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Metabolic phenotyping of BMI to
characterize cardiometabolic risk: evidence
from large population-based cohorts

Habtamu B. Beyene 1,2,3,4,12, Corey Giles 1,3,4,12, Kevin Huynh 1,3,4,
Tingting Wang1,3,4, Michelle Cinel1, Natalie A. Mellett1, Gavriel Olshansky 1,
Thomas G. Meikle1,3, Gerald F. Watts 5,6, Joseph Hung 5, Jennie Hui7,8,9,
Gemma Cadby 9, John Beilby8, John Blangero 10, Eric K. Moses 8,11,
Jonathan E. Shaw 1,2, Dianna J. Magliano 1,2,13 & Peter J. Meikle 1,2,3,4,13

Obesity is a risk factor for type 2diabetes and cardiovascular disease.However,
a substantial proportion of patients with these conditions have a seemingly
normal body mass index (BMI). Conversely, not all obese individuals present
with metabolic disorders giving rise to the concept of “metabolically healthy
obese”. We use lipidomic-based models for BMI to calculate a metabolic BMI
score (mBMI) as ameasure ofmetabolic dysregulation associatedwith obesity.
Using the difference betweenmBMI and BMI (mBMIΔ), we identify individuals
with a similar BMI but differing in their metabolic health and disease risk
profiles. Exercise and diet associate with mBMIΔ suggesting the ability to
modify mBMI with lifestyle intervention. Our findings show that, the mBMI
score captures information onmetabolic dysregulation that is independent of
the measured BMI and so provides an opportunity to assess metabolic health
to identify “at risk” individuals for targeted intervention and monitoring.

The prevalence of obesity and overweight is growing worldwide1,2.
According to recent estimates, some 30% of men and 35% of women
are obese in many countries including in North America, the Middle
East, Asia, and Australia3. The progression of obesity is influenced by
various factors such as age, gender, ethnicity, level of education,
genetic predisposition, and lifestyle choices4,5. Excess body weight,
which is a key characteristic of obesity, can be partially attributed to a
combination of high calorie intake and insufficient physical exercise6,7.
Consequently, adopting healthy eating habits (e.g., low carbohydrate
intake)8 and engaging in regular physical exercise have been

consistently linked to reduced odds of obesity and central obesity4,9.
Obesity is strongly associated with an increased risk of cardiometa-
bolic disorders including type 2 diabetes mellitus (T2DM)10,11 and car-
diovascular disease (CVD)12,13.

Body mass index (BMI), defined as weight divided by height
squared (kg/m2) is an accessible surrogate measure of obesity. Com-
pared with direct measures of adiposity, such as computed tomo-
graphy and dual energy x-ray absorptiometry, BMI is an inexpensive,
simple and easily interpretable metric. World Health Organization
(WHO) provides classifications and standardized cut-off points.
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Specifically, an individual whose BMI falls between 18.5 and 24.9 is
considered anormalweight; 25.0–29.9, overweight; and30.0or higher
representing obese. Despite not directly measuring body composition
and adiposity, BMI strongly associates with cardiometabolic
outcomes14. However, it has been recognized that not all individuals
who are obese/overweight—based on measured BMI—present with an
increased risk of metabolic complications15. A specific group of indi-
vidualswho are obese, but “metabolically healthy”, havebeen reported
in multiple population cohort studies16,17. Conversely, certain indivi-
duals,whomarewithinnormal BMI range, aremetabolically unhealthy,
resulting in an increased risk for cardiometabolic disease18,19.

Several studies have identified profound perturbations in circu-
lating lipids associated with obesity20–22. In addition, we have pre-
viously shown that the plasma lipidome is strongly associated with
BMI, with several hundred plasma lipid species significantly associated
in large population cohorts23,24. Of note, positive associations of tria-
cylglycerol, diacylglycerol, deoxyceramide and sphingomyelin, and
negative associations of lysophosphatidylcholine and ether-lipid spe-
cies have been consistently reported with BMI23,25,26 highlighting the
potential impact of obesity on multiple lipid metabolic pathways. In
contrast to some genetic loci stringently associated with BMI which
explain less than 3% of phenotypic variation of BMI27, metabolism,
driven by multiple environmental factors (diet, exercise and other
exposures), can explain up to 49% of BMI variability21,22. Importantly, in
several prospective studies, many BMI associated metabolites
(including lipids) were also markedly associated with risk of
diabetes27–29 and CVD30–32 independent of BMI. These findings convey
an important message about the potential of metabolic phenotyping
to refine the obesity definition beyond BMI measurements.

The strong associations of lipids and other metabolites with BMI
has raised the prospect of developing metabolic scores that better
capture the hidden risk of cardiometabolic diseases, i.e. the risk not

explained by BMI itself, as in normal weight but metabolically
unhealthy individuals. Using the human metabolome, Cirulli et al.
identified metabolic signatures that distinguish healthy obese and
normal weight individuals with abnormal metabolic profile21. Of note,
individuals who were classified as obese based on their metabolome,
had 2 to 5 times higher risk of cardiovascular events compared to their
counterparts with similar BMI but opposing metabolic signature.
Moreover, a recent study has showed that, lean individuals with
abnormal metabolism related to obesity had higher risk of developing
T2DM and all-cause mortality compared to those individuals with lean
BMI and healthy metabolism33. The human lipidome has also been
used to model BMI where it explained up to 47% of BMI variation with
just 75 predictors in a LASSOmodel22. Moreover, a study byWatanabe
et al.34 had recently demonstrated the power of amulti-omics profiling
in uncovering population heterogeneity within both health and dis-
ease states. The study further showed that, the metabolome inferred
BMI was substantially decreased in response to lifestyle coaching
compared to the actual BMI. Taken together, these findings suggest
the potential utility of the human lipidome and or metabolome to
characterizing the heterogeneity in obesity and identify individuals at
an increased risk of obesity-related diseases.

These early studies have identified mBMI scores that capture
residual risk of a range of cardiometabolic outcomes. However, the
signal being captured by metabolic BMI scores has not been clearly
defined nor has the relationship with disease outcomes been ade-
quately quantified. To address this, we developed models to predict
BMI and calculatedmBMI scores using plasma lipidomic data in a large
Australian cohort—the AustralianDiabetes, Obesity and Lifestyle Study
(AusDiab; n = 10,339) (Fig. 1a, b). Metabolic BMI scores were validated
in an independent Australian cohort, the Busselton Health Study (BHS,
n = 4492) (Fig. 1c). The mBMI score, and a derived score from the
difference between mBMI and measured BMI (mBMIΔ), were
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Fig. 1 | An overview of the study design for the development of metabolic BMI
scores and the subsequent downstream analyses. a Study participants and
clinical end-points in the AusDiab and BHS cohorts. b BMI model development:
lipidomic data was used for the generation of the metabolic BMI score in the
discovery cohort (AusDiab) using linear models. c External validation of the mBMI
score in the BHS cohort. d Downstream analyses (association of the metabolic BMI

scores with cardiometabolic traits and outcomes). AusDiab Australian Diabetes,
Obesity and Lifestyle Study, BHS Busselton Health Study, BMI body mass index,
mBMImetabolic BMI,mBMIΔmetabolic BMI delta, IGT impaired glucose tolerance,
IFG impaired fasting glucose, NGT normal glucose tolerance, T2DM type 2 diabetes
mellitus, CVDcardiovascular disease, CVE cardiovascular event, IHD ischemic heart
disease, LC-MS/MS liquid chromatography tandem mass spectrometry.
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examined for their association with metabolic traits, the lipids used to
generate the scores and with prevalent-, and incident-cardiometabolic
outcomes (Fig. 1d).

Here, we show that mBMIΔ captures a metabolic signal that is
independent of BMI, but closely mirrors the BMI signal. This provides
an independent measure of the metabolic dysregulation associated
with obesity. The role of such a measure in personalised health and
cardiometabolic risk is discussed. Importantly, our work shows a
strong association of diet and lifestyle habits with mBMIΔ; higher
intake of “healthier foods” such as fruits and fibre and higher levels of
leisure time physical activity (PA) were associated with the lower
mBMIΔ while prolonged television (TV) viewing time was markedly
associated with higher mBMIΔ. This suggests that lifestyle interven-
tions may improve individuals’metabolic health throughmodification
of their mBMI, independent of their measured BMI.

Results
Cohort characteristics
AusDiab and BHS are longitudinal, Australian, adult population
cohorts. As such, they show similar baseline characteristics, including
comparable sex composition, age-, and BMI distribution (Table 1). The
prevalence of T2DM, CVD, and smoking were also comparable
between the two cohorts. The clinical endpoints in the present study
include prevalent (newly diagnosed and untreated) and incident (over
a 5-year follow up period) T2DM, pre-diabetes (both prevalent and
5-year incident cases) and incident (over a 10-year follow up period)
major cardiovascular events (CVE) and ischemic heart disease (IHD)
(SupplementaryTables 1 and2). Thedefinitions for theseoutcomes are
provided in the method section. The AusDiab and BHS cohorts
respectively comprise of 55% and 56% female participants. From the

11,247 AusDiab participants who attended both the interview and the
biomedical examinations at baseline, 10,339 had fasting plasma sam-
ples available for lipidomic analysis. Of the 10,339 participants, 395
(3.8%) and 291 (2.8%) were identified as newly diagnosed T2DM and
known diabetes respectively. Participants with the known diabetes at
baseline (i.e., those receiving pharmacological treatment for diabetes,
and or previously diagnosed with diabetes) were excluded. During, a
5-year follow up time, 218 incident cases of T2DM were also recorded
(Fig. 1a, SupplementaryTable 1). In addition, some, 414major CVEs and
304 IHD (in the AusDiab cohort) (Fig. 1a, Supplementary Table 1) and
284 incident IHD (in the BHS cohort) occurred over 10-year follow up
(Fig. 1a, Supplementary Table 2). We examined at the relationship of
the anthropometric, clinical and behavioural data in relation to disease
outcomes and controls for both cohorts. Most of the explanatory
variables were significantly different between cases and controls
(Supplementary Table 1 and 2).

