi) and fibre
undulations in the deepwhitematter (iv).b Structure tensor analysis was applied to
the Gallyas silver stained slides to estimate a fibre orientation per 0.28μm pixel.
c, d The fibre orientations derived from the Gallyas silver stained slide are com-
pared to an adjacent PLI slide. We see remarkable consistency between the images

with both modalities capturing the myeloarchitecture in detail. e Both modalities
show the detailed organisation of the hippocampus and surrounding white/grey
matter (yellow box), as well as the corticospinal tract (white box). We acquired 197
myelin stained slides in total: 120 slides from the anterior brain with the same
quality staining as presented in a,b, and 77 slides from the posterior brain which
contain some artefact asoutlined inSupplementary Fig. 8. All slideswereprocessed
using structure tensor analysis.
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previous reports4 and observations in 6b. This may be related to PLI
estimating a single orientation per PLI pixel which likely includesmany
axons (axon diameter is typically ~ 1μm46, whilst each PLI pixel with an
in-plane resolution of ~ 4μm and a slice thickness of 50μm covers a
volume of ~ 800 μm 3). In comparison, the histology data has an order
of magnitude higher in-plane resolution (0.28μm, covering a volume
of ~4μm3) which may lead to a more faithful estimate of fibre
dispersion.

As well as comparing MRI-microscopy equivalents, microscopy
can be used to understand indirect relationships with MR parameters.
For example, histology dispersion is shown to have a clear negative
correlationwith fractional anisotropy (FA) fromDTI (Fig. 6d, ref. 43). In
comparison, dispersion has a weak but significant (p = 9 × 10−14) cor-
relation withmicroscopic FA (μFA)47,48 in thewhitematter (top) and no
significant correlation in the centrum semioval (bottom), a known
deep white matter region of complex dispersion. This is reassuring as
the μFA parameter is explicitly meant to be independent of the fibre
orientation distribution: in the centrum semiovale, μFA is independent
of dispersion, where the small negative correlation across all of white
matter may be driven by partial volume effects. In future work when
additional microscopy contrasts are added to BigMac, multivariate
regressions can be performed to better understand how complex tis-
sue microstructure relates to sensitive but not specific diffusion
metrics such as those from the diffusion tensor or other signal
models49.

The regression models in Fig. 6c, d reached significance (esti-
mated p <0.001 where p <0.05 is considered significant) for all plots
except for 6d bottom left comparing histology ODI with μFA (p =0.23,

hence regression model is not shown). Similar relations were found
when correlating in vivo diffusion MRI estimates of fibre dispersion
and FA with ODI from both PLI and histology (Supplementary Fig. 6).

Towards the microscopy connectome: hybrid MRI-PLI
tractography
One of the primary limitations of themicroscopy data in BigMac is that
it only informs on the fibre orientations in the 2D plane of sampled
slides, precluding 3D reconstruction of the microscopy connectome.
In comparison, the diffusion data can provide orientational informa-
tion in 3D, but with limited spatial resolution (0.6–1mm isotropic).
Figure 7 demonstrates one approach to joint modelling10 where we
combine in-plane orientations from microscopy (here PLI) with
through-plane information from postmortem diffusion MRI (dMRI) to
reconstruct 3D ‘hybrid dMRI-PLI fibre orientations’ at the resolution of
the microscopy data. For each PLI pixel, we compare the PLI in-plane
orientation toorientations estimated fromco-registereddiffusiondata
using the Ball and Stick model20 which have been projected onto the
PLI plane (Fig. 7a). The PLI through-plane angle is then approximated
by that from themost similar Ball and Stick orientation. This produces
a hybrid dMRI-PLI orientation that is both 3D and at the resolution of
the microscopy data. These orientations can then be combined into a
hybrid fibre orientation distribution (FOD) which can be directly
compared with those from diffusion MRI and input into existing
tractography algorithms for tract reconstruction. Here we reconstruct
hybrid orientations using the PLI data in BigMac, though our current
method is also applicable to histology slides analysed using structure
tensor analysis.

Fig. 5 | Co-registration of the BigMac MRI and microscopy data. a Each micro-
scopy slidewas independently registered to the postmortem structuralMRI (MGE),
using multi-scale MRI-microscopy registration (TIRL). Other MR modalities (here
diffusionMRI)were co-registered to the postmortemstructuralMRI usingMRI-MRI
linear andnon-linear registration (FLIRT/FNIRT) respectively. By combining the two

warpfields, the microscopy data can be directly transformed into any MRI space or
vica versa. b An example output of TIRL for a single polarised light image. The
structural image is clipped to indicate the tissue outline (orange) and white/grey
matter boundary (green). These outlines are then overlaid on the PLI image (right).
Co-registration was performed for all 192 PLI slides and 197 myelin-stained slides.
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Figure 7b shows example dMRI-PLI FODs at varying spatial reso-
lutions. Reassuringly, the hybrid FODs show smoothly varying patterns
in all three dimensions, even when the hybrid FODs are of higher
spatial resolution than the diffusion MRI (0.6 mm hybrid reconstruc-
tion versus 1mm diffusion data). Interestingly we observe notably
fewer voxels with crossing fibre populations than we might expect
from diffusion MRI in regions such as the centrum semiovale. The
hybrid FODs can then be reconstructed at very high in-plane resolu-
tions (≳ 4 × 4μm in-plane, ≳ 350μm through-plane) to observe fine

structural details, or investigate the effect of spatial resolution on FOD
reconstruction or downstream tractography (the subject of future
work). As proof of concept, the corticospinal tract was reconstructed
from the hybrid FODs using anatomically constrained tractography
(Fig. 7c). Future work will consider whole brain reconstruction of the
3D microscopy connectome at high spatial resolution. We expect this
microscopy-inspired connectome to both provide new anatomical
insight, and be a valuable resource for validating and advancing in vivo
tractography9.

