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Comprehensive proteomics and meta-
analysis of COVID-19 host response

Haris Babačić 1 , Wanda Christ 2, José Eduardo Araújo1,
Georgios Mermelekas1, Nidhi Sharma1, Janne Tynell 2, Marina García 2,
Renata Varnaite2, Hilmir Asgeirsson 3,4, Hedvig Glans2,3, Janne Lehtiö 1,
Sara Gredmark-Russ2,3,5, Jonas Klingström 2,6,7 & Maria Pernemalm 1,7

COVID-19 is characterised by systemic immunological perturbations in the
human body, which can lead tomulti-organ damage. Many of these processes
are considered to be mediated by the blood. Therefore, to better understand
the systemic host response to SARS-CoV-2 infection, we performed systematic
analyses of the circulating, soluble proteins in the blood through global pro-
teomics by mass-spectrometry (MS) proteomics. Here, we show that a large
part of the soluble blood proteome is altered in COVID-19, among them ele-
vated levels of interferon-induced and proteasomal proteins. Some proteins
that have alternating levels in human cells after a SARS-CoV-2 infection in vitro
and in different organs of COVID-19 patients are deregulated in the blood,
suggesting shared infection-related changes.The availability of different public
proteomic resources on soluble bloodproteomealterations leaves uncertainty
about the change of a given protein during COVID-19. Hence, we performed a
systematic review and meta-analysis of MS global proteomics studies of
soluble blood proteomes, including up to 1706 individuals (1039 COVID-19
patients), to provide concluding estimates for the alteration of 1517 soluble
blood proteins in COVID-19. Finally, based on the meta-analysis we developed
CoViMAPP, an open-access resource for effect sizes of alterations and diag-
nostic potential of soluble blood proteins in COVID-19, which is publicly
available for the research, clinical, and academic community.

Abundanceof evidence hasdemonstrated that the coronavirus disease
2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), is a multisystemic disease1. The cytokine
storm, i.e., an elevated release of cytokines in the blood that leads to
systemic hyperinflammation, is considered one of the major patho-
physiological mechanisms behind severe COVID-19, which leads to
multi-organdamage, and caneventually cause death2–4. Thismakes the

plasma, i.e., the liquid component of blood, a good biological material
to explore systemic biological processes involved in COVID-19 patho-
genesis and discover new biomarkers. Previously, different circulating
molecules, such as lipids, metabolites, mRNAs, and proteins5–10, have
been investigated in COVID-19 patients. Still, to date, proteins remain
the main circulating biomarkers for COVID-19 in clinical practice, aid-
ing diagnosis and prognosis. Higher levels of well-established
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biomarkers, such as the inflammatory proteins interleukin 6 (IL6) and
C-reactiveprotein (CRP), the liver enzymes aspartate aminotransferase
(AST) and alanine aminotransferase (ALT), and the fibrin degradation
products (D-dimers), are among protein biomarkers for diagnosis and
disease severity11–13. However, these proteins are widely used in prac-
tice and are not infection-specific clinical biomarkers. There is still a
need to further identify biomarkers in relation to host response, organ
involvement, and prognosis in COVID-19.

Several studies using affinity-based (AB) proteomicmethods have
quantified hundreds of proteins in plasma or serum of patients with
COVID-199,14–23. However, AB methods are targeted, focusing on pro-
teins of interest, and depend on the specificity of the affinitymolecule.
In contrast, MS methods do not require an affinity molecule, but
instead provide detection of a protein based on its amino-acid
sequence, often performed as global proteomics. The two hitherto
most in-depth studies of the soluble blood proteome ( > 1000 pro-
teins) in COVID-19 were performed with AB methods, applying the
Olink’s antibody-based proximity extension assays (PEA)16 and
SOMAscan’s aptamer platform9. Most studies using global MS meth-
ods in COVID-19 to date have identified several hundreds of proteins in
plasma or serum14, reporting varying estimates of alterations in blood
levels. Given that the soluble blood proteome is reported to contain at
least 4500 proteins14, this still leaves a large portion of the proteome
unexplored in COVID-19.

To expand the soluble blood proteome coverage, we here
performed a comprehensive MS-based proteome profiling of
serum samples in hospitalised COVID-19 patients by high-
resolution isoelectric focusing (HiRIEF) coupled with liquid
chromatography and mass-spectrometry (LC-MS/MS). We also
performed in vitro SARS-CoV-2 infection experiments to compare
to proteome and phosphoproteome changes occurring in the
blood of COVID-19 patients. Due to the variable estimates of
soluble blood proteome alterations in several previously pub-
lished proteomics studies, by analysing 21 cohorts and up to 1706
individuals (1039 COVID-19 patients), we performed a meta-
analysis of global soluble blood proteome alterations in COVID-
19, to provide concluding estimates of alterations for 1517 soluble
blood proteins and their potential to aid diagnosis (see Fig. 1).

In this work, we show that a large part of the soluble blood pro-
teome is altered in COVID-19 patients. COVID-19 patients had elevated
serum levels of NF-kB-, interferon-, purine metabolism-, heat shock-,
and proteasomal- proteins, the latter of which had an association with
anti-SARS-CoV-2 immune response andmarkers of severity. Dozens of
these proteins also had a change in SARS-CoV-2-infected cells and
tissues, such as the increase in the interferon-induced proteins ISG15,
MX1, ISG20, and LAP3, and the proteasomal proteins PSMB5, PSMB7,
PSMB8, PSMB10, and PSME1. Furthermore, we identified changes in
phosphorylated peptides in the serumof COVID-19 patients and SARS-
CoV-2-infected cells. Finally, we developed CoViMAPP, a comprehen-
sivemeta-analysisMS resourceof soluble bloodproteins’ alterations in
COVID-19.

Results
Patient characteristics
We analysed serum samples collected from 20 hospitalised patients
with COVID-19 (15 men; age range: 34-67 years; median age: 53 years),
infected with the ancestral SARS-CoV-2 variant, and 7 healthy controls
(five men; age range: 26-53 years; median age: 31 years), which were
PCR-negative and seronegative for SARS-CoV-2. Clinical and
immune response details on the cohort are published elsewhere24.

Proteome coverage
HiRIEF LC-MS/MS (see Fig. 1a & 1c) provided in-depth proteome cov-
erage, identifying 15,425 peptides mapping to 2037 proteins after
gene-centric protein summarisation at 1% false discovery rate (FDR).

For comparison, currently the two most in-depth AB analyses of
COVID-19, performed by PEA and SOMAscan aptamers, covered 1420
and 4563 proteins, respectively9,16. Of these, HiRIEF LC-MS/MS identi-
fied 530 proteins targeted by PEA and 1134 proteins targeted by
SOMAscan (Fig. 2a). Some proteins were identified by all three meth-
ods, such as the higher-abundant proteins ITIH3, C2, C1QA, or the
lower-abundant proteins CXCL16, CXCL12, NOTCH3, and ANXA11
(Fig. 2b). Still, 787 proteins were identified by HiRIEF LC-MS/MS that
were not targeted by PEA and SOMAscan assays, including VTN, LRG1,
the acute phase proteins orosomucoid 1 and 2 (ORM1 and ORM2), and
the heat shock proteins HSPA4 and HSPA5 (Supplementary dataset 1).
Compared to matched clinical chemistry assays’measurements in the
same samples, HiRIEF LC-MS/MS measurements showed excellent
agreement in quantifying levels of CRP and the liver enzymes AST and
ALT (Fig. 2c), but slightly lesser agreement in lactate dehydrogenase
(LDH) levels (Figure S1).

Taken together, these results show that HiRIEF LC-MS/MS pro-
vides in-depth profiles of the soluble blood proteome in COVID-19
patients, covers parts of the soluble blood proteome that have not
been explored before, and maintains high precision compared to
clinical assays.

Differential comparison to PCR-negative controls
Principal component analysis (PCA) clearly separated COVID-19
samples from healthy controls (Fig. 3a), indicating large systemic
perturbations in the serum proteome of hospitalised COVID-19
patients. This was further reflected in a differential analysis,
where 619 of the analysed 1779 proteins had an alteration in
protein serum levels in COVID-19 as compared to healthy controls
(two-sided t test, p < 0.05, 5% FDR, Fig. 3b, Supplementary Data-
set 2). The interferon (IFN)-stimulated 15 KDa protein (ISG15) had
the largest increase in serum of COVID-19 patients, followed by
several other IFN-induced proteins, such as ILF2, MX1, ISG20,
LAP3, and UBE2L6. Fifteen proteasomal proteins showed an
increase in serum levels of COVID-19 patients, most notably
PSMA7, PSME1, PSMB3, PSMA4 and PSMA5, whereas PSMD2 was
the only one with decreased levels. In line with the cytokine storm
hypothesis, several acute phase proteins were elevated in serum
of COVID-19 patients, such as CRP, Lipopolysaccharide Binding
Protein (LBP), ORM1, and ORM2. Hierarchical clustering of the
differentially altered proteins (DAPs) without missing values
(n = 531, 85.78% of all DAPs) identified two major protein clusters.
One consisted of elevated serum proteins in COVID-19 involved in
innate and adaptive immunity, cytokine signalling, post-
translational modification, and neutrophil degranulation,
whereas the other group consisted of proteins with decreased
serum levels in COVID-19 that are involved in extracellular matrix
organisation, haemostasis, and developmental biology (Fig. 3c).
Among the proteins with the largest decrease were several pro-
teins involved in fatty acid metabolism (such as LRP2 and apoli-
poproteins) and albumin, which can be due to the impaired
nutrition often occurring during systemic inflammation.