Lipidomic profiling of Australian population cohorts
We utilized previously generated lipidomic data from two large Aus-
tralian population cohorts, AusDiab24 and BHS35. Targeted lipidomic
profiling was performed in each cohort using liquid chromatography
coupled to electrospray ionization-tandemmass spectrometry23, from
fasting plasma samples (AusDiab, n = 10,339) and fasting serum sam-
ples (BHS, n = 4492). Lipidomic data encompassing 575 lipid species
within 33 lipid classes, from the major glycerophospholipid, sphingo-
lipid, glycerolipid and sterol classes was available on all AusDiab and
BHS participants. The coefficient of variation (%CV) of pooled plasma
quality control (PQC) samples were calculated for each lipid species to
assess the assay performance. In the AusDiab cohort, the median %CV
was 10.7% and over 90% of the lipid species were measured with a %
CV < 20%24. In the BHS cohort, the median %CV was 8.6% with 570
(95.6%) lipid species showing a %CV less than 20%.

Creation of metabolic BMI scores
We used ridge regression to create a lipidome based predictive model
for BMI including age and sex as covariates. To avoid, overfitting, a
tenfold cross validation was employed in the AusDiab cohort (i.e.,
models trained on the 9/10th and used to predict BMI in the holdout
1/10th of the cohort; lambda average =0.094, range =0.087–0.105).
This model provided predicted BMI (pBMI) values and was able to
explain 60.4% of the variance in BMI as shown in Fig. 2a. When the
model was validated in the BHS cohort it explained 52.1% of the BMI
variance (Supplementary Fig. 1a, Supplementary Table 3). To stan-
dardise the pBMI to the population, the metabolic BMI (mBMI) was
then derived from the pBMI scores as follows: mBMI = BMI + (pBMI –
pBMI value on the line of best fit between pBMI and BMI). The mBMIΔ
was then defined as the difference between BMI and mBMI. The cor-
relation between BMI and mBMI was strong: R2 = 0.811 in the AusDiab
cohort (Fig. 2b) and R2 = 0.71 in the BHS cohort (Supplementary
Fig. 1b). In a sex-specific modelling, metabolic data explained 67% of
BMI variation in women and 55% in men (Supplementary Fig. 2). To
further assess the precision in estimating mBMI, we generated mBMI
scores for the NIST 1950 QC samples (200 replicates, assuming an
average BMI of 26.0) that were analysed throughout the AusDiab
cohort. The %CV for mBMI in the NIST 1950 QC samples was 5.5%.
Whenwe createdmodels using (1) just the clinical lipidmeasures (total
cholesterol, HDL-C and triglycerides) with age and sex, and (2) cardi-
ometabolic risk factors (CMRs, clinical lipids plus HBA1C, FBG, 2h-PLG,
HOMA-IR SBP and DBP) the models respectively explained only 15.6%
and 31.6% variation in BMI in the AusDiab cohort (Supplementary
Table 3, Supplementary Fig. 3) and 10.4% and 31.2 of BMI when vali-
dated in the BHS cohort (Supplementary Table 3).Weopted to exclude
LDL-C from the clinical lipid panel as it’s a calculated measure from
total cholesterol and triglyceride levels36.

Table 1 | Baseline characteristics of the AusDiab and the BHS
participants

Characteristics AusDiab (n = 10,339) BHS (n = 4492)

Age (years)a 51.3 (14.3) 50.8 (17.4)

Sex, n (%men)b 4654 (45) 1976 (44.0)

Ethnicity (%White/European
ancestry)

9786 (94.7) 4492 (100)

BMI (kg/m2)a 26.9 (4.9) 26.2 (4.2)

WC (cm)a 90.8 (13.8) 86.1 (12.7)

Cholesterol (mmol/L)a 5.7 (1.1) 5.6 (1.1)

HDL-C (mmol/L)a 1.44 (0.4) 1.39 (0.39)

Triglycerides (mmol/L)c 1.28 (0.9) 1.18 (0.90)

SBP (mmHg)a 129.2 (18.6) 124.0 (17.9)

DBP (mmHg)a 70.0 (11.7) 74.5 (10.2)

FBG (mmol/L)a 5.3 (1.1) 5.0 (1.4)

2h-PLG (mmol/L)a 6.3 (2.7) –

HbA1C (%)a 5.2 (0.6) –

HOMA-IRa 3.6 (2.4) 1.78 (2.5)

Current smoking, n (%)b 1623 (15.9) 608 (13.5)

BP treatment, n (%)b 1577 (15.3) –

Lipid lowering medication,
n (%)b

871 (8.4) 108 (2.4)

Diabetes at baseline, n (%)b 686 (6.6) 271 (6.0)

Baseline CVD prevalence,
n (%)b

577 (5.6) 238 (5.3)

WC waist circumference, HDL-C high density cholesterol, SBP systolic blood pressure, DBP
diastolic blood pressure, FBG fasting blood glucose, 2h-PLG 2-h post load glucose, HbA1C%
percent glycated haemoglobin, HOMA-IR homeostasis model assessment of insulin resistance.
aValues expressed as mean (±SD).
bValues expressed as frequency, n (%) for dichotomous variables.
cData in Median, (IQR) as Triglyceride distribution was right skewed.
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The biological signal captured by the metabolic BMI
To better understand the lipid biology captured by the mBMI, we
performed regression analysis of lipid species with BMI and mBMIΔ. In
age and sex adjustedmodels, we observed a significant associationwith
505 out of 575 lipid specieswith BMI. Diacylglycerol, triacylglycerol and
ceramide species showed a strong positive association, while most
hexosylceramide, lyso and ether phospholipid species were negatively
associated (Fig. 2c, Supplementary Data 1) (e.g. LPC(18:2)[sn1]
decreased by 2.15% per unit increase in BMI, p = 1.56 × 10–245). Of the
triacylglycerol species, TG(52:1)[NL-18:0] was the strongest predictor
(4.94% increased per unit of BMI, p =4.56 × 10–283). We then performed
the same regression analysis of lipid species against mBMIΔ (Fig. 2d,
Supplementary Data 2) and compared the lipidomic profile associated
with BMI with the profile associated with mBMIΔ. Interestingly, the
association ofmBMIΔwith lipid species and the association of BMIwith
lipid species were almost identical with the correlation between effect
sizes of each lipid associated with BMI (x-axis) and mBMIΔ (y-axis)
having a R2 = 0.999. However, we note the effect sizes were stronger
against mBMIΔ (Fig. 2e, Supplementary Data 2) reflecting that variance

inmBMIΔ is completely explained by the lipid specieswhereas variance
in BMI is only partially explained by lipid species. For example, the
effect size for TG(52:1)[NL-18:0] was 4.94% against BMI (Fig. 2c, Sup-
plementary Data 1) and 8.7% for the same species against mBMIΔ
(Fig. 2d, SupplementaryData 2). The statistical explanationwhy theplot
of the beta coefficients of lipids for BMI and mBMIΔ are correlated is
elaborated in Supplementary Note 1. A LASSOmodel performed nearly
the same as the ridge model (Supplementary Fig 4a and 4b, Supple-
mentary Table 3). Using the LASSO model, associations of BMI with
plasma lipid species (Supplementary Fig. 4c) and association ofmBMIΔ
with plasma lipid species (Supplementary Fig. 4d) were identical after
adjusting for age and sex. The correlation between effect sizes of each
lipid associated with BMI (x-axis) and mBMIΔ calculated from the
LASSOmodel (y-axis) provided an R2 close 1.0 (Supplementary Fig. 4e).