Fig. 6 | Comparing information from co-registered postmortem diffusion MRI
and microcopy. a Co-registration facilitates qualitative comparisons of micro-
scopy and MRI (here DTI data) when both are warped to a common space. We see
clear correspondence between the PLI orientations and the primary eigenvector of
the diffusion tensor that has benprojected onto themicroscopy plane. bA 2D fibre
orientation distribution is extracted on a voxelwise basis from both PLI, myelin-
stained histology, and the Ball and Rackets model (BAR) for diffusion MRI
(b = 10ms/μm2, 1mm). cThe orientation dispersion index (ODI) frommicroscopy is
correlated with various diffusionmetrics: the ODI from the Ball and Racketsmodel,

fractional anisotropy (FA) from the diffusion tensor model (both calculated from
b = 10ms/μm2, 1mm data), and μFA from data with multiple tensor encodings
(b = 4, 7 and 10ms/μm2, 1mm). The top row shows data points from a white matter
mask with ~ 3700 voxels (mask shown in Supplementary Fig. 6) where blue-yellow
indicates a low-high density of points in the scatter plot. The bottom row shows
only a subset of voxels in the centrum semiovale (84 voxels). In c, d, the black lines
show the line of best fit, the grey lines indicate the 95% confidence intervals, and r is
the correlation coefficient.
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Discussion
The BigMac dataset aims to characterise a single connectome in
exquisite detail, combining MR signals with high resolution micro-
scopy data throughout the macaque brain. The postmortem diffusion
MRI includes high b-value ultra-HARDI data to characterise the diffu-
sion signal in great detail, estimatewhitematter fibre orientations with
high precision, and improve the reconstruction of white matter tracts
through crossing fibre regions. Furthermore, with 1000 gradient
directions we retain dense sampling on an arbitrary 2D plane for direct
comparison with 2D microscopy data. The microscopy includes cor-
onal slides of polarised light imaging12–14 and myelin-stained histology
that has been densely sampled throughout the brain. This high-reso-
lution, high specificity data allows us to visualise tissue myeloarchi-
tecture in detail to provide neuroanatomical insight - such as the
orientational coherence of the PLI signal in the cerebellar molecular
layer - and act as a pseudo ground truth estimate of tissue

microstructure against which MR metrics can be compared. Crucially,
the MRI and microscopy data have been carefully co-registered, facil-
itating novel data fusion analyses including the hybrid diffusion MRI-
microscopy tractography presented here.

The dataset has several limitations including: the 2D nature of the
microscopy, which precludes 3D visualisation of the cell bodies or
nerve fibres within eachmicroscopy section; themultimodal nature of
the microscopy prohibits whole-brain 3D reconstruction of the tissue
microstructure from a single contrast at high resolution (as in e.g. the
BigBrain dataset7); tissue processing artefacts (c.f. Methods: Polarised
light imaging) and inconsistent staining (c.f. Methods: Gallyas silver
staining) in some PLI and histology slides respectively; and the choice
of MR data acquired where here we chose to comprehensively sample
q-space in the long diffusion time regime, rather than, for example,
acquire data at multiple diffusion times for sensitivity to restricted
compartments, or acquire MRI at very high spatial resolution. The

Fig. 7 | Estimating hybrid diffusion MRI-PLI fibre orientations for future
reconstruction of the microscopy-inspired connectome (see text for details).
aWheremicroscopy (here PLI) informs on fibre orientations within themicroscopy
plane, the through plane was approximated by that from postmortem diffusion

MRI (Ball and Stick model20, b = 10ms/μm2, 1mm). b The hybrid orientations were
combined into fibre orientation distributions at increasing in-plane resolutions.
c The hybrid FODs can be input into pre-existing tractography methods to suc-
cessfully reconstruct in white matter bundles such as the corticospinal tract.
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latter could be overcome by acquiring additional MRI on a different
monkey brain that was subsequently co-registered to the BigMac data,
though such analyses would have to assume some level of anatomical
consistency betweenbrains. Finally, we acknowledge that this datawas
acquired from a singlemacaque brain, with lesions in the orbitofrontal
cortex and an abnormality in the left hemisphere. This may limit the
datasets suitability for specific applications.

Nonetheless, as a unique, multimodal resource that complements
existing open data (for cross-modality, cross-subject or cross-species
investigations, as well as data from invasive macaque studies not
possible in humans), the BigMac dataset will enable neuroscientists to
ask new and fundamental questions. For example, it will enable
researchers to (i) link brain connectivity across spatial scales spanning
four orders of magnitude; (ii) understand the relationship between
relatively crude but non-invasive MRI signals and cellular properties
measured by invasive microscopy; and (iii) develop novel approaches
to extract rich information from in vivo MRI data by leveraging the
specificity of microscopy-derived gold standards. The BigMac dataset
provides an open access platform from which we can interconnect
microstructural featureswithMRI signals throughout the brain. Details
on how to access the data, further documentation and code are pro-
vided in the Data and Code Availability sections below.

Future work will include characterising the unique information
provided by the hybrid MRI-PLI tractography, as well as completing
ongoing microscopy work to add Nissl-stained histology and other
complementary stains (e.g neurofilament protein SMI32 or glia Iba-1 or
GFAP) to the BigMac resource.