Comparison to PEA and SOMAscan
Comparing the DAPs identified in this study overlapping with those
previously reported by AB methods (p < 0.05 and 5% FDR in both
methods), HiRIEF LC-MS/MS showed very high categorical agree-
ment to PEA or SOMAscan estimates (Fig. 3d, e, Supplementary
datasets 3a–c). HiRIEF LC-MS/MS agreed in the direction of the
alteration in 93% and 94% of the cases, compared to PEA and
SOMAscan, respectively. However, comparing the statistical sig-
nificance of the alterations showed higher agreement between HiR-
IEF LC-MS/MS and PEA than HiRIEF LC-MS/MS and SOMAscan.
Among the 172 proteins overlapping in HiRIEF LC-MS/MS and PEA
analyses, 102 were significant in both (59.30%); whereas among the
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403 proteins overlapping in HiRIEF LC-MS/MS and SOMAscan ana-
lyses, only 103 were significant in both (25.56%). Still, we identified
443 proteins that were significant in our analysis that were not sig-
nificant in either AB study, including elevated levels of fourteen
proteasomal proteins, ILF2, CRP, SFTPB, ORM1, ORM2, UBE2L6,
ISG20, and several heat shock proteins, i.e., isoforms A1 and B2 of
HSP90A, HSPA4, HSPA8, and HSPA13. We detected a decrease in
Angiotensin I Converting Enzyme (ACE), a paralogue of the SARS-
CoV-2 cellular receptor ACE2. Importantly, HiRIEF LC-MS/MS detec-
ted alterations in 180 proteins that have not been targeted by either
PEA or SOMAscan assays at all, including elevated levels of the brain-
enriched proteins ZFHX3 and RELN, and decreased levels of the
intestine-enriched VIL1 and NLRP6 (see Supplementary dataset 3a).

The agreement was similar when we adjusted the serum protein
alterations in our analysis for age, sex, and comorbidities with limma25

models (Figure S2, Supplementary dataset 4) and lower compared to
non-significant proteins in analyses with PEA and SOMAscan (Fig-
ure S3), likely due to technical bias and confounders.

In summary, we show that there is a large perturbation in the
serum proteome of hospitalised COVID-19 patients. Using in-depth
globalMSproteomics,wedescribe solublebloodproteomealterations
that have not been reported or targeted beforewith ABmethods, such
as proteasomal and heat shock proteins, and further validate several
findings reported in two previous AB-based in-depth studies of the
COVID-19 soluble blood proteome.

Soluble blood proteins are traceable to SARS-CoV-2 infection
To gain insights into which proteins derived from SARS-CoV-2 infec-
tion site, we performed an in vitro experiment infecting lung adeno-
carcinoma cultured human airway epithelial cells (Calu-3) with an

a Serum samples collected from
COVID-19 patients (ancestral variant)

10 μL
serum

b Calu-3 infected with SARS-CoV-2 (ancestral variant)

S1

ACE2

S2

SARS-CoV-2

TMPRSS2

SARS-CoV-2
infected cells

Mock treatment with
UV-inactivated virus

Non-infected
controls

S1

ACE2

S2

SARS-CoV-2

TMPRSS2

c In-depth LC-MS/MS proteomics and
phosphoproteomics

High-abundant protein depletion

Severe
COVID-19 patients

vs
Healthy controls

Cells collected after infection at:

Trypsin

LyLL s-C

Proteins digested
into peptides

Tagging peptides with
tandem-mass tags (TMT-TT16)

SCX peptide
cleaning

Fractionation
based on pI or pH

LC-MS/MS

d Data analysis of proteome alterations e Meta-analysis of the COVID-19
soluble blood proteome

Serum proteome alterations Comparison to cellular
proteome alterations

1,517 proteins

1,706 individuals

1,039 COVID-19 patients

3 hours 1 day 3 days 7 days

Fig. 1 | Studyworkflow. aThe serumwasdepletedof 14 high-abundant proteins, to
provide identification of lower abundant proteins; b We infected the Calu-3 line
with SARS-CoV-2 in vitro and collected the cells at 3 hours, 1 day, 3 days, and 7 days
after infection. Non-infected Calu-3 cells and Calu-3 cells treated with ultraviolet
light-inactivated SARS-CoV-2 were also cultured as controls; c In-depth LC-MS/MS

proteomics workflow; d Serum proteome alterations were traced to proteome
alterations of SARS-CoV-2-infected cells; e Combining twenty global MS pro-
teomics datasetswithour dataset, weperformedaper-proteinmeta-analysisof 1517
proteins identified in at least two cohorts and in up to 1706 individuals.
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isolate of the ancestral variant (AV) of SARS-CoV-2. Samples were then
collected 3 hours, 1 day, 3 days, and 7 days after infection (see Fig. 1b).
In parallel, as controls, we collected samples on the same days from
non-infected cells and from cells treated with SARS-CoV-2 virus inac-
tivated by ultraviolet (UV) radiation. All conditions were performed in
biological triplicates, andweperformedproteomics analysis with high-
pH fractionation and LC-MS/MS. We identified and quantified 10,336
human proteins and 62 sequence matches to SARS-CoV-2 proteins,
with protein-centric summarisation of peptides. Thirteen viral protein
sequences were quantified in all samples, with substantially higher
levels in the infected cells at particularly day 3 and to a lesser extent at
day 7 after infection (Figure S4). Sixmatched to the viral nucleocapsid
phosphoprotein, five to the spike glycoprotein, and two to the mem-
brane glycoprotein. Gene-centric summarisation of peptides identified
10,677 gene-matchedproteins, ofwhich 7875with quantifications in all
samples; this gene-centric protein matrix without missing values was
used for further analyses.

We found no DAPs 3 hours and 1 day after infection (p < 0.05,
5% FDR, Figures S5a-b). However, a total of 532 and 893 proteins
were DAPs in infected compared to non-infected cells, at 3 and
7 days after infection, respectively (two-sided t test, p < 0.05, 5%
FDR, Figures S5c-d, Supplementary datasets 5a-b). Among the pro-
teins with the largest increase in infected cells at 3 and 7 days
after infection were several proteins involved in IFN-α and IFN-γ
responses, such as the IFN-induced proteins IFIT1, IFIT2, IFIT3, and

IFIT5, the IFN-stimulated proteins ISG15 and ISG20, the viral RNases
OAS1 and OAS2, and the antigen-presenting molecules class I – β-2
microglobulin (B2M) and HLA-A/-B/-E. Of the 532 DAPs deregulated
at day 3, 44 proteins were also detected as altered in the serum of
COVID-19 patients. Similarly, 77 of the 893 DAPs at day 7 were
among DAPs in serum. Whereas more overlapping DAPs at day 3
were altered in serum of COVID-19 patients in the same direction
(Fig. 4a, Supplementary dataset 5a), less than half overlapping DAPs
at day 7 were altered in serum in the same direction (Fig. 4b, Sup-
plementary dataset 5b). Still, 16 proteins had a consistent dereg-
ulation at both days of infection in the cell lines and in serum of
COVID-19 patients at 5% FDR. Fifteen of these were upregulated,
including the IFN-activated proteins ISG15, MX1, UBE2L6, ISG20,
STAT1, the LAP3 peptidase, the proteasomal proteins PSME1,
PSMB10 and PSMB8, TYMP, LGALS3BP, SERPINB1, WARS1, NAMPT,
and THOP1. Only one protein—ALDOC—remained consistently
downregulated across all comparisons. This set of proteins also had
a statistically significant alteration in levels in the infected Calu-3
cells when compared to the Calu-3 cells receiving mock treatment
with UV-inactivated SARS-CoV-2 (Fig. 4c, Figure S6). Sullivan et al.
have previously reported elevated levels of ISG15, MX1, STAT1, and
LGALS3BP in serum of COVID-19 patients by SOMAscan, but found
no changes in UBE2L6, LAP3, TYMP, SERPINB1, NAMPT, or ALDOC9.
Filbin et al. observed changes in LAP3, NAMPT, and THOP1 in plasma
of COVID-19 patients, like our findings, but found no changes in
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SERPINB116. HiRIEF LC-MS/MS detected alterations in the remaining
proteins, i.e., ISG20, PSMB8, PSMB10, ALDOC, and SERPINB1,
emphasising the method’s ability to capture alterations deriving
from infection that are not picked up by other methods.

Altogether, we show that a portion of the altered serum pro-
teins detected in COVID-19 patients showed the same alteration as
in SARS-CoV-2-infected cells. Sets of proteins that were deregulated
in the proteome of SARS-CoV-2-infected cells in the same direction
(up or down) appeared also deregulated in the serum of COVID-19
patients, which suggests that alterations of these biological pro-
cesses at the infection site can be traced in serum. Our in vitro data
indicate that PSME1, PSMB10, PSMA7, and PSMB8 have likely been
released from infected cells in the blood, which has not been
reported before.

Soluble blood proteins tissue origin
One distinction of plasma as a bodily fluid is that it has contact with
most organs in the body. While this makes it informative about the
body state, it also opens a question about the origin of the altered
soluble bloodproteins. It is established that someproteins, such as the
acute phase proteins CRP, ORM1, ORM2, or the coagulation factors F5,
F10, F11, are likely secreted by the liver during systemic inflammation
and hence a general host response not specific to SARS-CoV-2 infec-
tion. However, for most proteins it is difficult to claim cellular or
process-related specificity.