The performance of different regularized linear models to
predict BMI
To assess the importance of the number of lipid species in the models,
we compared regularized linear models (ridge, elastic-net and LASSO),
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details are shown in Supplementary Data 1 and 2. AC acylcarnitine, CE cholesteryl
ester, Cer ceramide, COH cholesterol, DE dehydrocholesterol, dhCer dihydrocer-
amide, DG diacylglycerol, GM1 GM1 ganglioside, GM3 GM3 ganglioside, HexCer
monohexosylceramide, Hex2Cer dihexosylceramide, Hex3Cer trihexosylceramide,
LPC lysophosphatidylcholine, LPC(O) lysoalkylphosphatidylcholine, LPC(P)
lysoalkenylphosphatidylcholine, LPE lysophosphatidylethanolamine, LPE(P)
lysoalkenylphosphatidylethanolamine, LPI lysophosphatidylinositol, PC phospha-
tidylcholine, PC(O) alkylphosphatidylcholine, PC(P) alkenylphosphatidylcholine,
PE phosphatidylethanolamine, PE(O) alkylphosphatidylethanolamine, PE(P) alke-
nylphosphatidylethanolamine, PG phosphatidylglycerol, PI phosphatidylinositol,
PS phosphatidylserine, SHexCer sulfatide, SM sphingomyelin, TG triacylglycerol,
TG(O) alkyl-diacylglycerol.
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incorporating lipid species, age and sex, for their ability to predict BMI
in the AusDiab cohort and validated these in the BHS. Using elastic-net
(384 lipid species selected) and LASSO (349 lipid species selected)
models, we observed similar performance as for the ridgemodel for the
prediction of BMI, with models explaining 60.8% to 60.9% of BMI var-
iance in the AusDiab. Validation of these models in the BHS dataset
explained to 52.2% and 51.9% of the BMI variance, compared to 52.1.0%
with the ridgemodel. When we utilised clinical lipids, age and sex in the
model development, the elastic-net and LASSO models respectively
explained only 15.5% to 15.6% BMI variance in AusDiab and only 10.0%
and 10.2% BMI variance in the BHS cohort (Supplementary Table 3).
Upon incorporating all CMRs, the elastic net and LASSO models
respectively explained, 31. 6% and 31.5 variation in BMI in the AusDiab
and 31.1 and 31.2% in the BHS cohort (Supplementary Table 3). As,
LASSO and elastic-net showed very similar performance we focused
further analysis on the ridgeandLASSOmodelsonly. To investigatehow
a further reduction in the number of lipid species in themodel affected
model performance, we tuned the regularization parameter, lambda, in
the LASSO models and in the ridge models for comparison, with log10
lambda values between -4 and 0.2 (Fig. 3a–c). As lambda was increased,
the number of features selected into the LASSO model decreased until
only 9 lipids are included in the model with a log10 lambda of 0.

In the LASSO models, as lambda increased, the correlation (R2)
between BMI and the pBMI decreased, while in the ridgemodels the R2

remained relatively stable (Fig. 3b). The correlation (R2) between BMI
and mBMI increased in the LASSO models reaching a R2 of 1.0 as the
number of features incorporated into the LASSOmodels decreased to
0, but again showed little variation in the ridge models (Fig. 3b).
Optimization of the lambda parameter by minimizing the mean-
squared error (MSE) using cv.glmnet showed the cross-validated MSE
increasing in the LASSOmodels but again relatively stable in the ridge
models (Fig. 3c). The optimum lambdaused tomodel BMI for the ridge
and LASSO models was defined by the lowest MSE. We then extracted
the beta-coefficients of the optimum ridge and LASSOmodels (Fig. 3d,
e): the lipid species showing the strongest contribution in the ridge
and LASSO models were similar. SM(d18:2/14:0), displayed the stron-
gest positive effect size in both models, β = 1.677 (ridge) and β = 3.172
(LASSO). More details on the weighting of the individual lipid species
in both the ridge and LASSO models can be found in Supplemen-
tary Data 3.

While the ridge and LASSO models showed comparable perfor-
mances, when lambdawas optimised, the ridgemodel wasmore stable
across all the possible lambda values and showed better validation in
the BHS cohort (Supplementary Table 3) and so was used for further
analyses.

The association of mBMIΔ with metabolic traits
We hypothesized that the difference between the mBMI the BMI; the
mBMIΔ captures cardiometabolic health/risk and this potentially
offers clinically relevant information to identify high risk individuals.
To assess the relationship between mBMIΔ and cardiometabolic risk
factors and explore whether mBMIΔ identifies metabolic subtypes, we
grouped the AusDiab participants into quintiles of the mBMIΔ, with
just over 2000 participants in each (Fig. 4a). The distributions of BMI
and mBMI for the 5 groups are shown in Fig. 4b, c, respectively. We
performed linear regression analysis between cardiometabolic traits
(outcome) and the quintiles ofmBMIΔ (predictor) to assess the overall
association. Quintiles 1 to 5 (Q1-Q5), as expected, have comparableBMI
values, but substantially different mBMIs. The two most discordant
groups (Q1) and (Q5) had similar mean BMI and mean age, while their
mBMI scores were significantly different (Fig. 4b–d). Themedian (IQR)
mBMI values were 30.6 (5.5) and 22.7 (6.9) for the Q5 and Q1 respec-
tively. Individuals in Q5 were characterized by unfavourable lipopro-
tein profiles (higher total cholesterol, higher triglycerides, and lower
HDL-C; Fig. 4d), as well as being more insulin resistant, having higher

2-h post-load glucose (2h-PLG), glycated haemoglobin C (HBA1C) and
higher blood pressure compared to individuals in Q1 (Fig. 4e), despite
Q5 and Q1 having similar mean BMI. We also observed stronger asso-
ciations of mBMIΔ with waist circumference (WC) and waist-to-hip-
ratio (WHR) thatwith BMI itself (Supplementary Fig. 5), suggesting that
thesemeasures aremore closely linked to themetabolic dysregulation
captured by the mBMIΔ.

To validate these findings, we statistically tested whether the
profile of cardiometabolic traits differ between the two most dis-
cordant groups in the AusDiab cohort and validated this in the BHS
cohort. We performed linear regression analyses (with cardiometa-
bolic traits as outcomes and the discordant groups as the predictor,
using Q1 as the reference group), adjusting for age, sex and BMI or for
age, sex, BMI, and clinical lipids (excluding the outcome). All the
metabolic traits, except FBG, differed between the discordant groups
before and after adjusting for clinical lipids despite these groups
having a similar BMI in both cohorts (Fig. 5a, b, and Supplementary
Table 4). Individuals in Q5 relative to those in Q1 had statistically sig-
nificantly elevated levels of triglycerides (fold difference 95% CI = 1.52,
1.45–1.59), HOMA-IR (fold difference 95% CI = 1.59, 1.50–1.68) and 2h-
PLG (fold difference 95% CI = 1.17, 1.15–1.19). These associations
remained significant after further adjustment for clinical lipids,
although the effect size was reduced in most cases (Fig. 5b, Supple-
mentary Table 4). The findings observed in the AusDiab cohort were
validatedon theBHScohort (note, the 2h-PLGand theHbA1cmeasures
were not available in the BHS cohort). Individuals in the top quintile
(Q5) had a significantly elevated level of triglycerides (fold difference
95% CI = 1.44, 1.40–1.49), HOMA-IR (fold difference 95% CI = 1.45,
1.41–1.50) and lower HDL-C (fold difference 95% CI = 0.86, 0.85–0.87)
relative to those in the bottom quintile (Q1) (Fig. 5a). These associa-
tions remained significant after adjustmentwith clinical lipids (Fig. 5b).

Higher metabolic BMI is associated with higher odds of
prevalent and future T2DM and pre-diabetes
We assessed the odds of T2DM and pre-diabetes across the quintiles of
the mBMIΔ with Q1 as a reference. Individuals with T2DM had higher
BMI (mean ±SD= 29.9 ± 6.1) (Fig. 6a) andmBMI (mean ±SD= 31.0 ±6.0)
(Fig. 6b) relative to NGT (mean± SD BMI = 26.2 ± 4.5 and mBMI= 26.1 ±
5.1). Based on the quintile analyses, there was a progressive increase in
the odds ratio of T2DM from the lowest mBMIΔ range (Q1) to the
highest (Q5) (Fig. 6c). Individuals in Q5 relative to Q1 had more than
four-fold higher odds for prevalent T2DM (OR 95% CI =4.5, 3.1–6.6,
p value = 1.48 × 10–15) (Fig. 6c, Supplementary Table 5) and 2.5-fold
higher odds for incident T2DM (Fig. 6c, p= 2.45 × 10–4) after adjusting
for age, sex, and BMI. These associations were only slightly attenuated
but remained significant after adjusting for clinical lipids (total choles-
terol level, HDL-C, triglycerides), familial history of diabetes and smok-
ing status. Further details of these associations are provided in
Supplementary Table 8. We have previously reported comprehensive
sex-differences in the lipidomic profile employing the same datasets24.
Recognizing these differences in the metabolic profiles of men and
women, we conducted a separate analysis for men and women. In sex-
stratified models (age and BMI adjusted), we observed that, the mBMIΔ
exhibited a slightly stronger association with a newly diagnosed T2DM
in women than men (Supplementary Fig. 6).