Methods
Data acquisition
At the centre of the BigMac dataset is the brain of a single adult rhesus
macaque (Macaca mulatta, male). The animal was cared for, and data
were acquired by, researchers at the University of Oxford, UK. All
procedures were performed under licences from the United Kingdom
(UK) Home Office in accordance with the UK Animals (Scientific Pro-
cedures) Act 1986 and with European Union guidelines (EU Directive
2010/63/EU).

During it’s adult life, the macaque was scanned in vivo over mul-
tiple scan sessions. At 11.7 years of age, the brain was perfusion fixed in
formalin after which extensive postmortem MRI data was acquired.
After scanning, the entire brain was sectioned along the anterior-
posterior axis, with consecutive slices processed for different micro-
scopy contrasts. The acquisition timeline for presented data was as
follows:

• In vivo MRI session 1: April 2010 (4 years old)
• In vivo MRI session 2: January 2017 (10 years 9months old)
• Perfusion fixation: December 2017 (11 years 7months old)
• Postmortem MRI: March-April 2018 (3–4months postmortem)
• Postmortem microscopy: 2018 onwards

Tissue pathology. As part of a behavioural study (in preparation), the
BigMac monkey underwent intraoperative bilateral lesioning of the
orbitofrontal cortex. The postmortem MRI data in Supplementary
Fig. 7 shows the extent of the bilateral lesions ~1 year after surgery.

In addition to the planned lesion, inspection of the postmortem
data (Supplementary Fig. 8) shows a fairly substantial abnormality in
the left hemisphere which extends from the inferior portion of the
supramarginal gyrus up through the post-central sulcus. This
abnormality could relate to a cerebral bleed, which perhaps occurred
post operatively, though no behavioural or other observations were
made that would relate to this abnormality.

In vivo MRI
Prior to sacrifice, the animal partook in a number of studies17,18 inwhich
behavioural and imaging data were acquired. One study17 combines

functional MRI with a decision-making task to investigate the of role
surprising events (i.e. prediction errors) on reward-based learning. A
second18 links flexible behaviour to changes in both the MRI-derived
structure and function of a fronto-cortical network.

The BigMac in vivo MRI data includes structural images, diffusion
MRI, resting-state fMRI and task fMRI over a variety of tasks. The data
were acquired at various timepoints throughout the animal’s adult life.
The in vivo data were acquired on a 3 T whole-body scanner (Gmax=
40G/cm) with a four-channel phased-array receive coil and a local
transmit coil (Windmiller Kolster Scientific). Here we include data
acquired at two separate time points. “Session 1" includes diffusion,
structural and resting-state fMRI, where complementary resting-state
and structural data from another 19 animals has previously beenmade
openly available through the PRIMatE Data Exchange (PRIME-DE) for
cross-subject comparisons (c.f. Data Availablity). “Session 2" includes
similar MRI from a shorter acquisition that occurred only 1 year before
sacrifice (the last in vivo scan). As such, the age-induced atrophy
between the in vivo and postmortem data should be roughly similar.
During scanning the animal was kept under minimum anaesthetic
using similar procedures to those previously described50–52.

Structural MRI images were acquired using a T1-weighted Mag-
netization Prepared—RApid Gradient Echo (MP-RAGE) sequence with
0.5mm isotropic resolution, TE/TR = 4.01 ms/2.5 s and 128 slices.
Whole brain fMRI data (BOLD)were acquiredwith echoplanar imaging
(EPI) and 2mm isotropic resolution: TE/TR = 19 ms/2 s, 1600 volumes
for Session 1 and 800 volumes for Session 2. This corresponds to
52min 26 s and 26min 13 s of data respectively. Diffusion MRI data
were acquired using EPI with 1mm isotropic resolution, TE/TR = 100
ms/8.2 s and a b-value of 1ms/μm2. 1100 diffusion weighted (81 unique
gradient directions) and 144 non-diffusion weighted volumes were
acquired with both ± phase encoding directions for Session 1, and 361
diffusion weighted (61 unique gradient directions) and 38 non-
diffusion weighted volumes were acquired with both ± phase encod-
ing directions for Session 2. The data were distortion corrected using
pipelines from the MR comparative anatomy toolbox (MrCat) and FSL
tools53,54. Additional task fMRI maps (z-stats) are available via17,18.

To indicate the quality of the in vivo and postmortem data, Sup-
plementary Fig. 9 (top) shows example structural images from the
most recent in vivo imaging session. This is then compared to post-
mortem data, as described below.

Postmortem MRI
At 11.7 years of age the animal was anaesthetised and the brain perfu-
sion fixed with 90% saline and 10% formalin, extracted and then stored
in 30% sucrose formalin. Postmortem data were then acquired on an 7
T small animal scanner (Agilent) fitted with a 40G/cm gradient coil
(Agilent, 205/120mm) and a Birdcage receive/transmit RF coil (Rapid
Biomedical, 72mm). Prior to scanning the brain was rehydrated in
phosphate-buffered saline to remove lasting fixative and somewhat
restore both the diffusivity and T2 of the tissue55,56. The brain was then
packed into a plastic holder filled with Fluorinert (FC-3283, 3 M™, St.
Paul, USA), a proton-free, susceptibility-matched fluid which is MR
invisible and improves field homogeneity.

As thediffusionproperties of brain tissue are highly dependent on
the tissue temperature57, the temperaturewascontrolledbypassing air
at the constant temperature of 20∘C.