To trace the tissue origin of the serum proteins altered in COVID-
19, we used tissue-enriched gene lists from the Human Protein Atlas
(HPA) for annotation. Approximately 15% of the 1779 analysed proteins
(n = 265) were tissue-enriched, comparable to estimates of the HPA,
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Fig. 4 | Comparison of serum protein alterations to proteome alterations in
Calu-3 cells infected with SARS-CoV-2. a Day 3 after infection. The agreement is
represented as proportion (in %) of proteins changing in the same direction out of
the total number of overlapping proteins and with Spearman’s correlation coeffi-
cient (r); b Day 7 after infection; c Boxplots for selected proteins consistently
upregulated at day 3 and day 7 after infection, and in serum. The boxplots show
protein levels in SARS-CoV-2-infected Calu-3 cells at different time points, com-
pared to non-infected cells and cells treated with UV-inactivated SARS-CoV-2. All

cells in each condition were cultured as biological replicates (n = 3 each). In addi-
tion, boxplots of serum levels of the respective protein in COVID-19 patients
compared to healthy controls are presented. The box centre represents the med-
ian, the lower and upper box limits the 25th and 75th percentile, respectively,
and whiskers’ limits the minimum and maximum values of the data after
removing outliers. ns = non-significant, * = p <0.05, ** = p <0.01, *** = p <0.005,
**** = p <0.001. The p values were determined with a two-sided t test and adjusted
for multiple testing with the FDR.
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where 15.5% of the protein-coding genes show enrichment in a parti-
cular tissue based on mRNA expression26. Similarly, 89 of the 619
altered soluble blood proteins (14.38%, Supplementary dataset 3a)
were tissue -enriched, of which almost two thirds derive from the liver
(n = 57). Four of the five intestine-enriched proteins, i.e., ZG16, NLRP6,
APOA4, and VIL1, showed decreased levels in serum of COVID-19
patients, whereas only CDHR2, a microvillar protein, showed elevated
levels. Because LBP has often been considered as an inflammatory
marker of gut leakage27, we exploredwhether it correlated to intestinal
markers. Although LBP correlated highly to other acute phase pro-
teins, it surprisingly had a moderate negative correlation with all the
intestinal markers except for CDHR2, with highest inverse correlation
with the inflammasome protein NLRP6 (Spearman’s r = -0.742,
p =0.000017, Supplementary Dataset 6), questioning whether this
marker should be considered a gut leakage marker or a generic acute
phase marker. All three proteins enriched in lymphoid organs, i.e.,
STAB2, Leukocyte Immunoglobulin-Like Receptor B1 (LILRB1), and
CR2, had decreased serum levels in COVID-19 patients. LILRB1 is a
receptor for class I MHC molecules that downregulates the immune
response by inhibiting the FCER1A signalling28,29, which in this study
had amoderate negative correlationwith acute phase proteins, suchas
CRP, LBP, ORM1, and ORM2. Hence, the lack of inhibition due to lower
LILRB1 levels in patients with severe COVID-19 could contribute to
hyperinflammation. Likely due to severe lung damage in our cohort of
patients, we observed an increase in the lung-enriched surfactant B
protein (SFTPB), expressed in type 2 alveolar cells, responsible for
maintaining inflation of the alveoli.

Although some of the altered circulating proteins detected in our
study are annotated as enriched in healthy tissues, a question remains
whether they are altered in infected or damaged organs duringCOVID-
19. To trace the altered serum proteins and identify which deregulated
proteins during infection in our study are matching deregulated pro-
teins in the organs during COVID-19, we intersected our findings with
two datasets containing lists of DAPs in organs and tissues derived
from patients who died of COVID-19, as compared to matched organ/
tissue controls30,31. After filtering out well-annotated plasma proteins
and immunoglobulins30, many proteins identified in the different
proteomics experiments in our study showed alteration in organs of
COVID-19 patients, most of which were in the same direction (Fig-
ures S7-S9, Supplementary Dataset 7). Several proteins had a varying
direction of the alteration in different organs as compared to the
serum alterations, which could be due to different confounders. Still,
110 proteins showed consistent deregulation in the different organs
compared to our findings (Figure S10, Supplementary Dataset 8).
Eleven of the core set of 15 proteins that had consistently elevated
levels in serum, and days 3 and 7 after infection in vitro, also had
elevated levels in at least onehumanorgan in vivo: NAMPT, ISG15,MX1,
STAT1, TYMP, LAP3, ISG20, UBE2L6, the proteasomal proteins PSMB8
and PSMB10, and LGALS3BP. Additional 70 proteins upregulated at
both days 3 and 7 after infection in vitro, were upregulated in at least
one organ in vivo, including DDX58, TAP2, OAS2, OAS3, PARP9, IFIT1,
IFIT2, IFIT3, IFI16, STAT3, MX2, and others (see Supplementary Data-
set 7). Since most of these proteins showed no organ specificity, they
are likely driving the systemic host response towards SARS-CoV-2, of
which 11 proteins were DAPs in serum.

Enrichment analyses and association with clinical parameters
To test whether COVID-19 organ-associated protein signatures can be
identified in serum by HiRIEF LC-MS/MS, we performed gene-set
enrichment analysis (GSEA)32 on the serum proteins’ alterations. For
that purpose we filtered the organs’ protein lists for previously anno-
tated plasma proteins and immunoglobulins30 and categorised all the
proteins that were upregulated and downregulated in a specific organ
of COVID-19 patients30,31 as that organ’s UP and DOWN protein set,
respectively. We tested 33 protein sets and identified elevated

serum levels of proteins belonging to upregulated protein sets in the
lungs, lymph nodes, blood vessels, liver, and heart, and a down-
regulated protein set in the spleen of deceased COVID-19 patients
(permutation test, p <0.05, 5% FDR, Fig. 5a, Supplementary data-
set 9a). However, someof the proteins were shared between the organ
sets, which could have increased the likelihood of enrichment due to
shared systemic proteome alterations. Thus, to identify organ-specific
changes, after filtering out proteins that were shared between protein
sets—which could be systemic alterations occurring in SARS-CoV-2
infection—we could only detect a signal of elevated serum levels
in COVID-19 patients of proteins downregulated in the white pulp of
the spleen (permutation test, p < 0.05, 5% FDR, Fig. 5b, Supplementary
dataset S9b), suggesting that the protein loss in the white pulp of
the spleen occurring during COVID-19 might be due to the protein
release in the bloodstream to fight infection.

To further unravel the biological processes behind the alterations,
we performed GSEA on the gene sets curated in the Molecular Sig-
nature Database (MSigDb)33. GSEA of the MSigDb hallmark gene sets
showed strong enrichment for the IFN-α and IFN-γ response, in line
with our initial observations of high elevated levels of IFN-activated
proteins in both the cell lines and serum of COVID-19 patients (Fig. 5c,
Supplementary dataset 9c). Furthermore, GSEA of both the KEGG and
REACTOME pathways confirmed our observations that the protea-
somepathway is enriched in the serumproteomeof COVID-19 patients
(Fig. 5d, Supplementary datasets 9d-e). The FCERI Mediated NF-kB
activation had the highest enrichment score (Figure S11)34. TheGSEAof
REACTOME pathways showed that proteasomal proteins, which we
identified as elevated in the serum of COVID-19 patients and in SARS-
CoV-2-infected cells, are also upregulated during HIV infection (see
Supplementary dataset 9e), suggesting that this process is likely a
shared antiviral response. Our results demonstrate the power of HiR-
IEF LC-MS/MS as the only MS method that tracked these cellular
alterations of host response at a systemic level in the blood.

We have previously characterised the anti-SARS-CoV-2 immune
response of our COVID-19 cohort24, which allowed us to explore how
protein serum levels in the blood quantified by HiRIEF LC-MS/MS
correlated to clinical parameters and immune response. A subset of
proteins, among them VIL1, had negative correlation with anti-
SARS-CoV-2 immune response and positive correlation with clinical
markers of severity, such as hospitalisation duration, IL6, CRP, pro-
calcitonin levels, or neutrophil-to-lymphocyte ratio (Figure S12 &
S13, Supplementary Dataset 10). Another subset of proteins had a
moderate to high positive correlation with activation of the adap-
tive immune system, i.e., higher anti-SARS-CoV-2 IgM, IgA, IgG
levels, and higher percentage of activated CD8+ cells, while being at
the same time associatedwith higher levels of ferritin, AST, ALT, and
LDH, all of which have been associated with COVID-19 severity13.
Within this subset were most of the proteasomal proteins, of which
almost all had a moderate to high positive correlation with ferritin
levels, AST, and ALT, while having moderate positive association
with anti-SARS-CoV-2 IgM, IgA, and IgG levels (Figure S13). This
suggests that while proteasomal proteins are involved in activating
the immune response in COVID-19, they may also contribute to
organ damage by hyperinflammation.

Phosphoproteomics
To identify phosphorylated peptides in the serum we researched the
data to include phosphorylation as a protein post-translational mod-
ification (PTM). We identified 865 phosphorylated peptides at 1% FDR,
mapping to 233 proteins. Comparing the serum levels of 306 peptides
with more confident phosphosite identifications (with false localisa-
tion rate (FLR) < 5%) showed alteration in 74 phosphorylated peptides
in COVID-19 patients (two-sided t test, p <0.05, 20% FDR, Figure S14,
Supplementary Dataset 11a). These included elevated levels of phos-
phorylated LGALS3BP (Y442-p), SERPINA3 (S384-p), ORM1 (S143-p),
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and C3 (T582-p), and the downregulated FN1 (S2432-p), CLEC3B (T159-
p), ITIH1 (ENSP00000395836.1 S181-p), and GSN (T201-p).