Next, we investigated whether the strong associations of mBMIΔ
with T2DM observed above also exist in the pre-diabetic state. We
performed a logistic regression between mBMIΔ quintiles and pre-
valent pre-diabetes (n = 1920) versus NGT (n = 7733) or 5-year incident
pre-diabetes (n = 417) versus NGT controls (n = 4023, those who
remainedNGTover the followupperiod). As themBMIΔ increased, the
odds of pre-diabetes at baseline and risk of future pre-diabetes
increased in a progressive manner. Subjects in the top quintile of
mBMIΔ (Q5), despite having a BMI comparable to those in the Q1, had
a threefold higher odds of prevalent pre-diabetes (OR 95% CI = 3.0,
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2.5–3.5, p = 1.54 × 10–33) compared to those belonging to the lowest
quintile ofmBMIΔ. In addition, subjects in Q5with NGT at baseline had
more than a twofold higher odds of progressing to pre-diabetes pro-
spectively compared to those in the Q1 (OR 95% CI = 2.5, 1.8–3.5,
p value = 3.67 × 10–8). This association remained significant (although
attenuated) upon adjusting for clinical lipids, and smoking (Fig. 7,
Supplementary Table 6). The details of the odds ratios and p-values

before and after adjusting for clinical lipids across the full quintile
range are provided in Supplementary Table 6. Prevalent pre-diabetes
constitutes two distinct pre-diabetic states: isolated impaired fasting
glucose (IFG) and impaired glucose tolerant (IGT) and the composite
of these two. The association ofmBMIΔwith isolated IGTwas stronger
than the association with IFG. However, in both cases a strong and
progressive increase in the odds ratiowas observed asonemoves from
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Q1 to Q5 of mBMIΔ (Supplementary Fig. 7). A significant association
exists between themBMIΔ and the isolated IFG versusNGT, despite the
weak association of mBMIΔ with FBG itself. We identified that, the
latter finding (i.e., weak associations of mBMIΔ with FBG) resulted
from the presence of subjects with very high FBG levels and known
diabetesmellitus (KDM) in thewhole cohort (Supplementary Fig. 8).Of
note, individualswithKDMhas a lowermBMIΔ than thosewith IFG, IGT
and NGT (Supplementary Fig. 8). The associations of mBMIΔ with IFG
were independent of 2h-PLG and associations with IGT were inde-
pendent of FBG (Supplementary Table 7).

Higher metabolic BMI tracks the risk of CVD
We assessed whether the mBMIΔ was associated with prevalent CVD
and riskof futureCVE independent of themeasuredBMI. Individuals in
the top mBMIΔ quintile, Q5 were twice as likely to have prevalent CVD
relative to those in the lowest quintile, Q1 (OR 95% CI = 2.1, 1.5–3.1,
p = 6.43 × 10–5) (Table 2). Additional adjustment for total cholesterol,
HDL-C, triglycerides, smoking status, and family historyof diabetes did
not attenuate mBMIΔ/mBMIΔ quintile—prevalent CVD associations
(Supplementary Table 8). Compared to the entire cohort, the results
were consistent in a sex-stratified analyses, although the mBMIΔ

Fig. 3 | The performance of ridge and LASSO models. a The number of features
incorporated in the ridge (red line) and LASSO (blue line) models for different
lambda values. b The correlation (R2) of BMI and pBMI (dashed lines) or BMI and
mBMI (solid lines) in ridge (red line) and LASSO models (blue line) for different
lambda values. cMSE of the difference between the observed and predicted values
for ridge (red line) and LASSOmodels (blue line). The vertical dashed red and blue
lines represent the minimum MSE, for ridge and LASSO models respectively (i.e.,
the optimum lambda used to make the models). d A plot of beta coefficients from
the optimum ridge model. e A plot of beta coefficients from the optimum LASSO
model. Red circles and blue diamonds represent the top 15 lipid species (ranked
based on the absolute value of beta coefficients) showing the strongest contribu-
tion in the ridge and LASSO models respectively. AC acylcarnitine, CE cholesteryl

ester, Cer ceramide, COH cholesterol, DE dehydrocholesterol, dhCer dihydrocer-
amide, DG diacylglycerol, GM1 GM1 ganglioside, GM3 GM3 ganglioside, HexCer
monohexosylceramide, Hex2Cer dihexosylceramide, Hex3Cer trihexosylceramide,
LPC lysophosphatidylcholine, LPC(O) lysoalkylphosphatidylcholine, LPC(P)
lysoalkenylphosphatidylcholine, LPE lysophosphatidylethanolamine, LPE(P)
lysoalkenylphosphatidylethanolamine, LPI lysophosphatidylinositol, PC phospha-
tidylcholine, PC(O) alkylphosphatidylcholine, PC(P) alkenylphosphatidylcholine,
PE phosphatidylethanolamine, PE(O) alkylphosphatidylethanolamine, PE(P) alke-
nylphosphatidylethanolamine, PG phosphatidylglycerol, PI phosphatidylinositol,
PS phosphatidylserine, SHexCer sulfatide, SM sphingomyelin, TG triacylglycerol,
TG(O) alkyl-diacylglycerol. Source data are provided as a Source Data file.
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Fig. 4 | The relationship between mBMIΔ and cardiometabolic traits.
a Correlation between mBMI and BMI for all individuals across the quintiles of
mBMIΔ in the AusDiab dataset (n = 10,339). The green, yellow, red, blue, and pink
marks show individuals in the Q1 (n = 2068), Q2 (n = 2068), Q3 (n = 2067), Q4
(n = 2068) and Q5 (n = 2068) of mBMIΔ respectively. b Density histograms of BMI
distribution for each mBMIΔ quintile. c Density histograms of mBMI distribution
for each mBMIΔ quintile. d, e Box plots of the association of mBMIΔ with cardio-
metabolic traits. Box plots represent the distribution of z-scores of the respective
cardiometabolic trait in each quintile of mBMIΔ. The data depicted in the box and
whisker plots for (d) and (e) span from the minimum to the maximum values

(z-score). The lower and upper boundaries of the box correspond to the 25th and
75th percentiles, respectively, and the central open circles within the boxes
represent the median values. Linear regression analyses of mBMIΔ quintile (pre-
dictor) against cardiometabolic traits (outcome) were performed. β-coefficients
and p values (two-sided) from the linear regression analyses are presented. No
adjustments were made for multiple comparisons. BMI body mass index, HDL-C
high density cholesterol, HOMA-IR homeostatic model assessment of insulin
resistance, FBG fasting blood glucose, 2h-PLG 2-h post load glucose, SBP systolic
blood pressure, DBP diastolic blood pressure, HbA1C haemoglobin A1c. Source
data are provided as a Source Data file.
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exhibited a slightly larger effect size in women (Supplementary Fig. 9,
middle panel) than men (Supplementary Fig. 9, bottom panel). The
mBMIΔwas onlymarginally associated with the 10-yearmajor incident
CVE (HR 95% CI = 1.11, 1.01–1.22, p = 4.3 × 10–2) (Table 2) and IHD event
(HR 95% CI = 1.13, 1.01–1.27, p = 3.6 × 10–2) (Table 2). Only the, IHD
events in the AusDiab were defined in the same way in the BHS. Con-
sequently, we validated the mBMIΔ—IHD associations in the BHS
cohort showing similar results as in the AusDiab (Supplementary
Table 9).

In a sensitivity analyses, amBMIΔ calculated from themodel using
clinical lipids exhibited a strong correlation (r = 0.68) with the mBMIΔ
calculated using the model incorporating CMRs. However, the corre-
lation between mBMIΔ derived from the clinical lipid values or the
CMRs and the score calculated using lipidomic data (the current
mBMIΔ) were weaker, (R = 0.3 and 0.34 respectively) (Supplementary
Fig. 10a). This suggests that the lipidomic data capture independent
information that is not fully accounted for by the clinical lipid values or
the CMRs alone. We also examined how the mBMIΔ derived from
clinical lipids or CMRs related with disease outcomes and how these
compared with the current mBMIΔ. Although, the BMI prediction
performance was low when using only clinical lipids or CMRs

(Supplementary Fig. 3), themBMIΔ calculated fromclinical lipid values
performed as well as the mBMIΔ of the lipidome model in predicting
the prevalent T2DM (Supplementary Fig. 10b) and incident T2DM
(Supplementary Fig. 10c). As expected, mBMIΔ calculated from the
CMRsmodel performed better than the lipidomic model at prediction
of prevalent and incident T2DM as the diagnostic criteria are included
in the model. In contrast the mBMIΔ derived from model with clinical
lipids or CMRs did not predict cardiovascular disease, demonstrating
the limitations of these models (Supplementary Fig. 10d).

Comparison of models with and without mBMIΔ
Using mBMIΔ as a continuous outcome, we assessed the relative
contribution of BMI and mBMIΔ in models containing both BMI and
mBMIΔ adjusting for age and sex in the AusDiab cohort. We also
assessed the association of mBMI against the same outcomes. As
expected, BMI was strongly associated with both prevalent and inci-
dent T2DM and to the lesser extent with prevalent CVD and incident
CVE (Supplementary Table 10). The mBMI itself was also significantly
associated with T2DM and prevalent CVD independent of age and sex;
these associations were stronger (resulting in lower p values) than the
associations with either measured BMI or mBMIΔ (Supplementary