The BigMac postmortem MRI data was acquired over three dif-
ferent scanning sessions:
1. 29th March–5th April 2018: Acquisition of b = 7 and 10ms/μm2

ultra-HARDI data with 1000 diffusion-weighted gradient direc-
tions per shell and 1mm isotropic resolution.

2. 6th–9th April 2018: Acquisition of the 0.3mm structural MRI, T1
mapping and 0.6mm b = 4ms/μm2 diffusion-weighted data.

3. 20th - 23rdApril 2018: Acquisitionof 1mmb = 4ms/μm2diffusion-
weighted data plus the protocol combining linear and spherical
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tensor encoding at b = 4, 7 and 10ms/μm2.The brain was not
repacked between sessions, though slight deformations didoccur
as the tissue relaxed over time. In total, the postmortemMRI data
acquisition took ~ 270 h scanning time. All postmortem data were
corrected in 3D for Gibbs ringing artefacts (mrdegibbs3D,
MRtrix58–60) prior to other preprocessing.

Structural MRI. Two structural images were acquired with subtly dif-
ferent contrast: one a with multi gradient echo (MGE 3D) sequence,
and one using balanced steady-state free procession (bSSFP).

The MGE parameters were: TE/TR = 7.8/97.7 ms, flip angle = 30∘,
0.3mm isotropic resolution, FOV = 76.8 × 76.8 × 76.8mm. The struc-
tural image was subsequently corrected for bias field and segmented
using FAST53,54,61. The white and grey matter masks were then hand
edited to provide precise segmentation of the white and grey matter.

The bSSFP data were acquired using a TRUFI sequence with 16
frequency increments: TE/TR = 3.05/6.1 ms, flip angle = 30∘, 0.3mm
isotropic resolution, FOV = 76.8 × 76.8 × 76.8mm. The structural
image was formed by averaging the data using root-mean sum of
squares.

The Supplementary Fig. 9 (bottom) shows example postmortem
structural images from the BigMac dataset. Note how the contrast is
inverted when related to the in vivo T1-weighted images. Here we
purposefully acquire T2/T2*-weighted postmortem data as conven-
tional T1w typically don’t give good contrast postmortemdue changes
in relaxation times. Due to their high image quality and anatomical
detail, the postmortem structural MRI act as a crucial intermediary in
the co-registration of both the diffusionMRI andmicroscopy data (c.f.
Co-registration) and the in vivo and postmortem MRI.

T1 mapping. A T1 map was acquired using similar imaging parameters
as the 0.6mm postmortem diffusion MRI data but now with an
inversion recovery preparation: TE/TR = 8.6 ms/10 s, FOV = 76.8 ×
76.8 × 76.8mm, resolution 0.6mm isotropic and 12 inversion
times (TI) from 10 to 6000 ms. The Barral model
SðTIÞ=a+ b exp ð�TI=T 1Þ62, where S is the MR signal and [a, b, T1] are
unknowns, was fitted voxelwise to the data to obtain quantitative
estimates of T1 (inversion_recovery, qMRLab63).

Diffusion-weighted MRI. The diffusion-weighted data were acquired
using a spin echo multi-slice (DW-SEMS) sequence and single-line
readout. To ensure that data from different shells retain the same
diffusion propagator, both the time between the gradients (i.e. the
diffusion time, Δ) and gradient duration (δ) were kept constant for all
data with 1mm isotropic resolution. The desired b-value was achieved
by modifying the amplitude of magnetic gradient, G.

High spatial or angular resolution
In the 1mmdiffusion data with high angular resolution, data were

acquired in batches of 26 volumes where one volume with negligible
diffusion weighting (b ~ 0ms/μm2) was followed by 25 diffusion-
weighted volumes. Two sets of gradient directions were used: one
with 250 gradient directions (b = 4ms/μm2), the other with 1000 gra-
dient directions (b = 7, 10ms/μm2). For both sets, the gradient direc-
tions were generated using GPS (an FSL tool,64) and were evenly
distributed across the sphere. The directions were then ordered so
that any consecutive subset of gradient directions (e.g the first 100
gradient directions) also gave good coverage across the sphere
(orderpoints, Camino65). In this case, were the scan interrupted or
prematurely stopped, we would retain reasonable angular coverage.
Finally, to evenly spread the heating of the magnetic gradients, the
gradient directions within each batch of 25 were reordered to ensure
that highly co-linear directions were not played out in close
succession.

The 1mm data acquisition parameters were as follows: TE/TR =
42.4ms/3.5 s; FOV= 76 × 76 × 76mm; δ/Δ = 14/24 ms; 1mm isotropic

resolution; time per gradient direction = 4.4min; b = 4ms/μm2 data
had G = 12.0G/cm, 250 gradient directions and 10 non-diffusion
weighted volumes; b = 7ms/μm2 had G = 15.9 G/cm, 1000 gradient
directions and 40 non-diffusion weighted volumes; b = 10ms/μm2 had
G = 19.1 G/cm, 1000 gradient directions and 40non-diffusionweighted
volumes.

The 0.6mm b = 4ms/μm2 data followed a different protocol. Here
128 diffusion-weighted gradient directions were acquired, followed by
8 volumes with negligible diffusion weighting. The acquisition para-
meters were as follows: TE/TR = 25.4ms/10 s; FOV = 76.8 × 76.8 ×
76.8mm; δ/Δ = 7/13 ms; time per gradient direction = 21.3min;
b = 4ms/μm2; 0.6mm isotropic resolution; G = 32G/cm.