To trace whether the identified phosphorylated peptides in
serum occur during SARS-CoV-2 infection, we utilised a previously
established protocol, to enrich the material from the in vitro
experiment for phosphogroups and performed LC-MS/MS. We
identified 18,127 phosphorylated peptides at 1% FDR, mapping to
3973 proteins, of which 15,022 peptides had FLR < 5%. Of the latter,
3407 were observed in all samples and statistically tested. Again, we
observed no changes 3 hours and 1 day after infection at 5% FDR.
Three days after infection, the largest increase was observed in
phosphosites of the interferon-induced IFIH1 (S301-p) and STAT1
(S727-p), the transcription factor SP (ENSP00000375902.3 S378-p
and S244-p), and a protein involved in trafficking of amino acids -
CLTRN (S177-p) (two-sided t test, p < 0.05, 5% FDR, Figure S15a,
Supplementary Dataset 11b), whereas only the heat shock protein
HSP90AB1 (ENSP00000325875.3 S226-p) had an increase 7 days
after infection (two-sided t test, p < 0.05, 5% FDR, Figure S15b,
Supplementary Dataset 11c). Regardless of the alteration in the

infected cells, 16 phosphorylated peptides identified in the serum
had overlapping sequences with 30 phosphorylated peptides
identified in the infected cells. Of these, 13 phosphorylated peptides
were on the same residue, mapping to the proteins CANX, SPP1,
AHSG, TGFB1I1, NAALADL2, GOLM1, and CALU. Only one of these
phosphorylated peptides, SDAEEDGGTVsQEEEDRKPK, which was
mapping to calnexin (CANX) S564-p, had decreased levels in the
serum of COVID-19 patients (log2-FC = -0.227, p = 0.005, FDR q =
0.049, Figure S16). Interestingly, the levels of the canonical cal-
nexin protein had no change in the serum of our group of COVID-19
patients, but it was upregulated in the SARS-CoV-2-infected cells
7 days after infection, and in lungs, white pulp of the spleen, and
kidneys of patients who died of COVID-1930,31. In contrast, a phos-
phorylated peptide mapping to calnexin (AEEDEILNRsPR, CANX
S583-p) had decreased levels in lung tissue of COVID-19 patients, as
compared to healthy lung tissue30. These findings suggest that the
phosphorylated calnexin levels are lower in vivo in COVID-19
patients, in contrast to the higher levels of non-phosphorylated
calnexin, with potentially different roles in SARS-CoV-2 infection.
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Systematic literature review
The availability of MS-based global soluble blood proteomics datasets
provided an opportunity to perform a meta-analysis on global soluble
blood proteome alterations in COVID-19. Meta-analytical estimates
provide the highest level of evidence, clarifying the direction and the
statistical significance of alterations in instances where the results are
conflicting. To the best of our knowledge, this is the firstmeta-analysis
of its sort analysing global soluble blood proteome alterations in
COVID-19.

To identifyMS global proteomics studies relevant for the research
question, we performed a systematic review of the literature and
identified 18 studies (Figure S17, Supplementary dataset 12) that met
the inclusion criteria9,10,35–50. Combining the published datasets with
our dataset, we analysed 3475 soluble blood proteins across 21
proteome-profiling cohorts, including 1706 participants, of whom
1039 COVID-19 patients and 667 PCR-negative controls. Details on the
studies are available in CoViMAPP (https://doi.org/10.17044/scilifelab.
22293148). There was an inverse association between the number of

analysed samples and the number of identified proteins (Fig. 6a).
HiRIEF LC-MS/MS was the only method that combined depletion,
fractionation, and TMT-16 labelling, which favoured proteome cover-
age over throughput and had the highest number of proteins that
could be included in the meta-analysis (Fig. 6b). In total, 1517 soluble
blood proteins (43.65%) were identified in at least two studies, in at
least three COVID-19 patients, and at least three SARS-CoV-2 PCR-
negative controls per study. These proteins were included in themeta-
analyses. HiRIEF LC-MS/MS’s depth contributed to expanding the
meta-analysis coverage, by quantifying 1239 of the 1517 proteins
included in the meta-analysis (81.67%, Fig. 6c, d).

Meta-analysis of soluble blood proteome alterations in
COVID-19
To provide meta-analytical summary estimates of soluble blood pro-
teome alterations in COVID-19, we summarised abundance estimates
into standardisedmean differences (SMD) between COVID-19 patients
and PCR-negative controls of log2-normalised levels of soluble blood
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Fig. 6 | Protein identification in studies included in themeta-analysis. aNumber
of participants in relation to protein identification—as reported in the publication.
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proteins. The SMDpenalises the difference in levels for the variance in
each group, and hence is a better estimate of change when combining
studies with different methodological protocols. We applied both
fixed-effects and random-effects models51. To infer how dissimilar the
cohorts and quantifications are, we estimated the heterogeneity in the
studieswith the coefficientsQ, I2, and τ. Because the heterogeneity was
high, as estimated with I2, we based our interpretation on the random-
effects model.

Of the 1517 soluble blood proteins, a large proportion had a sta-
tistically significant alteration (n = 338, 22.28%, Fig. 7a, b, Supplemen-
tary dataset 13a). Comparing DAPs in serum identified by HiRIEF LC-
MS/MS (two-sided t test, p <0.05, 5% FDR) to DAPs significant in the
meta-analysis (random effects model, p <0.05) showed a very high
agreement in estimating the direction of the change, affirming our
results (Fig. 7c). Stratifying the meta-analysis based on sample type
showed no major differences between the findings based on studies
performed on serum compared to those performed on plasma sam-
ples, when comparing the findings to HiRIEF LC-MS/MS (Figure S18,
Supplementary Datasets 13b, c). Examples of SMD forest plots that are
available for download from the CoViMAPP shiny app (https://doi.org/
10.17044/scilifelab.22293148) are shown in Figure S19. We provided
some level ofmodularity for the users of CoViMAPP, to stratify the per-
protein meta-analyses based on sample type, acquisition type, and
remove studies deemed as outliers.

The meta-analysis clarified the direction of protein alterations in
instances of conflicting results, such as in the case of LBP, B2M, the
antibody heavy chain variable domain IGHV3-23, and the proteasomal
proteins PSMB5 and PSMB8 (Figure S19). E.g., we and Filbin et al.16

found elevated blood levels of LBP in COVID-19, whereas SOMAscan
analyses by Sullivan et al.9 showedno change in serum levels. Including
all cohorts in the meta-analysis of LBP showed increased LBP blood
levels in COVID-19. Another example is B2M, a component of MHC
class I molecules, which had variable estimates reported in the differ-
ent MS studies. Pooling these estimates into one showed that B2M is
elevated in COVID-19. An even more explicit example of the power of
meta-analysis to detect alterations is thatof the immunoglobulinheavy
chain variable IGHV3-23,where all but two studies found no alterations
in the protein levels, but the summary estimate showed increased
levels in the blood. The meta-analytical estimates further reaffirmed
our findings of elevated proteasomal proteins in the blood of COVID-
19 patients, even though the few other studies that quantified the
proteins found no change. E.g., although PSMB5 has been identified in
three other studies, only this study identified it as elevated in the
blood, which was further confirmed in the meta-analysis. Apart from
these, the meta-analysis further clarified the direction of the alteration
of other proteins with potential biological relevance in COVID-19, such
as the decrease in the soluble blood levels of the receptors for the
colony-stimulating factor 1 (CSF1R) and fibroblast growth factor
(FGFR1), likely due to their internalisation after binding their ligands.

These are just few of the many examples that demonstrate the
power of meta-analysis to capture changes that would not be picked
up in a single or multiple studies. These cases exemplify the value of
both the meta-analysis as an analytical method and CoViMAPP’s
availability as a resource to be used by the research community.

SROC curves of soluble blood proteins
Finally, to estimate the potential of each soluble blood protein iden-
tified in at least three studies to differentiate COVID-19 status, we
performed a summary receiver operating characteristics (SROC)meta-
analysis with Reitsma et al.’s bivariate random-effects model52,53. The
bivariate model provides summary estimates of sensitivity, specificity,
and area under the curve (AUC), and is superior to univariate analyses
of diagnostic odds ratios54. A total of 179 out of 971 proteins identified
in at least three studies were useful in differentiating COVID-19 from
SARS-CoV-2 PCR-negative controls (SupplementaryDataset 14a), some

of which showed high AUC (Fig. 7d, e). Most of the proteins that had a
larger absolute value of SMD were also identified as the best dis-
criminators between COVID-19 cases and SARS-CoV-2 PCR-negative
controls. Some of these proteins had a similar or potentially better
AUC performance than CRP, which is widely considered as one of the
most sensitive and specific biomarkers of inflammation (Figure S20).
To test whether the ROC curves of the underlying studies preferred
sensitivity or specificity and how this affected the meta-analysis esti-
mates of sensitivity and specificity, we analysed the ROC curve pre-
ference with the α parameter, following the approach by Doebler and
Holling (2015)55. Although there was a positive association between
higher values of α, corresponding to study-specific ROC curves’ pre-
ference for sensitivity, and higher values of sensitivity over specificity
in the meta-analysis estimates, the effect was rather minor (Fig. 7f,
Supplementary Dataset 14b). Only 2% of the variance in the log ratio of
sensitivity over specificity was explained by the variance in the study-
specific values of α in the underlying studies. As expected, there was a
trade-off between sensitivity and specificity of the proteins in differ-
entiating COVID-19 (Fig. 7g). The number of included cohorts had a
minor effect on decreasing the absolute difference between sensitivity
and specificity and no effect on the AUC estimates (Fig. 7h). This
suggests that including more cohorts in the meta-analysis leads to a
minor tendency for the sensitivity and specificity estimates to
converge.