AusDiab cohort BHS  cohort
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Fig. 5 | Validation of the association of cardiometabolic risk factors with
metabolic discordant groups. Linear regression analyses between metabolic
traits (outcomes) and the discordant mBMIΔ groups (predictor, Q5 relative to Q1)
were performed adjusting for (a) age, sex, and BMI and (b) age, sex, BMI, total
cholesterol, HDL-C, and triglycerides (excluding the outcome) in the AusDiab

cohort, n = 10, 339 (blue green boxes) and the BHS cohort, n = 4492 (pink boxes).
Each square represents the fold difference (Q5 relative to Q1 of mBMIΔ) for a given
metabolic trait. The whiskers represent 95% CIs. HDL-C high density cholesterol,
HOMA-IR homeostatic model assessment of insulin resistance, FBG fasting blood
glucose, SBP systolic blood pressure, DBP diastolic blood pressure.
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Fig. 6 | The relationship between mBMIΔ and T2DM. a Density histogram
showing the distribution of BMI in T2DM and NGT subjects. b Density histogram
showing the distribution of mBMI in T2DM and NGT subjects. c The forest plot
displays the odds ratio (x-axis) associated with moving from Q1 of mBMIΔ (refer-
ence quintile) to Q2–Q5 (y-axis) for the newly diagnosed prevalent T2DM (yellow
circles) and5-year incident T2DM(sky-blue circles) compared to controls. Theodds
ratios were computed from a multiple logistic regression between a newly

diagnosed prevalent T2DM, n = 395 versus 7733 NGT subjects at baseline or inci-
dent T2DM, n = 218 cases versus 5354 controls free of T2DMand the quintiles of the
mBMIΔ (Q1 as a reference) adjusted for age, sex, and BMI. Error bars represent 95%
CIs. Odds ratios and the associated CIs were log2 transformed to enhance visuali-
zation. The results for clinical lipid, familial history of diabetes and smoking status
adjusted models are provided in Supplementary Table 5.
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Table 9). The mBMIΔ showed, an independent association with pre-
valent and incident T2D after correcting for age, sex and BMI (Sup-
plementary Table 10) and with CVD outcomes after adjusting for age,
sex, BMI, smoking status and diabetes. To assess the significance of the

additional information provided by the mBMIΔ to the prediction of
T2DM, Akaike’s information criterion (AIC) and Likelihood ratio test
(LRT) were calculated to compare the two competing nested models
(i.e., one containing mBMIΔ the other without mBMIΔ). Using this
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Fig. 7 | The relationship between mBMIΔ and pre-diabetes. Depicted on the
x-axis of the forest plot are the odds ratios (on a log2 scale) for subjects with the
prevalent pre-diabetes (gold circles) and 5-year incident pre-diabetes (sky-blue
circles) compared to the controls across the quintiles of mBMIΔ (y-axis). The odds
ratios were computed using a logistic regression between prevalent pre-diabetes,
n = 1920/7733 NGT or incident pre-diabetes, n = 417/4023 NGT and the quintiles of

themBMIΔ (Q1 as a reference) adjusted for age, sex, andBMI in theAusDiab cohort.
Each circle and the horizontal errors bars (95% CI) for the quintiles (Q2–Q4)
represent the odds of pre-diabetes associated with moving from the reference
quintile (Q1, OR= 1). Detailed associations including clinical lipids and smoking
adjusted analyses are presented in Supplementary Table 6.

Table 2 | The association between mBMIΔ/quintiles of mBMIΔ and CVD outcomes (prevalent and incident) in the AusDiab
cohort

mBMIΔ Prevalent CVD (n = 577 cases versus
9690 controls)

10-year incident CVE (n = 414 events
versus 7936 non-events)

10-year incident IHD (n = 304 events ver-
sus 8046 non-events)

Odds ratio (95% CI)a p value Hazard ratio (95% CI)b p value Hazard ratio (95% CI)c p value

mBMIΔ (continuous scale) 1.3 (1.1, 1.4) 3.40× 10–5 1.11 (1.01, 1.22) 4.30 × 10–2 1.13 (1.01, 1.2) 3.6 × 10–2

Q1 (Ref) – – – – – –

Q2 1.4 (1.01, 2.1) 7.30 × 10–2 1.1 (0.8, 1.5) 7.00 × 10–1 1.0 (0.7, 1.5) 9.00 × 10–1

Q3 1.3 (0.9, 2.0) 1.70 × 10–1 1.0 (0.7, 1.3) 8.00 × 10–1 0.9 (0.6, 1.4) 7.00 × 10–1

Q4 1.7 (1.1, 2.4) 1.10 × 10–2 1.4 (1.02, 1.9) 4.00 × 10–2 1.4 (1.02, 2.1) 4.10 × 10–2

Q5 2.1 (1.5, 3.1) 6.40 × 10–5 1.3 (0.9, 1.7) 1.30 × 10–1 1.3 (0.9, 1.8) 2.00 × 10–1

Significant two-sided p values (<0.05) are shown in bold.
CVD cardiovascular disease, CVE cardiovascular event, IHD ischemic heart disease.
aLogistic regression between themBMIΔ /quintiles ofmBMIΔ and prevalent CVD adjusting for age, sex, BMI, smoking status and diabetes history. Odds ratios and95%CIs for subjectswith prevalent
CVD compared to control groups were computed.
bProportional hazard Cox-regression between themBMIΔ /quintiles of mBMIΔ andmajor incident CVE adjusting for age, sex, BMI, smoking status and diabetes history. Hazard ratios and 95%CIs for
subjects with incident CVE compared to non-events are presented.
cProportional hazardCox-regression between themBMIΔ /quintiles ofmBMIΔ and incident IHD adjusting for age, sex, BMI, smoking status and familial diabetes history. Hazard ratios and95%CIs for
subjects with incident IHD compared to non-events are presented.
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approach, we showed that models with mBMIΔ showed a better fit in
predicting newly diagnosed prevalent T2DM (i.e., models with mBMIΔ
have smaller AIC (AIC = 2603.1) compared to models without mBMIΔ
(AIC = 2652.4)) and a LRT p value of 8.02 × 10–13. In predicting incident
T2DM, the model with mBMIΔ fit significantly better (AIC = 1733.1)
than the model without mBMIΔ (AIC = 1742.4) and a LRT
p value = 7.98 × 10–4. The model with mBMIΔ also showed a better fit
for prevalent CVD relative to amodel withoutmBMIΔ (Supplementary
Table 11).

Lifestyle and dietary habits are associated with mBMIΔ
Using dietary data in the AusDiab (n = 10, 339), we assessed whether
certain dietary habits were associated with mBMIΔ. Total fruit intake
(quintiles) encompassing 10 different types (Supplementary Fig. 11)
and totalfibre intake (quintiles) were inversely associatedwithmBMIΔ.
In a model adjusted for age, sex and BMI (model 1), total fruit intake
was inversely associated with mBMIΔ (Q5 vs Q1, β −0.56 [95% CI –0.71
to –0.41], p = 8.54 × 10–14) (Fig. 8a). In the full model, adjusted for
smoking, PA time, TV viewing time, SBP, family history of diabetes,
history of CVD and other dietary and lifestyle factors (model 2), this
association remained significant (β –0.25, [95% CI –0.44 to –0.06],

p = 3.90 × 10–03) (Supplementary Table 12). Compared to participants
with the lowest intake of total dietary fibre (Q1), participants with the
highest intake (Q5) had a 0.57 lower mBMIΔ (β, –0.57; 95% CI, –0.72 to
–0.43, p = 4.36 × 10–14) (Fig. 8b). In the full model, this association was
only slightly attenuated but remained significant (Supplementary
Table 12). A strongdose-response relationship between the quintiles of
PA time andmBMIΔwasobserved. Participants in Q5 (average PA time,
2 hrs/day) had a 0.64 (β –0.64 [95% CI –0.79 to –0.50], p = 6.31 × 10–18)
lower mBMIΔ relative to those in Q1 (average PA time = 0 hrs/day)
(Fig. 8c). In the fully adjusted model PA remained significantly asso-
ciated with mBMIΔ (P <0.05) (Supplementary Table 12). Prolonged TV
viewing time was also significantly associated with mBMIΔ. Compared
to the Q1 reference category (TV viewing time <1 hr/day), participants
in Q5 who spent ≥4 hours/day had a 0.57 higher mBMIΔ (β, 0.57); 95%
CI, [0.39–0.76], p = 1.76 × 10–09 (Fig. 8d) and remained significant in the
fully adjusted model (Supplementary Table 12).

Discussion
Obesity is a major risk factor for many non-communicable diseases
such as T2DM and CVD11–13,37. However, the widely used measure of
obesity, BMI, does not fully capture the metabolic dysregulation
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Fig. 8 | Associations of dietary and lifestyle habits with mBMIΔ. Forest plots
show age, sex and BMI adjusted coefficients (95% CIs) (x-axis) in a multiple linear
regression analysis of mBMIΔ against (a) the quintiles of total fruit intake (b)
quintiles of fibre intake (c) PA level in hrs/day and (d) TV viewing time in hrs/day.

Square boxes represent the coefficients (units of mBMIΔ in Kg/m2) associated with
moving from the reference quintile (Q1) to Q2 – Q5 of each diet or lifestyle. PA,
physical activity; TV, television. Source data are provided as a Source Data file.
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associated with obesity leading to the misclassification of metabolic
health and metabolic risk. While direct measures of body fat dis-
tribution, such as computed tomography and dual-energy X-ray
absorptiometry, have the potential to enhance risk assessment by
providing valuable insights into body fat distribution, their practical
application is constrained by high costs and inability to directly eval-
uate metabolic health and perturbations. In contrast, mBMI measures
hold promise for understanding metabolic health and risk, albeit
requiring development of their clinical utility and cost-effectiveness38.
Hence, in the present study, we constructed a lipidome-based BMI
score, that represents the mBMI of an individual, with a view to
understand its biological significance and examine whether the score
provides additional information over the measured BMI for the
metabolic health and risk assessment of multiple clinical outcomes.
ThemBMI score, although not intended to replace existing risk scores
for cardiometabolic diseases, serves as a measure of cardiometabolic
health (e.g., to identify individuals who may be metabolically unheal-
thy despite their BMI). By focusing on metabolic health assessment,
the mBMI score provides valuable insights into an individual’s meta-
bolic risk profile, enabling targeted interventions through diet and
lifestyle modifications to address specific metabolic health concerns
prior to the onset of disease. Here, we introduced quintiles of mBMIΔ
and stratified the population based on the disparity between BMI and
mBMI.We report key associations ofmBMIΔ andmetabolic discordant
groupswith cardiometabolic traits, pre-diabetes, T2DM, andCVD after
accounting for BMI and other appropriate covariates. In addition, we
assessed the relationship of dietary and lifestyle habits with mBMIΔ.
We observed that, higher intakes of fruits and fibre or higher levels of
PA time were inversely associated with mBMIΔ, while prolonged TV
viewing time was associated with higher mBMIΔ.