Preprocessing
The postmortem MRI data was found to have few distortions, so

minimal preprocessing was applied. For example, the data did not
need correcting for susceptibility or eddy current distortions. This is
largely due to the brain being placed in a susceptibility-matched fluid
and the data acquired with a single-line readout instead of the typical
echo planar imaging (EPI). The main corrections were (a) registration
(both within and between session), (b) correction of signal drift, and
(c) signal normalisation.

Registration
The ultra-HARDI data for both b = 7, and 10ms/μm2were acquired

within thefirst scanning session. At specific timepoints throughout the
week-long acquisition, the central scanner frequencywas recalibrated.
This occurred three times during the b = 7ms/μm2 acquisition and 4
times during b = 10ms/μm2. Because of the recalibration, images
acquired with different scanner central frequencies are shifted
(translated) with respect to one another. To correct for these transla-
tions, the data were rigidly registered to a reference S0 image (i.e. a
volume with negligible diffusion weighting) from the ultra-HARDI
dataset. Here the reference image was taken to be the mean S0 image
from the first ‘set’ of images which were all acquired with the same
central frequency. The registration was performed using FLIRT with
spline interpolation of the data40,66.

Data from the second scan session includes high spatial resolution
(0.6 mm isotropic) b = 4ms/μm2 diffusion data as well as the detailed
(0.3 mm isotropic) structural scan. Upon inspection, the S0 images
associated with the 0.6 mm diffusion data (b = 4ms/μm2) appeared to
slowly drift in position along the readout direction. To correct for
signal drift, the S0 images were linearly registered and intensity nor-
malised to the first S0 i.e. thatwhichmost likely represents the ‘true’ S0
of the diffusion-weighted data. The data were aligned using FLIRT40,66

where the transformation was restricted to only consider translation
along a single axis. The b = 4ms/μm2 0.6mm diffusion-weighted data
were then co-registered to the postmortem structural image using
linear registration (FLIRT,40,66).

Supplementary Figure 10 describes how data acquired in dif-
ferent sessions was registered together using either linear or non-
linear transforms (FLIRT/FNIRT)40,41,64,66. Data acquired within the
same scan session were registered using linear transforms. Upon
inspection of the data, the brain shape appeared to change or ‘relax’
slightly between scanning sessions. To account for these deforma-
tions, non-linear transformations were generated both between the
b = 4ms/μm2 1mm data and the ultra-HARDI data, and between the
ultra-HARDI data and the postmortem structural image41,64. Conse-
quently, data users should take care to account for voxelwise rota-
tions in the gradient directions according to the non-linear warpfield
when combining non-linearly registereddiffusion data fromdifferent
shells.

Finally, to integrate the BigMac dataset with other datasets, non-
linear transformations41,64 were computed between the postmortem
structural image and the F99 standard template67. Here we utilise a T1-
like image, created from the structural MRI using hand-edited white
and grey matter masks, because non-linear registration requires
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images with similar contrast and the BigMac ex vivo structural image
has inverted contrast when compared to the in vivo F99 T1.

Signal drift
In all experiments, the signal magnitude, measured as the mean

signal across S0 images, was seen to decrease over time. To correct for
signal drift, a linear trend with respect to time was fitted to the S0
images and subsequently regressed from the data (both the S0 and
diffusion-weighted volumes).

Data normalisation
Most diffusion models approximate the S0 image by taking the

mean S0 image across all volumes with minimal diffusion weighting,
assuming that the signal magnitude is constant across time. In con-
trast, here we found the S0 signal to vary between scanning sessions
and b-shells. Were diffusion models naively applied to concatenated
data from the BigMac dataset, the results may be biased (e.g. the
kurtosis would be misestimated). Consequently, the diffusion-
weighted data was normalised to the mean S0 of the b = 10ms/μm2

ultra-HARDI data.
Combining linear and spherical tensor encoding
Combining data with linear and spherical tensor encoding allows

for the separation of effects due to the fibre orientation distribution
and the diffusion properties, to estimate additional microstructural
parameters such as μFA47,48. In BigMac, data with spherical tensor
encoding were also acquired at b-values of 4, 7 and 10ms/μm2. The
gradient waveform was optimised using the NOW toolbox inMatlab68.
Due to additional stress on the magnetic gradients when performing
the spherical tensor encoding, the repetition time (TR) was increased
with respect to the ultra-HARDI data: TE/TR = 42.5ms/6.4 s; FOV = 76
× 76 × 76mm; 1mm isotropic resolution. For each b-value, 30 images
were acquired with spherical tensor encoding and 1 with negligible
diffusion weighting. Complementary data with linear tensor encoding
and the same TR were also acquired: 50 gradient directions per shell
with δ/Δ = 14/24 ms, plus 2 volumes with negligible diffusion weight-
ing. The gradient amplitude G was adjusted to produced the required
b-values of b = 4, 7 and 10ms/μm2.

Datawere corrected forGibbs ringing and signal drift as above. All
data were normalised to the linear tensor encoded b = 10ms/μm2

meanS0.MapsofμFA aswell as isotropic and anisotropic kurtosiswere
generated following the DIVIDE framework and fitting the Laplace
transform of the gamma distribution (dtd_gamma model) using the
multi-dimensional MRI toolbox (md-dmri)47,69,70.

Microscopy
Using the BigMac dataset, we can link the MRI signal to microscopy
data which has both micrometre resolution and high specificity. In
BigMac, the brain was sectioned, stained, and imaged (‘processed’) in
twobatches.Thebrainwasfirst cut around the level of theposterior tip
of the central sulcus to create two tissue blocks, representing the
anterior half and posterior half. First, the anterior blockwas sectioned,
stained, and imaged, after which the posterior block was processed
using a highly similar protocol.