In summary, we performed a meta-analysis on COVID-19 soluble
blood proteome alterations, estimating both the SMD and SROC
curves per protein. By summarising our estimates with estimates from
20other cohorts,we assert that a large proportionof the solubleblood
proteome is altered in COVID-19 and report proteins that can differ-
entiate COVID-19 from PCR-negative controls with high accuracy. In
addition, we show that HiRIEF LC-MS/MS had very high categorical
agreement with the SMD estimates in the meta-analysis for over-
lapping proteins, emphasising the method’s accuracy and precision,
apart from the method’s potential for in-depth analysis of the soluble
blood proteome.

Discussion
Mass vaccinations against COVID-19 have substantially changed the
course of thepandemic.However, COVID-19 is likely to remain a severe
disease that can lead to long-term health effects or death in some
individuals, making it a relevant disease to understand in a systematic
manner. Partial understandingof the systemic host response inCOVID-
19, i.e., the cytokine storm, has already led to successful drug repur-
posing in COVID-19, such as corticosteroids and monoclonal anti-
bodies against the IL6 receptor, both of which target immune-related
proteins involved in inflammation and have a moderate improvement
of survival56–58. We argue that discovery of biomarkers for diagnosis,
prognosis, and treatment in COVID-19 requires an in-depth analysis of
the soluble blood proteome. However, the soluble blood proteome
has a high dynamic range of concentrations, where a small number of
proteins account for most of the protein mass59, making in-depth
soluble blood proteomics by MS rather difficult. This is evident in our
systematic review on COVID-19 soluble blood proteomics where the
median number of proteins identified across the different MS pro-
teomicsplatformswas 523, even though the soluble bloodproteome is
known to harbour at least ~4500 proteins14, leaving less-abundant
proteins undetected.

With this study we contribute to several advances in COVID-19
proteomics, pinpointing host responses to SARS-CoV-2 infection in
human cells and blood serum. Our methodological and analytical
approaches can be extended to profiling host responses in other
infections. First, by quantifying ~2000 proteins, we provide the
most in-depth soluble blood proteome coverage in COVID-19 by an
MS method. Second, HiRIEF LC-MS/MS detected elevated levels of
interferon- and proteasomal- proteins in serum of COVID-19
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patients, which correlated to anti-SARS-CoV-2 immune response
and markers of severity. We also report several tissue-enriched
proteins altered in serum of COVID-19 patients, potentially deriving
from the liver, lung, intestines, and brain, which could relate to
multi-organ involvement. Apart from identifying previously unde-
scribed alterations of soluble blood proteins, we provide further
validation for dozens of soluble blood proteome alterations

identified with ABmethods by detection of the protein’s amino acid
sequence. The categorical agreement on the direction of alteration
between the overlapping statistically significant proteins identified
by HiRIEF LC-MS/MS and the AB-methods was very high. However,
there were still many proteins that were identified by one of the
three methods, but not by the remaining two. This makes different
proteomic platforms complementary and very relevant in co-
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validating findings, pinpointing differences that remain consistent
across methods and across cohorts.

Third, following proteome alterations in vitro from an infection
experiment at later time points after infection (day 3 and day 7), we
find SARS-CoV-2 induced proteome changes at cellular level that have
not been described in other studies, possibly due to short follow-up
after infection60. We observed the highest levels of viral protein
sequences at day 3, which could explain why there were no changes in
the proteome at the earlier time points and why the best agreement
with the protein alterations in serum levels inCOVID-19 patients was to
those occuring 3 days after infection. By integrating the cellular and
serumproteomics datasets, we show that alterations in serum levels of
proteins involved in interferon signalling, proteasome, and ubiquiti-
nation can relate to similar alterations after a SARS-CoV-2 infection
in vitro. The serumproteome in severeCOVID-19 showed the strongest
increase in innate immune response, specifically in the NF-kB, IFN-α
and IFN-γ pathways, and proteasomal proteins. Heptamers of protea-
somal proteins build the α and β rings of the proteasome, a crucial
organelle that maintains proteostasis by degrading ubiquitinated
proteins, cleaves viral proteins into peptides that are to be presented
as antigens through MHC class I molecules, and cleaves precursor
proteins that activate the NF-kB pathway. The constitutional cellular
proteasome consists of three catalytically active subunits—β1 (gene
name: PSMB6), β2 (PSMB7), and β5 (PSMB5)—that regulate the pro-
teostasis in healthy human cells61. However, alternate subunits of the
same proteins—referred to as β1i (PSMB9), β2i (PSMB10), and β5i
(PSMB8)—canbe inducedduring immune response, particularly due to
IFN-γ stimulation. These subunits assemble quickly during immune
response into a specialised organelle—the immunoproteasome—and
provide faster degradation of proteins into peptides, required for
antigen presentation62. Apart from showing that different proteasomal
proteins are elevated in the blood of COVID-19 patients, we could
further differentiate that both the constitutional- and the immune-
proteasome β subunits were elevated; specifically, the constitutional
β1 (PSMB6) and β5 (PSMB5) subunits, and the immunoproteasome
subunits β2i (PSMB10) and β5i (PSMB8). We observed a large increase
in both immunoproteasomal subunits PSMB8 and PSMB10, and the
IFN-activated proteins ISG15 and MX1 in serum and in infected cells 3
and 7 days after infection, thus connecting these changes in blood
proteins to those after SARS-CoV-2 infection. Still, the Calu-3 cell line is
an epithelial cancer cell line, which might limit the number of alter-
nating proteins that can be traced in the blood. However, perhaps as
challenging as claiming tissue specificity of the circulating proteins is
delineating proteome alterations in infected organs from those
induced by systemic processes such as inflammation. This posed as a
challenge in previous proteome analyses of organs sampled from
deceased COVID-19 patients in comparison to those of control donors
by Schweizer et al.30. The authors have addressed this by annotating
well-known plasma and immunoglobulin proteins, to differentiate
them from organ-localised proteome alterations. Still, the question of
how much the tissue proteomes were contaminated with the soluble

bloodproteome remains open. In our study,we investigatedproteome
alterations occurring in an in vitro system of infection that is isolated
from the systemic effects, providing insights that many of the organ-
localised proteome alterations have been likely induced by SARS-CoV-
2 infection. Furthermore, we show that a core set of 11 proteins seems
consistently upregulated during SARS-CoV-2 infection in vitro,
in COVID-19 patient serum and tissue samples, and that detected
alterations in organ-associated protein sets can be traced in the blood.
Our results pinpoint that the proteins decreasing during COVID-19 in
the white pulp of the spleen31, one of the largest immune organs in the
body, might be due to their shedding in the bloodstream. It is worth
reminding the reader that although we find similar protein alterations
that occur in the serum of COVID-19 patients, after infection in vitro,
and in different tissues obtained from deceased COVID-19 patients,
these do not necessarily prove with certainty that the alterations are
specifically and directly deriving from SARS-CoV-2 infection or a spe-
cific organ. However, the evidence supports the hypothesis that some
of the observed proteome alterations in the blood of COVID-19
patients are likely derived from proteome alterations in cells and
organs during SARS-CoV-2 infection, whereas some appear to be
shared acrossdifferent organs as a systemic host response to infection.

Furthermore, we identified phosphorylated proteins in the serum
that had exactmatching to peptides in Calu-3 cells infectedwith SARS-
CoV-2 in vitro. Among them, we discovered that levels of phospho-
calnexin (CANX S564-p) had decreased serum levels in COVID-19
patients, unlike the canonical non-phosphorylated protein. Calnexin is
a molecular chaperone that has been implicated in regulating protein
folding, in keeping misfolded glycoproteins in the endoplasmic reti-
culum (ER)63. Furthermore, it is reported to interact with SARS-CoV-264

and plays a role in stabilising the α chains of MHC class I molecules
prior to the binding of β-2 microglobulin, thus being involved in reg-
ulating antigen presentation65. Although phosphorylations of the
protein have been described before66, not much is known about their
functionality. Phosphorylation of calnexin through the MEK-ERK1
pathway has been associated with attenuated release of misfolded
proteins, such as α-1-antitrypsin (SERPINA1), where inhibiting the
phosphorylation has led to an increase in secretion of misfolded
proteins67. Considered that non-phosphorylated levels of calnexin
have shown an increase during SARS-CoV-2 infection in vitro in this
study and in vivo in previous studies30,31, it is enticing to speculate that
decreased phosphorylation of calnexin identified in the blood in our
study and by others in lung tissue30 leads to impaired quality control of
protein folding in the ER, permitting secretion of misfolded proteins
that avoid degradation by the proteasome complex.