Lipidomic and metabolomic studies show that BMI is strongly
associated with dysregulation in lipid metabolism21–25,28,39. To better
understand the biology captured by mBMI, we, examined the rela-
tionship of the mBMIΔ with the lipidomic profile and compared this
with the relationship of BMI with the same lipid species. As previously
reported by us and others, most plasma lipid class/subclasses/species
were significantly associated with BMI. Glycosphingolipids and phos-
pholipids exhibited predominantly negative associations, while most
ceramide, sphingomyelin, diacylglycerol, and triacylglycerol species
demonstrated positive associations. The associations of the same lipid
species with mBMIΔ were almost identical to the associations with
BMI, with the correlation of the coefficients showing a R2 of 0.999.
However, the effect sizewas 1.72-fold greater for themBMIΔ relative to
the associations with BMI. This similarity between the associations of
lipid species with BMI and mBMIΔ demonstrates that the mBMIΔ
captures the same biology (i.e., dysregulation of lipid metabolism
associated with BMI), but captures that portion that is missed (ortho-
gonal to the measured BMI) in the BMI measure. Given the method
used to calculate the mBMIΔ, it is not surprising that the correlation
between coefficients is close to 1.0. A theoretical description of this
relationship is given in Supplementary Note 1. This has important
implication as to howweunderstand and interpret themBMIΔ and the
mBMI itself. It appears thatmBMI then, represents themetabolic status
of each individual and that this incorporates both the metabolic dys-
regulation captured by their measured BMI but also the metabolic
dysregulation (of the same lipid metabolic pathways) that is not cap-
tured by their BMI. It is not surprising then that mBMI provides an
improved risk marker compared to BMI itself.

In the present study, our ridge and LASSO models, included 575
lipid species spanning the sphingolipid, phospholipid, glycolipid, and
sterol classes along with age and sex as input variables, explained
60.4% and 60.9% of BMI variability respectively (Supplementary
Table 3), implying that dysregulation in lipid metabolism is a major
consequence of obesity. We included all the measured lipids in the
model to determine how well the entire lipidome explains BMI, rather

than focusing on only those that were significantly associated with
BMI. In previous studies, ridge regression has been used to create
mBMI scores using different sets of metabolites21,33. A study that used
untargeted metabolomic datasets encompassing 650 blood metabo-
lites (47% lipids) and 49 BMI associated metabolites out of the 650
(40% lipids) demonstrated that 49% and 43% of BMI variation was
explained by these sets respectively21. Using three independent clinical
cohorts, a ridge model with 108 plasma metabolites explained BMI
variation ranging from 19 to 47%33. While with, a LASSOmodel, a set of
250 randomly selected lipid specieswere used tomodel BMI, and these
explained 47% of the variation in BMI22. In a recent multi-omics study,
the application of the LASSO algorithm resulted in the retention of 62
out of 766 metabolites which collectively explained up to 68.9% of
the variance in BMI, and the combined model (metabolomics, pro-
teomics and clinical measures) exhibited the further improvement
(R2 = 78%)34. The difference in the BMI variance explained in these
different studies could be related to the range of molecular markers
used when modelling BMI, population setting, experimental design
and modelling approaches. Generally, models based on limited set of
metabolites result in a smaller proportion of the variance in BMI being
explained compared to models based on more complex metabolite
profiles21. Moreover, inherent differences exist in the mBMI scores,
stemming from the nature of metabolites used to model BMI across
different studies. While our current score is based on lipidomic pro-
files, other studies21,33,34 have utilized metabolites from amino acids,
carbohydrates, xenobiotics, and lipid metabolic pathways. As a result,
the biological information captured by the scores is distinct, although
there will be a significant overlap in the detected signal. Indeed,
although our LASSO model (containing 349 lipid species) performed
equal to the ridge model (containing 575 lipid species), when we fur-
ther decreased the number of lipid species in the LASSO models by
increasing lambda, we observed a decrease in the correlation of pBMI
and BMI scores (proportion of variance explained).

Examination of Fig. 3 shows that this effect occurs as the number
of lipid species in the model drops below 200 with the correlation
decreasing more dramatically as the number decreases below 100.
This was associatedwith an increase in themean square error (MSE) of
the models. Increasing lambda did not have the same effect in the
ridgemodelswhere all lipid specieswere retained in themodels. These
results suggest a minimum number of lipid species (100-200) are
required to capture the maximum variance in BMI and so provide an
optimalmBMI score.We recognise that the number of lipid specieswill
also be dependent on the species themselves, their association with
BMI and the quality of the measurements. In this later regard, models
based on targeted lipidomic profiling as used here may offer some
advantages over models based on untargeted metabolomics21 and
shotgun lipidomics22. Notwithstanding these dependencies, we
observe that the coefficients in the optimal ridge and LASSO models
were very similar with many of the strongest lipids identical between
models and the weighting structure showing similarities across lipid
classes (Figs. 3d and 3e).We note the prominent role of sphingomyelin
species, such as SM(d18:2/14:0), in the models as illustrated in the
Figs. 3d and 3e. Furthermore, it is worth noting that these figures
highlight he lipid species that make the greatest contribution to the
ridge and LASSO models with species of sphingomyelin and several
phospholipid classes playing a prominent role.

Despite its simplicity and convenience, BMI alone does not cap-
ture the myriad of obesity related health consequences40. Prior evi-
dence suggests that people with the same or similar BMI can display a
substantial difference in their metabolic health outcomes41,42. A spe-
cific group of individuals who fall within the normal BMI range but
exhibit indicators of cardiovascular risk, including insulin resistance,
elevated triglyceride levels, and coronary heart disease has been
identified43,44. There are also overweight or obese individuals, based on
their BMI, who are metabolically healthy (MHO)45,46, although the vast
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majority of these convert tometabolically unhealthyobeseover time47.
Indeed, it is also crucial to acknowledge that BMI does not account for
ethnic differences, lifestyle factors, and muscle mass. Consequently,
certain populations such as Asians face a heightened risk of cardio-
metabolic disease compared to white Europeans at the same BMI48. In
these cases, a relatively higher BMI/WC cut-off point might be war-
ranted to accurately screen for diabetes and metabolic syndrome49.
Similarly, in case of professional athletes, high BMI overestimates
adiposity due to the increasedmusclemass. Thus, relying onBMI alone
as amarker for obesity and associatedmetabolic health consequences
leads to unreliable risk assessment for some individuals. In the current
study, while there was a significant difference in the BMI (higher for
White/European ancestry) compared to Asian, the mBMIΔ was only
marginally higher in the Asia/other ethnicities (Supplementary Fig. 12).

With the large sample size in the discovery cohort (AusDiab,
n = 10,339) and validation (BHS, n = 4492) we stratified individuals into
quintiles based on the disparity between mBMI and BMI (mBMIΔ).
Despite having a comparable BMIs, the most discordant mBMI groups
(Q5 and Q1), displayed distinct metabolic risk profiles. Participants
with a mBMI substantially higher than their actual BMI (Q5) presented
with a deleteriousmetabolic profile (i.e., higher triglyceride, HOMA-IR,
2h-PLG and a significantly lower HDL-C) compared to participants with
a mBMI substantially less than their BMI (Q1). This was consistent with
previous reports in which individuals with an overestimated BMI
(based on their metabolism) had higher levels of triglycerides and
lower levels of HDL-C compared to those with underestimated
BMI21,33,34. We also observed that the odds of having a newly diagnosed
prevalent T2DM was more than four-fold higher in Q5 compared with
Q1, despiteQ5 having nearly same average BMI asQ1. Similarly, the risk
of 5-year incident T2DMwasmore than twofold higher inQ5 compared
to Q1. These findings have important clinical implications. As mBMI
was significantly associated with an increased risk of incident T2DM
and incident pre-diabetes, 5 years prior to onset, early pharmacologi-
cal and lifestyle interventions could be implemented to reduce risk
and/or prevent disease progression.

Being overweight or obese based on BMI is a strong risk factor for
pre-diabetes and diabetes37,50,51. However, recent reports demonstrate
varying risk of diabetes across different obesity phenotypes and or
metabolic health status52–54, including a high prevalence of diabetes
among normal weight individuals55,56. Consequently, relying solely on
BMI status to classify obesity is insufficient in providing a compre-
hensive understanding of an individual’s current health condition, and
likelihood of experiencing future adverse health outcomes. Here we
identified thatmBMIΔ associateswith T2DM risk independently of BMI
and somay be useful in identifyingmetabolic disturbances, and T2DM
risk, in lean individuals. In line to this, a recent study haddemonstrated
ahigherΔBMI; thedifferencebetweenmetabolome-predictedBMI and
actual BMI in the metabolically unhealthy normal weight and meta-
bolically unhealthy obese compared to the metabolically healthy
normal weight and MHO, emphasizing the potential of omics-inferred
BMI instead of the actual BMI for precise classification of obesity and
metabolic health status34. The precise phenotyping of metabolic obe-
sity and understanding the difference in metabolically distinct groups
may lead to new insights for preventing and treating cardiometabolic
diseases. In a sex-stratified analysis, we observed that the odds ratios
for the different quintiles of the mBMIΔ were slightly larger in women
compared to the men suggesting a stronger association between the
metabolic BMI and diabetes (newly diagnosed T2DM) in women.
Hormonal differences, and differences in fat distribution57, metabo-
lism (such as lipids) and lifestyle24,58 betweenmen andwomenare likely
to contribute for the observed differences.