Each tissue block was sectioned on a frozen microtome along the
anterior-posterior axis to produce thin coronal tissue sections. Con-
secutive sections were allocated, in order, to one of six contrasts:
1. Polarised light imaging to visualise myelinated fibres

(50μm thick)
2. Cresyl violet staining of Nissl bodies (50μm thick)
3. Unassigned section (50μm thick)
4. Gallyas silver staining of myelin (50μm thick)
5. Unassigned section (100μm thick)
6. Unassigned section (50μm thick)

Each contrast was repeated every 350μm throughout the brain.
The unassigned sections were returned to formalin and stored for
longevity.

The imaging of the tissue sections is very time consuming. Hence,
slide digitisation is an ongoing process where the Nissl and other
complementary stains will be released at a future date.

Polarised light imaging. Polarised light imaging (Fig. 3) utilises the
birefringence of myelinated axons to estimate the primary fibre
orientation per pixel12–14. Here unstained tissue sections were imaged
using a Leica DM4000B microscope with an automated stage (Leica,
Germany, using Leica Application Suite X software) adapted for PLI
with an LED light source, a polariser, a quarter wave plate with its fast
axis at 45 degrees to the transmission axis of the polariser, and a
rotatable polariser (the analyser).

Due to the large size of the BigMac tissue sections, multiple fields
of view were acquired across each sample and later stitched together
to form a whole slide ‘mosaic’ image. For each field of view, images
were taken as the analyser was rotated from 0 to 180 degrees in 9
equidistant steps. A 2.5x magnifying objective produced an imaging
resolution of ~ 4 μm per pixel. PLI processing was performed using in-
house developed MATLAB scripts4. Background correction was
performed4,71 to account for light source variations across the image,
after which a sinusoid was fitted to the pixelwise image intensity as a
function of the analyser rotation. Maps of transmittance, retardance,
and in-plane angle were derived from the sinusoid phase and
amplitude12–14.

Supplementary Figure 11 shows example PLI mosaics from the
BigMac dataset. The transmittance map is related to the amount of
light extinguished by the sample. The retardancemap is dependent on
both the inclination and amount of birefringent material (i.e. myeli-
nated fibres) within the PLI pixel12–14. In the HSV image, the hue is
dependent on the in-plane angle of themyelinatedfibres, and the value
is given by the tissue retardance.

By assuming that the amount ofmyelin is approximately constant
across thewhitematter, an inclination angle canbe estimated from the
retardancemap. This inclination estimate relies on knowing themyelin
thickness and birefringence, which here was set to a somewhat arbi-
trary, constant value. Consequently, the estimated inclination angles
are likely inaccurate and should not be used as a quantitative micro-
scopymetric. In this work, the “inclination"map is used solely forMRI-
PLI co-registration.

The anterior PLI sections were mounted using a hard-set
mounting medium (FluorSave, Merck) where over time we saw
artefacts (bubbles) develop on the slides. This artefact is observed
in the PLI transmittance image (Fig. 5), though the retardance and
in-plane maps do not appear to be substantially affected in the
white matter apart from faintly visible edge effects (white arrows).
In some anterior PLI sections we see background birefringence
outside of the tissue which varies slowly across the slide (Fig. 3
sections 1–5 where 1 and 3 are worst affected). This is due to the
slides being coated in a small amount of gelatine which aids the
mounting of tissue sections onto glass slides but which is also
birefringent72. Nonetheless, the PLI orientations within the white
matter do not appear greatly affected, where the birefringence of
the myelin appears to dominate30. The posterior sections (which
were processed second) were instead mounted with an aqueous
mounting medium (Polyvinylpyrrolidone, PVP) on plain glass slides
without gelatine coating.

Gallyas silver staining. Gallyas silver staining15 was used for histolo-
gical visualisation of the myeloarchitecture16 (Fig. 4). In this method,
colloidal silver particles bind to myelin and turn deep brown. After
staining, the sections were cover-slipped, sealed and digitised using a
Aperio ScanScope Turbo AT slidescanner (Leica) with a 20x/0.75 NA
Plan Apo objective lens coupled with an x2 optical magnification lens
to achieve a total magnification of 40x. This produced an imaging
resolution of 0.28μm/pix, where the histology image resolution is >10
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times that of PLI. Due to the large slide size, many of the central sec-
tions were digitised in two images (labelled image ‘a’ and ‘b’).

Structure tensor analysis36–39 was applied to the digitised Gallyas
images to extract the primary fibre orientation per microscopy pixel
(Fig. 4). Across a local neighbourhood of 150 × 150 pixels, the fibre
orientations were then combined into a frequency histogram to pro-
duce a fibre orientation distribution for a ~ 40 × 40 μm ‘superpixel’.
Summary statistics were also extracted at the level of the superpixel,
where the superpixel parameters include:
1. The fibre orientation distribution: orientations within the 40 μm

superpixel were combined into a frequency histogram
(bin size = 2°).

2. The circular mean of the fibre orientation distribution.
3. The fibre orientation dispersion index at ~ 40 μm: a Bingham dis-

tribution was fitted to the fibre orientations within the superpixel
and the dispersion parameter κ was converted to the orientation
dispersion index, ODI = 2/π atan(1/κ).