Lastly, the in-depth coverage by HiRIEF LC-MS/MS and the avail-
ability of 20 additional MS datasets allowed us to perform a meta-
analysis on COVID-19 global soluble blood proteomic datasets, which
provides the highest level of evidence on blood levels’ alterations of
~1500 proteins and the diagnostic potential of almost a thousand
proteins in ~1700 individuals. Only two studies49 included a validation
global proteomics cohort comparing COVID-19 to SARS-CoV-2

Fig. 7 |Meta-analysis summary and selectedproteins. aVolcanoplot showing the
SMDon the x axis and -log10 p values on the y axis, random-effectsmodel. Proteins
above the dashed line (p <0.05) were statistically significant. The shade of the
points represents SMD multiplied by -log10 (p value); b Proteins identified in ≥ 18
cohorts that had a statistically significant SMD. The error bars represent 95% CI of
the SMD estimates; c Agreement in percentages and Spearman’s correlation coef-
ficient (r) between log2-FC by HiRIEF LC-MS/MS (p <0.05, 5% FDR) and SMD esti-
mates in themeta-analysis (p <0.05);d SROC summary estimates of sensitivity and
specificity of all the proteins identified in ≥ 3 studies. Proteins with 95% CI of either
sensitivity or specificity including 0.5 (the chance dashed line) were statistically
non-significant. FPR false positive rate; e Top 11 proteins based on AUC that were
identified in all cohorts. The SROC curves are based on the bivariate model, along
with a 95%CI tolerance ellipsoid per protein; fHeterogeneity of the underlyingROC

curves per protein per study (n = 7606) used in estimating the SROC curves
(n = 971). The estimated α shape parameter for lowest heterogeneity (Q) is plotted
on the x axis; α of 1 = no preference, α > 1 indicates ROC preference for sensitivity
and α < 1 indicates ROC preference for specificity. The log ratio of mean sensitivity
and mean specificity is presented on the y axis; 0 = no preference (horizontal
double-dashed line), values≻0 =model prefers sensitivity, and values≺0 =model
prefers specificity. The ROCcurves for a protein in a studywere labelled as having a
preference of sensitivity and specificity if they had values above the 80th quantile
(qtl) and below the 20th quantile of α, respectively. g Inverse relationship between
mean specificity (x axis) and mean sensitivity (y axis). h Relationship between the
number of cohorts included in the per-protein estimates and absolute difference
between specificity and sensitivity (left) and AUC (right).
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negative controls, making this meta-analysis an important indepen-
dent validation resource for findings reported in individual discovery
studies. However, the value of the meta-analyses is not only in vali-
dating discovered findings, but in further detecting alterations that are
not observed in single studies and deriving conclusions in instances
where the results are conflicting, as exemplifiedwith LBP, B2M, IGHV3-
23, PSMB5, CSF1R, etc. There is an abundance of conclusions that can
be inferred from the meta-analysis that are beyond the scope of this
manuscript’s discussion. Therefore, we further provide these results
on soluble blood proteome alterations in COVID-19 as CoViMAPP
(https://doi.org/10.17044/scilifelab.22293148), a publicly available
resource for the research community. Although we did not remove
outliers when interpreting the results of the meta-analysis, the CoVi-
MAPP users might wish to do so, to provide a better estimate for the
protein of interest. Traditionally, CRP has been used as a systemic
clinical marker of inflammation in COVID-19 and other diseases,
although the SROC curves suggest that other acute phase proteins,
such asORM1, CRTAC1, SERPINA3, TF, andAHSGmight performbetter
as biomarkers of inflammation. This indicates that maybe some acute
phase proteins that are repeatedly identified with global MS pro-
teomics in the soluble blood proteome should be reconsidered for
clinical use.

As expected, therewas a large heterogeneity between the studies,
which can be driven by many factors: accuracy and precision of
methods, gene/protein mapping, selection bias, adjustment for dif-
ferent clinical factors, data normalisation, genetic and ethnic differ-
ences, different SARS-CoV-2 variants, COVID-19 severity, choice of
controls, etc. All of these should be considered when interpreting the
results.Whereas this study provides the currentMS-based state-of-the-
art concluding estimates for soluble blood proteome alterations in
COVID-19, we envision CoViMAPP as a dynamic meta-analysis
resource, which will analytically curate future studies and include
them in the summary estimates.

In summary, we report a comprehensive analysis of the soluble
blood proteome alterations in COVID-19 by MS proteomics, where we
find alterations of soluble blood proteins that add to our under-
standing of COVID-19 pathogenesis, and validate several previous
findings reported by AB methods. We demonstrate that soluble blood
proteome alterations can be traced to SARS-CoV-2-infected cells.
Finally, by performing a comprehensivemeta-analysis of soluble blood
proteome alterations in COVID-19 quantified by MS methods, we
developedCoViMAPP, an open-access resource that is available for the
scientific community to aid future research on soluble blood pro-
teomics and circulating biomarkers in COVID-19.

Methods
Patients
Twenty hospitalised SARS‐CoV‐2 PCR‐confirmed patients from Kar-
olinska University Hospital in Stockholm, Sweden, were included in
the study in April 2020. Data from the cohort and methodology of
clinical and immunological assays has been previously described in
detail elsewhere24. Inclusion criteria were ongoing acute COVID-19
disease and self-declared healthy individuals, for cases and controls,
respectively. Exclusion criteria for both groups were known immu-
nosuppression or immunosuppressive disease. Serum was collected
from COVID-19 patients and healthy controls in BD Vacutainer serum
tubes with spray-coated silica (BD Biosciences). After coagulation for
up to 2 hours at room temperature, serum was isolated by cen-
trifugation at 2000× g for 10min and immediately stored at −80 °C
for later analysis.

The study was approved by the Regional Ethical Review Board in
Stockholm, Sweden and by the Swedish Ethical Review Authority, and
is in accordancewith the Declaration of Helsinki. All COVID-19 patients
and healthy controls included in this study provided written informed
consent to participate in the study.

In vitro infection experiment
Human lung adenocarcinoma Calu-3 cells (ATCC, HTB-55) were grown
in minimum essential medium (MEM) supplemented with 20% FBS,
HEPES, L-glutamin, 100 U/ml penicillin, and 100mg/ml streptomycin
at 37 °C and 5% CO2. The SARS-CoV-2 ancestral variant (isolate SARS-
CoV2/human/SWE/01/2020; Genbank accession: MT093571) was pro-
pagated on Vero E6 cells and titrated via end-point dilution assay. The
AV was chosen as this was the SARS-CoV-2 strain that the COVID-19
patients had been infected with. For UV-inactivation, the virus stock
was incubated under UV-light for 3 × 1.5min. Complete inactivation
was confirmed via infection attempt and no live virus could be
detected after the treatment.

Cells were infected with active or UV-inactivated SARS-CoV-2 in
completeMEMat amultiplicity of infection (MOI) of 1. After two hours
of incubation the virus solution was removed, the cells were washed,
and fresh growth medium was added. Before the infection, the active
and inactivated virus were treated with Trypsin at 1:100 dilution for
one hour at 37 °C. Before sample collection at the indicated time
points, the cells were washed thoroughly.

Mass-spectrometry serum proteomics
High abundant protein depletion. Depletions were performed using
the High Select™ Top14 Abundant Protein mini columns (Thermo-
fisher), according to manufacturer’s recommendations. Briefly, 10μL
of serum were applied to each Mini column and incubated at room
temperature with gentle end-over-end mixing, for 20min. Post
depleted samples were then heated at 56 °C for 30min for viral inac-
tivation. Depletedflowthroughswere recoveredby centrifugation. The
depleted serum flow-through was concentrated on 5 kDa molecular
weight cut-off filter followed by buffer exchange to 50mM HEPES pH
7.6, as previously described68.

MS Sample preparation. Depleted serum was denatured at 60 °C for
1 hour followed by reduction with DTT at 95 °C for 30min and alky-
lation with chloroacetamide at room temperature for 20min at end
concentrations of 4mM. Trypsin was added at a 1:50 (w/w) ratio and
digestion was performed at 37 °C overnight. TMT-16 labelling was
performed according to manufacturer’s instructions and labelling
efficiencywas evaluatedbyLC-MS/MSonpooled samples using 30min
gradients to ensure >95% labelling of peptides before pooling. After
pooling the samples, 1mL Strata X-C 33μm columns (Phenomenex)
were used for sample clean-up. The peptides were subsequently dried
in a SpeedVac. HiRIEF separation was performed, as previously
described69,70. Briefly, the samples were rehydrated in 8M urea with
bromophenol blue and 1% IPG buffer, and subsequently loaded to the
immobilized 3–10 pH gradient (IPG) strip and run according to pre-
viously published isoelectric focusing (IEF) protocols69. After IEF, the
IPG strip was eluted into 72 fractions using an in-house robot. The
obtained fractions were dried using SpeedVac and frozen at −20 °C
until MS analysis.