In the present study, we observed that, mBMIΔ was associated
with CVD risk independently of BMI and may explain some of the
apparent inconsistencies in associations between BMI and disease
outcomes. Consistent with this, a previous study identified, significant

differences in cardiovascular events between the different mBMI/BMI
groups (higher risk among individuals with a metabolome over-
estimated BMI (mBMI>BMI)) compared to those whose mBMI<BMI21.
While BMI is an independent risk factor for CVD59,60, not all obese or
overweight people show abnormal cardiovascular risk profiles. There
is remarkablemetabolic heterogeneity inobesity, and hence the risk of
CVD61–63. Thus, BMI has limited value as a marker of CVD risk. This is
highlighted by the absence of BMI in the discriminatory features of the
Framingham CVD risk scores64. Moreover, a significant portion of
obese individuals (31.7%) have been shown to remain free of CVD for
life (i.e., metabolically healthy)65. Furthermore, a recent debate over
the obesity paradox (in which obesity is associated with favourable
outcomes and/or improved survival after a CVD event66–68) arises
partly due to the use of BMI as a singlemeasure to assess CVD risk. The
stronger association of mBMI and mBMIΔ with T2D compared to CVD
likely reflects the stronger involvement of lipid metabolism, and its
dysregulation, in the aetiology of insulin resistance and progression to
T2D. In contrast CVD risk likely incorporates other metabolic and
inflammatory pathways not covered in this mBMI score.

In this study, we report specific dietary and lifestyle factors
independently associated in a strong, dose responsive manner with
mBMIΔ, suggesting that targeting these factors might improve an
individual’s metabolic health. As expected, higher total fruit intake,
and dietary fibre consumption were independently associated with a
lowermBMIΔ, showing a linear trend across the quintiles of intake. In a
recent study, lower fruit and vegetable consumption was reported in
participants whose predicted BMI difference (pBMI-BMI) was >5 kg/m2

relative to the normal weight individuals33. Indeed, several epidemio-
logical studies have reported an inverse relationship between fruit
consumption or dietary fibre and risk of T2D and atherosclerosis69–72.
We report an inverse association between the level of PA and mBMIΔ
but an independent positive association of TV viewing time with
mBMIΔ implying that lifestyle habits particularly inadequate exercise
and or prolonged sitting time contribute to metabolic risk. Our find-
ings are consistent with prior studies in the AusDiab cohort reporting
an inverse association between PA time and 2h-PLG level but not FBG73

and deleterious associations between TV viewing time and 2h-PLG,
WC, BMI, SBP, fasting triglycerides, and HDL-C, but not FBG74,75. Taken
together, these findings suggest that diet and exercise/sedentary
behaviour impact on our metabolism leading to increased risk of
impaired glucose tolerance, a key risk factor for T2DM. Indeed, dietary
and lifestyle interventions remain important primary prevention stra-
tegies for cardiometabolic health management to delay the onset and
progression of T2D and CVD76,77. mBMI holds potential as a valuable
biomarker for tracking the influence of diet and lifestyle on our
metabolic health. In a recent study, the implementation of a healthy
lifestyle coaching within the Arivale cohort resulted in a significant
reduction in mBMI. Importantly, this reduction inmBMI was observed
to occur at a faster rate compared to changes in the actual BMI, pro-
viding further support for the useofmBMI as an indicator ofmetabolic
health improvements during interventions such as lifestyle coaching
programs34.

The rich lipidomic data, the large sample size and the inclusion of
an independent validation cohort as well as the prospective study
design of the study cohorts are the major strengths of the present
study. However, there are also limitations: (1) As with all such studies
we were limited by breadth of the lipidomic profile captured with our
platform, although the high proportion of BMI variance explained
suggests this is not a major drawback. (2) The lack of some traits such
as the 2h-PLG and HbA1c in the BHS validation cohort, however we
were able to validate the BMI model and many of the associations in
the BHS cohort. (3) Ethnicity of the present study populations was
primarily white/European ancestry, and this may limit the general-
izability of the findings to other populations. It is likely that normal-
isation of mBMI will be required for other ethnicities. Indeed, it is
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important to acknowledge that the current score was specifically
developed and validated for use in adults. However, we acknowledge
the importance of addressing the demand for a population-specific
score designed specifically for children and adolescents in the future.

In summary, our results demonstrate that mBMI can accurately
capture the dysregulation of the plasma lipidomic profile associated
with BMI butwhich is independent ofmeasuredBMI. This placesmBMI
as an important biomarker of metabolic health and a potential tool to
monitor dietary and lifestyle interventions to improve metabolic
health and reduce cardiometabolic risk. Given the limitations of cur-
rent lipidomic measurement technologies that hinder clinical applic-
ability, there is a need for a purpose-built clinical platform specifically
designed to integrate into healthcare practices38,78. Such a platform
would provide a reliable means of assessing metabolic health and risk,
allowing for informed clinical decision-making.

Methods
This study used datasets from the AusDiab biobank (project grant
APP1101320) approved by the Alfred Human Research Ethics Com-
mittee, Melbourne, Australia (project approval number, 41/18) and the
BHS cohort (informed consent obtained from all participants, and the
study was approved by the University of Western Australia Human
Research Ethics Committee [UWA-HREC; approval number, 608/15]).
The current studywas also approved by UWAHREC (RA/4/1/7894) and
theWestern Australian Department of Health HREC (RGS03656). Both
studieswereconducted in accordancewith the ethical principles of the
Declaration of Helsinki. No participant compensation was provided.

Australian diabetes, obesity and lifestyle study (AusDiab)
The AusDiab cohort is a national population-based prospective study
that was established to study the prevalence and risk factors of dia-
betes and CVD in an Australian adult population. Some 94.7% of the
AusDiab participants were white/European ancestry and 5.3% were
Asian/other ancestry (as reported by the participants). The baseline
survey was conducted in 1999/2000with 11,247 participants aged ≥ 25
years randomly selected from the six states and the Northern Territory
comprising 42 urban and rural areas of Australia using a stratified
cluster sampling method. The detailed description of study popula-
tion, methods, and response rates of the AusDiab study is found
elsewhere79. Measurement techniques for clinical lipids including
fasting serum total cholesterol, HDL-C, and triglycerides as well as for
height, weight, BMI, and other behavioural risk factors have been
described previously80. We utilized all baseline fasting plasma samples
from the AusDiab cohort (n = 10,339) (Table 1) after excluding samples
from pregnant women (n = 21), those with missing data (n = 277),
technical reasons (n = 19) or whose fasting plasma samples were una-
vailable (n = 591). The mean (SD) age was 51.3 (14.3) years with women
comprising 5685 (55%) of the cohort. Both sexes were included in this
study and sex-stratified analyses were performed whenever necessary.

The Busselton Health Study (BHS)
We utilized the BHS cohort as a validation cohort. The BHS is a
community-based study in the town of Busselton, Western Australia;
the participants are of white/European origin. A total of 4492 subjects
in the 1994/95 survey of the ongoing epidemiological study were
included (Table 1). The mean (SD) age was 50.8 (17.4) years with
women constituting 2516 (56%) of the cohort. The details of the study
and measurements for HDL-C, LDL-C, triglycerides, total cholesterol,
and BMI are described elsewhere81,82. The baseline characteristics of
study participants are provided in Table 1. Both sexes were included in
this study.

Clinical, lifestyle and dietary data
The demographic and behavioural data collection has been described
in detail elsewhere for AusDiab79,83 and BHS82. Fasting plasma

cholesterol and lipoprotein concentration including total cholesterol,
high density cholesterol, (HDL-C), low density lipoprotein cholesterol
(LDL-C) and triglycerides, fasting plasma glucose (FPG) and 2 h post
load glucose (2h-PLG) were measured using standard protocols84.
Methods for assessment of dietary intake, PA timeandTVviewing time
are provided in the Supplementary Note 2.