4. The mean RGB value over the superpixel.

Unfortunately many of posterior Gallyas silver sections exhibit a
tissue processing artefact resulting in inconsistent or patchy staining
(Supplementary Fig. 12). This artefact is only observed in the posterior
not anterior sections, and may be related to the formation of ice
crystals during tissue processing. Remarkably, structure tensor ana-
lysis of slides with the staining artefact show smoothly varying orien-
tations across the white matter that follow our neuroanatomical
expectations (6b-e). Comparing structure tensor analysis of two adja-
cent slides, one without the artefact (6f) and one with the staining
artefact (6g), we observe similar orientations, though with the arte-
factual slide showing reduced contrast in the grey matter (inset). As
neither the PLI data nor the Nissl slides were affected by the same
artefact, orientational information from either PLI or structure tensor
analysis of the Nissl stained slides may be more reliable in these
regions. One of the unassigned sets of tissue sections (currently in
formalin), will likely be used to repeat the Gallyas staining to obtain
myelin-density estimates across the posterior brain.

One primary limitation of structure tensor analysis is that it
requires the user to specify a Gaussian smoothing kernel over which
the intensity gradients are calculated. This study utilised a Gaussian
kernel with sigma equivalent to 10 pixels, i.e. ~ 2.8 μm. Future work
could consider the impact of kernels of different sizes.

Co-registration of MRI and microscopy data
Thepolarised light images and structure tensoroutputwere registered
to the postmortem structural MR (MGE) image using TIRL (Fig. 5). The
resolution of the images were 4, 40 and 300μm respectively. The
structuralMR imagewas chosen as the target image as (i) it was theMR
data with the highest spatial resolution and (ii) it provides good grey/
white matter contrast. To drive the registration, we selected the
microscopy imageswithwhite/greymatter contrastmost similar to the
structuralMR image andwith themost well-defined tissue boundaries.
Consequently, for the Gallyas slides we used the structure tensor RGB
‘thumb’ image in CIELAB or L*a*b space. The L*a*b space is based on
the opponent colourmodel of human vision, where any given colour is
represented as the combination of lightness (‘L’), a position along a
red-green axis (‘a’) and that along a blue-yellow axis (‘b’). The ‘b’ image
was used to drive the MRI-microscopy registration because is shows
fairlywell defined tissue boundaries, that were difficult to determine in
the RGB space. For PLI we used the ‘inclination’ map which, when
compared to the transmittance images, are relatively unaffectedby the
‘bubble’ artefact (Supplementary Fig. 11).

Co-registration of the BigMac microscopy data to the structural
MRI required 2D to 3D registration without block face photos. This is
equivalent to a TIRL slice-to-volume transform, as described in19 (see
Section 2.6 of19 for more details). In brief, this transform is defined as a

chain of elementary 2D and 3D operations: a 2D scaling, rotation and
translation, a 3Dembedding, a 3Ddisplacementfield, a 3D rotationand
translation, and a 3D affine matrix. Initial values and ranges for the
transformation parameters were defined in a configuration file that
we fine-tuned for the BigMac dataset in a trial and error process ("the
optimised TIRL protocol"). The transformation parameters were then
optimised in predefined combinations in an automated three-stage
process. (1) We first provided approximate coordinates for the centre
of the microscopy image in the MRI volume. Along with some toler-
ance of error, this defined a “slab" of the structural MRI within which
the registration was optimised. The microscopy images were first
resampled to the resolution of the structural MR data and then regis-
tered into the 3D imaging volume. The registration started with a rigid
search to find a 3D surface in MRI space that best represented the
“cutting plane". (2) A 3D affine matrix was optimised to account for
shears. (3) Finally we accounted for non-linear deformationswithin the
microscopy plane. For computational efficiency, the position of 32
automatically defined control points (distributed evenly across the
slide) were optimised and the local displacement between thesepoints
was calculated by interpolation using Gaussian radial basis functions.
The modality independent neighbourhood descriptor (MIND) cost
function42 was minimised during each part of the registration. Manu-
ally defined binary masks were used in all three stages of the regis-
tration to exclude cost contributions from background areas in the
microscopy images.

After the registration was complete, the outputs of part 2 (only
linear transforms) and 3 (with non-linear transforms)were qualitatively
compared to the microscopy image and the output for which the tis-
sue boundaries were most similar selected as the “user defined
optimum”.

The optimised TIRL protocol was found to produce good results
across microscopy slides (see Supplementary Fig. 5 for example out-
puts). However, someusersmaywish to run their own registration (e.g.
to register sections of the cerebellum for which transforms are not yet
provided), or optimise the registration further for a specific slide or
over a small region of interest. Instructions on how to achieve this,
alongside example configuration files, and a script to easily assess the
accuracy of the registration for any microscopy slide of interest, are
provided in the online documentation and tutorials (c.f. Code
Availability).

TIRL outputs a series of transformations which allow the user to
transform either pixel or voxel coordinates, or orientational vectors
between domains. Further scripts are provided to demonstrate how
users can precisely map the high-resolution microscopy information
to into the MRI volume, or vice versa.

The most anterior and posterior microscopy sections do not
sample the corpus callosum meaning that there is no tissue directly
connecting the twohemispheres. Once sectioned, the tissue fromeach
brain hemisphere is fully disconnected and the distance between the
hemispheres when mounted onto the slides is not meaningful.
Therefore, each hemisphere was registered separately to the MR data
with the aid of hand-drawn tissue masks. Similarly, the cerebrum was
masked and registered separately to the cerebellum (ongoing work).