LC-ESI-MS/MS Q-Exactive HF. Q-Exactive Online LC-MS was per-
formed using a Dionex UltiMate 3000 RSLCnano System coupled to a
Q-Exactive-HF Hybrid Quadrupole-Orbitrap mass spectrometer
(Thermo Scientific). Each of the 72 plate wells was dissolved in 20μL
solvent A and 10μL were injected. Samples were trapped on a C18
guard-desalting column (Acclaim PepMap 100, 75μm×2 cm, nanoVi-
per, C18, 5μm, 100Å), and separated on a 50cm long C18 column
(Easy spray PepMap RSLC, C18, 2μm, 100Å, 75μm× 50 cm). The nano
capillary solvent A was 94.9% water, 5% DMSO, 0.1% formic acid; and
solvent B was 4.9% water, 5% DMSO, 90% acetonitrile, and 0.1% formic
acid. At a constant flowof 0.25μLmin–1, the curved gradientwent from
6 to 10% B up to 40% B in each fraction in a dynamic range of gradient
length, followed by a steep increase to 100%B in 5min. Information on
gradient length is provided in Supplementary dataset 15.
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Spray voltage was set to 1.9 kV, S-lens RF level at 60, and heated
capillary at 275 °C. Full scan target was 3 × 106 with amaximum fill time
of 15ms. FTMS master scans with 60,000 resolution (and mass range
300–1500m/z) were followed by data-dependent MS/MS (30,000
resolution) on the top 5 ions using higher energy collision dissociation
(HCD) at 30% normalized collision energy. Precursors were isolated
with a 2m/zwindow. Automatic gain control (AGC) targets were 1 × 106

for MS1 and 1 × 105 for MS2. Maximum injection times were 100ms for
MS1 and 400ms for MS2. The entire duty cycle lasted ∼2.5 s. Dynamic
exclusion was used with 30 s duration. Precursors with unassigned
charge state or charge state 1 were excluded. An underfill ratio of 1%
was used. All data were acquired in positive polarity mode.

Mass-spectrometry cell proteomic analysis of cells
The cell pellets were dissolved in 300 µl of lysis buffer (4% SDS, 50mM
HEPES pH 7.6, 1mM DTT), heated to 95 °C, and sonicated. The total
protein amount was estimated with the Bio-Rad DC assay. Samples
were then prepared forMS analysis using amodified version of the SP3
protein clean-up and a digestion protocol71,72, where proteins were
digested by Lyc-C and trypsin (sequencing grade modified, Pierce). In
brief, 200 µg protein from each sample was alkylated with 4mM
chloroacetamide. Sera‐Mag SP3 bead mix (20 µl) was transferred into
the protein sample together with 100% acetonitrile to a final con-
centration of 70%. The mix was incubated under rotation at room
temperature for 30min. Themix was placed on themagnetic rack and
the supernatant was discarded, followed by two washes with 70%
ethanol andonewith 100%acetonitrile. Thebeads-proteinmixturewas
reconstituted in 100 µl Lys-C buffer (1M Urea, 50mM HEPES pH: 7.6
and 1:50 enzyme (Lys-C) to protein ratio) and incubated overnight.
Finally, trypsin was added in 1:50 enzyme to protein ratio in 100 µl
50mM HEPES pH 7.6 and incubated overnight. The peptides were
eluted from the mixture after placing the mixture on a magnetic rack,
followed by peptide concentration measurement (Bio-Rad DC Assay).
The samples were then pH adjusted using TEAB pH 8.5 (100mM final
concentration), 100 µg of peptides from each sample were labelled
with isobaric TMT tags (TMT-16 reagent) according to the manu-
facturer’s protocol (Thermo Scientific), and the pooled peptide mix
was further fractionated by basic reverse phase chromatography. In
particular, the separation was performed using a 25 cm column
(Waters corporation, XBRIDGE, Peptide BEH C18 column, 300Å,
3.5μm, 2.1mm×250mm) in a 90min gradient from 3% solvent A
(20mM NH3) to 50% solvent B (80% Acetonitrile, 20mM NH3) at a
constant flow of 200μl/min. Finally, 96 fractions were collected,
concatenated in 24 as previously described73, and analyzed by LC-MS/
MS. The LC-MS/MS analysis was performed using a Dionex UltiMate™
3000 RSLCnano System coupled to a Q-Exactive-HF mass spectro-
meter (Thermo Scientific). Each of the 24 fractions was dissolved in
20 µl solvent A and 10 μl were injected. Samples were trapped on a C18
guard-desalting column (Acclaim PepMap 100, 75μm×2 cm, nanoVi-
per, C18, 5 µm, 100Å), and separatedon a 50 cm longC18 column (Easy
spray PepMap RSLC, C18, 2μm, 100Å, 75μm× 50 cm). The nano
capillary solvent A was 94.9% water, 5% DMSO, and 0.1% formic acid;
and solvent B was 4.9% water, 5% DMSO, 90% acetonitrile, and 0.1%
formic acid. At a constant flow of 0.25μl min−1, the curved gradient
went from 6–8% B up to 40% B in each fraction in a dynamic range of
gradient length, followed by a steep increase to 100% B in 5min.

FTMS master scans with 60,000 resolution (and mass range
300–1500m/z) were followed by data-dependent MS/MS (30,000
resolution) on the top 5 ions using higher energy collision dis-
sociation (HCD) at 30% normalized collision energy. Precursors
were isolated with a 2m/z window. AGC targets were 16 for MS1 and
15 for MS2. Maximum injection times were 100ms for MS1 and
400ms for MS2. The entire duty cycle lasted ~2.5 s. Dynamic
exclusion was used with 30 s duration. Precursors with unassigned

charge state or charge state 1 were excluded. An underfill ratio of 1%
was used.

Of note, the labelling efficiency was determined by LC-MS/MS
before pooling of the samples. For the sample clean-up step, a solid
phase extraction (SPE strata-X-C, Phenomenex) was performed, and
purified samples were dried in a SpeedVac. An aliquot of approxi-
mately 10 µgwas suspended in LCmobile phase A and 1 µgwas injected
on the LC-MS/MS system.

Peptide and protein identification and quantification
Orbitrap raw MS/MS files were converted to mzML format using
msConvert from the ProteoWizard tool suite (v.3.0.20066)74. Spectra
were searched using the MSGF+ search engine (v2020.03.14)75 and
Percolator (v3.04.0)76 for target-decoy scoring.

All searches were done against the Human protein coding subset
of Ensembl (v.105) using our proteomics workflow (https://github.
com/lehtiolab/ddamsproteomics, v.2.7), which was run with Nextflow
(v.20.01.0). MSGF+ settings included precursor mass tolerance of 10
ppm, fully tryptic peptides, maximum peptide length of 50 amino
acids and a maximum charge of 6. Fixed modifications were carbami-
domethylation on cysteine residues and TMT-16 on lysine and peptide
N-termini. A variable modification was oxidation on methionine
residues.

Quantification of TMT-16 reporter ions was done using the
OpenMS project’s IsobaricAnalyzer (v2.5)77. MS1 feature detection and
quantification was performed using Dinosaur (https://github.com/
fickludd/dinosaur)78. PSMs found at 1% FDR were used to infer gene
identities. Protein quantification by TMT-16 reporter ions was calcu-
lated usingmedians of log2-transformed PSM channel intensities from
which the values of the internal standard(s) were subtracted. Protein
and gene quantification values were then normalized by subtracting
their channel medians. Protein false discovery rates were calculated
using the picked-FDR method using gene symbols as protein groups
and limited to 1% FDR79.

Phosphoproteomics
The raw MS files from the serum analysis were researched again,
matching MS spectra to the human Ensembl (v.105) protein database,
with the same search parameters as specified above, additionally
specifying phosphorylation of serine, threonine, or tyrosine as a vari-
able modification.

The samples from the SARS-CoV-2 infection experiment were
enriched for a phosphoproteomics analysis. Briefly, cell pellets were
lysed by SDS lysis buffer (25mMHEPES, pH: 7,6, 4% SDS, 1mMDTT, 1%
PMSF) and prepared for mass spectrometry analysis using a modified
version of the SP3 protein clean up and digestion protocol71 and a
modified protocol for phosphoproteomics73. Peptides were labelled
with TMT-16 reagent according to the manufacturer’s protocol and
separated by basic pH Reverse Phase Chromatography. The con-
catenated fractions from the prefractionation were subjected to
phosphopeptide enrichment using Ti-IMAC chromatography. The
phospho-enriched samples aswell as non-enriched (for total proteome
characterisation) samples were separated in a 120-min gradient using
an online 3000 RSLCnano system coupled to a Thermo Scientific Q
Exactive-HF. MSGF+ and Percolator in the Galaxy platformwas used to
match MS spectra to the human Ensembl (v.105) protein database,
using phosphorylation of serine, threonine, or tyrosine as a variable
modification.

Data analysis
Statistics and reproducibility. No statistical method was used to
predetermine sample size. No data were excluded from the analyses.
The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assessment.
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Descriptive statistics and differential analysis. Descriptive statistics
was reported as mean, median, and standard deviation for numeric
variables, and percentages for categorical variables.

The serum proteomics data have been previously normalised to
the mean of two and three internal standards in set 1 and 2, respec-
tively. The data were further median centred and normalised with a
log2-transformation. A univariate differential analysis of serumprotein
levels was performed with a two-sided t test at a significance level of
α = 0.05 and corrected for multiple testing with the FDR. The com-
parison was further adjusted in a multivariate limma model and two-
sided modified t statistic, adjusting for age, sex, hypertension, and
diabetes25, and corrected for multiple testing with the FDR. The log2-
FC refers to the log2 mean difference between serum protein levels in
COVID-19 and healthy controls. The agreement between HiRIEF LC-
MS/MS estimates of the log2-FC and log2-FC estimated by PEA and
SOMAscanwas calculated categorically, as percentage of proteinswith
a change in the same direction and a Spearman correlation coefficient
between the log2-FC estimates of the two studies. In themain analysis,
we compared only the proteins that were statistically significant in
both compared methods at p <0.05 and 5% FDR. In two separate
sensitivity analysis comparison to PEA and SOMAscan data, we also
compared the agreement between log2-FC of proteins that had a sta-
tistically significant alteration in HiRIEF LC-MS/MS at p < 0.05 and 5%
FDR to the log2-FC in the other method that was significant at p <0.05
or non-significant.

Serum protein clustering. We clustered the patients based on nor-
malised protein relative expression values of proteins without missing
values with the principal component analysis (PCA) and hierarchical
clustering. For hierarchical clustering, we used Spearman’s correlation
coefficient as a distance metric (1 – r) and presented the protein
expression values in a heatmap. The enrichment terms presented next
to the heatmapwere derived from a two-sided overrepresentation test
on the corresponding protein clusters obtained through hierarchical
clustering.

Tracing serum proteins to SARS-CoV-2-infected organs. Data on
DAPs in SARS-CoV-2-infetectedorganswereobtained fromproteomics
datasets published by Schweizer Lisa et al.30 and Xie Nie et al.31 Both
datasets contained lists of DAPs per SARS-CoV-2-infected tissue or
organ as compared to matching non-SARS-CoV-2-infected tissue or
organ controls. Schweizer et al. analysed ten different organs, includ-
ing 11 tissue types: lungs, lymph nodes, liver, adrenal gland, kidney,
medulla oblongata (brain), basal ganglia (brain), blood vessels, walls of
blood vessels, heart, and spleen. Nie et al. analysed seven different
organs, including 9 tissue types: lungs, red pulp of the spleen, white
pulp of the spleen, liver, heart, renal cortex, renal medulla, testis, and
thyroid. Each study-specific per-organ protein list of DAPs was divided
into two protein sets, one consisted of upregulated DAPs, and another
consisted of downregulated DAPs, totalling 40 protein sets. The pro-
tein sets were annotated with the first author’s initials, the organ type
(and tissue, where applicable), and the direction of the change (-UP/-
DOWN), e.g., SL Lungs UP, XN Liver DOWN, etc. These lists were then
intersected with DAPs in the serum or cell lines identified in this study
and annotated in proteinmaps, as described in supplementary figures.

To detect enrichment in the serum of COVID-19 patients of pro-
teins detected in SARS-CoV-2-infected organs we performed GSEA for
each protein set that had at least 10 proteins in the set (nsets = 33), after
filtering out any protein classified as a plasma protein or
immunoglobulin30, and any protein with log2-FC <0.5. The statistical
significance in theGSEAwas determinedwith the permutation test and
the p values corrected formultiple testing with the FDR. The GSEAwas
performed at 5%FDRand Entrez IDs for theprotein setswereextracted
with the bitr function in clusterProfiler80. To increase the tissue spe-
cificity, in an additional analysis we have filtered out any protein in an

organ-associated set that hasbeen aDAP in anyother organ-associated
set in the samestudy.We thenperformedanotherGSEAanalysis on the
filtered protein sets, if they included at least 10 proteins (nsets = 33).

Enrichment analyses. All enrichment analyses were performed with
the package clusterProfiler80. The gene sets were fetched from the
MSigDb database. The overrepresentation test in the heatmap was
performed with a two-sided Fisher’s exact test at α =0.05 and 5% FDR,
using all identified proteins as background. GSEA32 was performed as
previously described, per groups of gene sets as classified in the
MSigDb33 at 5% FDR, using all the proteins quantified in at least 50% of
the observations and converting gene name IDs to Entrez IDs. The
ranking of the proteins was based on the mean difference between
serum levels in COVID-19 patients and serum levels in healthy
individuals.

Cellular proteomics differential analysis. The cellular proteome
changes attributable to infection were derived from a comparison
between the infectedCalu-3 cells with the SARS-CoV-2 AV at days 3 and
7 to the non-infected controls at days 3 and 7, respectively. The sta-
tistical comparison between the triplicates of infected cells and non-
infected controls was performed with an unpaired two-sided t test at a
significance level of α =0.05. The agreement between the cellular
protein log2-FC and serum log2-FC was calculated categorically, as
percentage of proteins with a change in the same direction and a
Spearman correlation coefficient.

Differential abundance analysis of phosphorylated peptides. Dif-
ferential abundance of phosphorylated peptides between groups were
tested with an unpaired two-sided t test, at a significance level of
α = 0.05, only on phosphorylated peptides that were identified at 1%
FDR and 5% FLR, observed in >50% and 100% of the serum and cell
line samples, respectively. The phosphosite locations were mapped
based on Ensembl canonical proteins for all peptides. The phosphosite
locations were additionally mapped based on the Uniprot canonical
proteins, if identified in the PhosphoSitePlus database (https://www.
phosphosite.org/); if available, these IDs were used in the plots and in
the text, otherwise the Ensembl phosphosite locations were
annotated.

Systematic review
On 15-02-2023, we searched for studies of interest in two databases,
i.e., PUBMED and EMBASE, for the keywords: “(covid-19 OR sars-cov-2)
AND (plasmaOR serum) ANDmass spectrometry AND (proteomicsOR
protein*)”, without restriction. The references were handled in Men-
deley referencemanager. After excluding the duplicates, three authors
(HB, NS, and JK) screened the articles manually based on inclusion and
exclusion criteria. The inclusion criteria were studies with a global MS
method on plasma or serum proteomes in human COVID-19 patients
and PCR-negative human controls. We excluded reviews, conference
articles, targeted proteomics studies, and studies performed on
pregnant women or children. Studies selected in the screening step
were then further evaluated for inclusion in the review and meta-
analysis based on reading the full papers and accessing the publicly
available processed normalised data fromproteomic searches. Studies
without available processed data were not included. Studies that had
pooled samples before the MS analysis were excluded from the meta-
analysis because the calculation of standard deviation would not have
been valid. Details on how the received datasets were processed are
available on github.

Meta-analysis
After selecting the studies to include in the meta-analysis, for both the
COVID-19 group and the SARS-CoV-2 PCR-negative control group we
calculated the per-protein mean, standard deviation, and number of
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persons in which the corresponding protein was identified. The
quantifications for proteins with different Uniprot IDs that mapped to
the same gene namewere averaged and the quantification assigned to
the gene name; if one of the proteinsmapped to several Uniprot IDs, it
was excluded prior to calculating the mean. Proteins that did not have
a matching gene name IDwere summarised based on their Uniprot ID.
Details on the data processing are available on github. If a protein has
been identified in at least three individuals in both groups, it was
chosen for inclusion in themeta-analysis. Based on themean, standard
deviation, and number of participants, we estimated a SMD for each
included protein in each study.We then pooled the SMD estimates in a
fixed-effects and random-effects model and calculated a summary
SMD estimate with 95% CI, a prediction interval, and measures of
heterogeneity - τ, Q and I2 coefficients51. The estimates were then
plotted in a forest plot and the publication bias visualisedwith a funnel
plot. The summary estimates with a 95%CI that did not overlap 0 were
considered statistically significant.

We estimated the derived curves and summary sensitivity and
specificity per protein with a modified approach of Reitsma et al.’s
bivariate random-effects’ model on contingency tables52, available in
the R package mada53. The approach uses a generalised linear mixed
model for estimating sensitivity and specificity, utilising the glmer
function from the lme4 package81, as implemented by Sehovic et al.82.
The contingency tables contained information on true positives, false
positives, true negatives, and false negatives. The values were derived
from selecting an optimum cut-off for a ROC curve with cutpointr,
based on maximum Youden’s index, for each protein, in each study.
Then, an individual was categorised based on the measured protein
levels as COVID-19 if their measured value was ≥ or ≤ the cut-off, when
the protein was higher or lower in COVID-19, respectively. If the con-
tingency tables had a zero in any of the cells, we added a correction
coefficient of 0.5 to all cells. We calculated 95% CI for both sensitivity
and specificity as well as coordinates for the 95% tolerance ellipsoid of
the bivariate model. Only proteins that have been identified in at least
three studies and at least three individuals in both groups were
selected for inclusion in the meta-analysis. Following the approach by
Doebbler & Holling (2015)55, as implemented in82, the heterogeneity of
the underlying study-specific ROC curveswas estimatedwith the α and
C1 parameters, which indicate the ROC curves’ preference for sensi-
tivity/specificity and false positives/false negatives, respectively.
Briefly, values of α = 1 indicate no preference for sensitivity or specifi-
city, whereas values of α > 1 and α < 1 indicate ROC curve’s preference
for sensitivity and specificity, respectively. Likewise, values of C1 > 1
and C1 < 1 indicate a preference for false positives and false negatives,
respectively.

Software
All analyseswereperformed inR (v.4.2.2), and the figures assembled in
Adobe Illustrator 2023 (v.24.0.1). Figure 1 was created with Biorender
(cloud-based software, last version accessed 15. July 2023). The list of
used packages is provided in the code submitted to github.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The personal data are not publicly available due to them containing
information that could compromise research participant privacy. All
other data are provided in the article and its Supplementary files or
from the corresponding authors upon request. Source data are pro-
vided with this paper. All results described in the manuscript are pre-
sented in main or supplementary figures or datasets. All results from
the meta-analysis are available as a shiny app resource at https://doi.
org/10.17044/scilifelab.22293148. Raw and processed MS data are

deposited via ProteomeXchange to the PRIDEdatabase, with accession
codes PXD037486, PXD037451, and PXD040982. Source data are
provided with this paper.

Code availability
The customcode for theNextflowproteomicsworkflow isdeposited at
https://github.com/lehtiolab/ddamsproteomics. The R code used for
the analyses is deposited at https://github.com/harbab/
covid19proteomics.
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