Comparing fibre orientation distributions from microscopy
and MRI
For a qualitative comparison of fibre orientations from coregistered
MRI and PLI (Fig. 6a), postmortem diffusion MRI data (b = 4ms/μm2,
250 gradient directions, 1mm isotropic) were processed using the
diffusion tensor model (FSL’s dtifit,43) to produce maps of fractional
anisotropy, FA, and the primary eigenvector, V1. These maps were
warped to PLI space using TIRL19, and V1 was projected onto the
microscopy plane for comparison with PLI.

Fibre orientation distributions from MRI and microscopy were
then compared on a voxelwise basis (Fig. 6b). Postmortem diffusion
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MRI data (b = 10ms/μm2, 1000 gradient directions, 1mm isotropic)
were processedusing the Ball andRacketsmodel (BAR)44, to estimate a
single, disperse fibre orientation distribution (FOD) per voxel. Fol-
lowing a previously published method4, the FOD was then projected
onto the microscopy plane for direct comparison with those from PLI
and histology. Themicroscopy FODs were created by first warping the
microscopy orientations to MR space. The fibre orientations (from PLI
or structure tensor analysis of the Gallyas-stained slides) within each
MRvoxelwere then combined into a frequencyhistogramwith respect
to orientation angle (resolution = 2∘), the output of which is shown
in Fig. 6b.

Finally, the orientation dispersion index (ODI45) of each 2D FOD
(fromBAR, PLI and histology) was calculated according to ref. 4. AnODI
of 0 indicates no dispersion, whilst an ODI of 1 describes isotropic dis-
persion. TheODI values were compared on toDTI FA43 andmicroscopic
FA from the simultaneous analysis of linear and spherical tensor enco-
ded postmortem data (b =4, 7& 10ms/μm2, 1mm isotropic)47,48,69,70.

The analysis for Fig. 6c, d was repeated with in vivo MRI data.
Session 1 data (b = 1ms/μm2, 81 unique gradient directions, 1 mm
isotropic) were similarly processed using the Ball and Rackets44 and
diffusion tensor models43, and estimates of BAR ODI and DTI FA
were compared to microscopy ODI estimated in the in vivo
MR space.

For each scatter plot, the correlation coefficient r was calculated
using MATLABs73 fitlm function, and the p-value calculated using an
F-test comparing the regression model to a degenerate model with
only a constant term. We analysed 3728 voxels in the white matter
postmortem and 2915 voxels in vivo. The centrum semiovale mask
contained 78 voxels.

Hybrid diffusion MRI-microscopy 3D fibre reconstruction and
tractography
For the hybrid orientations in Fig. 7, PLI data informed on fibre
orientations within the microscopy plane, whilst the diffusion data
provided through plane information. This facilitated reconstruction of
3D hybrid orientations at spatial resolution of the PLI data.

Postmortem diffusion MRI data (b = 10ms/μm2, 1000 gradient
directions, 1mm isotropic) were analysed using the Ball and Stick
(BAS) model to estimate 3 fibre populations per voxel, with 50 orien-
tation estimates or ‘samples’ per population20,21,74. The PLI images were
co-registered to the diffusion MRI data using an optimised TIRL
protocol19. The in-plane angle was warped into the diffusion space19,41

and compared to the BAS samples within the corresponding diffusion
MRI voxel. To facilitate fair comparison, the BAS samples were pro-
jected onto the PLI plane. Samples from BAS fibre populations with
signal fractions <0.05 were excluded. Finally, the PLI through-plane
angle was approximated by that from the most similar BAS sample.
This produced a hybrid diffusion MRI-PLI 3D fibre orientation per
microscopy pixel.

The hybrid fibre orientations were then combined into 3D fibre
orientation distributions (FODs). Here, a set of voxels were defined in
diffusion space. In each voxel, the hybrid MRI-PLI fibre orientations
populated a 3D ‘orientation histogram’ defined by 256 points evenly
spaced across the sphere. Spherical harmonics of order 8 were then
fitted to the normalised histogram. In spherical harmonic format, the
hybrid diffusion MRI-PLI FODs could then be visualised in standard
MRI viewers60,75 and input into existing tractography methods60. Ana-
tomically constrained streamline tractography was then performed
using MRtrix (iFOD2)60,76 with anatomical masks adapted from
XTRACT25.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The BigMac data, including minimally preprocessed data, are openly
available via the Digital Brain Bank6: https://open.win.ox.ac.uk/
DigitalBrainBank/#/datasets/anatomist. Example data can be acces-
sed via the online viewer and the full dataset is available via a data
sharing agreement to ensure the data is used for purposes which
satisfy research ethics and funding requirements. Further doc-
umentation, including example images of allmodalities, is available via
https://open.win.ox.ac.uk/pages/amyh/bigmacdocumentation. Since
the full dataset requires a considerable amount of memory (~1.8 TB),
users may wish to request only a subset of relevant data. To facilitate
this, the documentation includes an extensive file tree, listing available
files as well as approximate memory requirements for different parts
of the data. Additional data linking behaviour to fMRI (z-statistics
maps) can be accessed via17,18 and similar in vivo MRI (structural and
resting-state fMRI) are available for another 19 subjects for cross-
subject comparisons via the primate data exchange (PRIME-DE):
https://fcon\_1000.projects.nitrc.org/indi/PRIME/oxford.html. Source
data are provided with this paper.

Code availability
Code is available via https://git.fmrib.ox.ac.uk/amyh/bigmacanalysis77.
This includes basic MRI-microscopy tutorials as well as scripts related
to data preprocessing, or reproducing the analyses presented.
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