Clinical endpoints and outcome ascertainment
Diabetes status was ascertained using the American Diabetes Asso-
ciation criteria (FBG > = 7.0mmol/L or 2h-PLG> = 11.1mmol/L after a
75-g oral glucose load)85. In the AusDiab cohort, both a newly diag-
nosed prevalent T2DM (n = 395/7733 NGT) and 5-year incident
(n = 218/5354 controls) were included. Participants with newly diag-
nosed prevalent T2DM are those not receiving pharmacological
treatment for diabetes, nor previously diagnosed with diabetes, and
who hadFBGor 2h-PLGmeasurements over the diabetes cut-off range.
Participants were classified as having IFG, if FBG was 6.1–6.9 mmoL/L
and 2h-PLG was <7.8mmol/L and IGT if FBG < 7 and 2h-PLG is 7.8 –

11.0mmol/L. The detailed diagnostic criteria for the presence of dia-
betes and pre-diabetes can be found elsewhere86. In the AusDiab
cohort, some 577 prevalent CVD (history of heart attack and stroke
combined) and 414 major CVEs were recorded over 10 years of follow-
up. The major CVEs included IHD (angina pectoris, myocardial
infarction, coronary artery bypass grafting and percutaneous trans-
luminal coronary angioplasty), cerebrovascular diseases (intracerebral
haemorrhage, cerebral infarction and stroke). The CVE outcomes are
defined based on the international classification of diseases (ICD)
codes and ascertained through linkage to theNationalDeath Index and
medical records. The detailed baseline characteristics of the AusDiab
participants in the disease and control groups can be found in Sup-
plementary Table 1. In the BHS cohort, there were 238 prevalent CVD
cases and 4254 controls ascertained through health linkage data at
baseline and 284 IHD events (including myocardial infarction, angina,
coronary artery bypass grafting and percutaneous transluminal cor-
onary angioplasty) recorded over 10 years follow up (Fig. 1, Supple-
mentary Table 2). The baseline characteristics of those who had an
event and thosewhohadn’t are summarized in SupplementaryTable 2.

Lipidomics
A butanol/methanol extraction method30 was used to extract lipids
fromhumanplasma.Briefly, 10 µLof plasmawasmixedwith 100 µLof a
1-butanol and methanol (1:1 v/v) solution containing 5mM ammonium
formate and the relevant internal standards (Supplementary Data 4).
The resulting mix was vortexed (10 seconds) and sonicated (60min,
25 °C) in a sonic water bath. Immediately after sonication, the mix was
centrifuged (16,000× g, 10min, 20 °C). The supernatant was trans-
ferred into samples tubes containing 0.2ml glass inserts and Teflon
seals. The extracts were stored at –80 oC until analysed by liquid
chromatography tandem mass spectrometry (LC-MS/MS).

Targeted lipidomic analysis was performed using liquid chroma-
tography electrospray ionization tandem mass spectrometry (LC-ESI-
MS/MS). An Agilent 6490 triple quadrupole (QQQ)mass spectrometer
[(Agilent 1290 series HPLC system and a ZORBAX eclipse plus C18
column (2.1 × 100mm 1.8μm, Agilent)]) in positive ionmode was used
[details of the method and chromatography gradient have been
described previously23]. Compared to our earlier study, we modified
the methodology to enable a dual column setup (while one column
runs a sample, the other is equilibrated) to increase throughput23 for
the AusDiab. In brief, the temperature was reduced to 45oc from 60oc
with modifications to the chromatography to enable similar level of
separation. Starting at 15% solvent B and increasing to 50% B over
2.5min, then quickly ramping to 57% B for 0.1min. For 6.4min, %Bwas
increased to 70%, then increased to 93% over 0.1min and increased to
96% over 1.9min. The gradient was quickly ramped up to 100% B for
0.1min and held at 100%B for a further 0.9min. This is a total run time
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of 12min. The column is then brought back down to 15% B for 0.2min
and held for another 0.7minprior to switching to the alternate column
for running the next sample. The column that is being equilibrated is
run as follows: 0.9min of 15%B,0.1min increase to 100%B andheld for
5min, decreasing back to 15% B over 0.1min and held until it is swit-
ched for the next sample. We used a 1-μL injection per sample with the
following mass spectrometer conditions were used: gas temperature,
150 °C; gas flow rate, 17 L/min; nebuliser, 20 psi; sheath gas tempera-
ture, 200 °C; capillary voltage, 3500V; and sheath gas flow, 10 L/min.
Given the large sample size, samples were run across several batches,
as described above. The LC-MS/MS conditions and settings with the
respective MRM transitions for each lipid (n = 747) can be found in
Supplementary Data 4. For the BHS, lipidomicprofilingwas performed
using the standardised methodology as in the AusDiab except in BHS
thermostat set at 60 °Cand single column rather thandual columnwas
used23,35. Overall, 596 lipid species were quantified; 575 of which were
common to AusDiab cohort.

Lipidomic nomenclature
The lipid nomenclature employed in this study follows the established
guidelines set by the Lipid Maps Consortium and incorporates addi-
tional recommendations made by experts in the field87–89. Glycer-
ophospholipids, which typically consist of two fatty acid chains, are
represented as the sum composition of carbon atoms and double
bonds (e.g., PC(38:6)) when detailed characterization is not available.
In cases where the acyl chains have been identified but their positions
are unknown, an underscore is used to indicate this uncertainty (e.g.,
PC(38:6) is modified to PC(16:0_22:6)). If the positions of the acyl
chains are known, they are separatedby a forward slash (/) and listed in
order of the sn1 and sn2 positions (e.g., PC(16:0_22:6) is changed to
PC(16:0/22:6)). This naming convention extends to other lipid classes
and subclasses as well. In instanceswhere chromatographic separation
is incomplete, but species are partially characterized, labels such as (a)
or (b) are used to denote the elution order, as exemplified by PC(P-
17:0/20:4) (a) and (b). Similarly, glycerolipids are named as the sum
composition of carbon atoms and double bonds with the fatty acyl
defined by the neutral loss (NL) fragmentation in the mass spectro-
meter also annotated. For example, TG(52:2)[NL-18:0] is the notation
for a triglyceride (TG)moleculewhere 52 represent the total number of
carbon atoms and 2 is the number of double bonds. The [NL-18:0]
refers to the presence of an 18:0 acyl chain within the structure.

Data pre-processing and quality
To ensure the robustness of the lipidmeasures, we employed state-of-
the-art lipidomic profiling techniques that are designed to capture a
wide range of lipid species, including those with lower abundances.
Integration of the chromatograms for the corresponding lipid species
was performed using Agilent Mass Hunter version 8.0. Relative quan-
tification of lipid species was determined by comparing the peak areas
of each lipid in each patient sample with the relevant internal standard
(Supplementary Data 4). A median centring approach was carried out
to correct for batch effect i.e. remove technical batch variation using
PQC samples90 in both AusDiab and BHS. Briefly, the lipidomic data in
each batch consisting about 485 samples was aligned to the median
value in pooled PQC samples included in each run. More than 90% of
the lipid species were measured with a coefficient of variation <20%
(based on PQC, samples). TQC samples every 20 samples were inclu-
ded in the runs allowing for the assessment of technical variation that
arises from the mass spectrometer. NIST 1950 reference plasma sam-
ple (Gaithersburg, MD, USA) for every 20 samples were included to
facilitate future alignmentwith other studies.While the overall median
%CV for TQC, PQC and NIST were 10.9, 10.7 and 10.7 respectively
(Supplementary Data 5), LPC species are among themany lipid species
measuredwith lowvariability (medianPQC%CV= 8.8) (Supplementary
Data 5). Ceramides, as expected had a relatively higher median %CV

(13.1) (Supplementary Data 5). The lipids selected into the LASSO
model and top 50 lipids in the ridge (chiefly sphingomyelin and
phospholipids species) (Supplementary Data 3) had lower CVs; a
median %CV of 10.5 and 7.4 respectively (Supplementary Data 5). Only
technical outliers (n = 19 samples) were excluded from the down-
stream analysis for the AusDiab. In this study, we utilised lipid species
(n = 575) spanning across the sphingolipid, glycerophospholipid and
glycerolipid categories that were common in both study cohorts
(AusDiab and the BHS). These were used for model development.

Predictive modelling
Lipidomic data was log10 transformed, mean centred and scaled to
unit SD prior to statistical analysis. A ridge regressionmodel including
age, sex and the lipidome (comprising 575 lipid species common to the
AusDiab and the BHS cohorts) was employed to determine a predicted
BMI (pBMI). In addition, Elastic-Net and least absolute shrinkage and
selection operator (LASSO) models were also developed to predict
BMI. A 10-fold cross validation was employed for the generation pBMI
scores in the AusDiab (i.e., models trained on the 9/10th and used to
predict BMI in holdout 1/10th of the cohort). The lambda parameter
was optimized using cv.glmnet R package, minimizing the MSE,
lambda range restricted between 0.2 and -4.0 on log10 scale. A
metabolic BMI (mBMI) was derived from the pBMI scores as follows:
mBMI = BMI + (pBMI – pBMI value on the line of best fit between pBMI
and BMI). BMI prediction models were cross-validated in the AusDiab
cohort and used to predict BMI in the BHS cohort. The mBMI in BHS
was calculated using coefficients and line of best fit from the original
model developed in AusDiab. The mBMI values were also calculated
for theNational Institutes of Standards Technology standard reference
material (NIST 1950) QC samples using a value of 26 as the measured
BMI. The %CVof the NISTmBMI scores were calculated after excluding
technical outliers. Further to the optimized models, we established a
LASSO framework to generate an array of models (n = 120 different
models) with the respective lambda value between 0.2 and -4.0 on
log10 scale or the number of features selected into the model ranging
from all lipid species to null.

Statistical analysis
The difference between the mBMI and the BMI, termed the ‘mBMIΔ’,
was used to stratify individuals into quintiles. Z-score values for car-
diometabolic traits were calculated as follows [(z = x-mean(x))/SD(x)]
to allow better comparison across groups. A linear regression analysis
was performed between cardiometabolic traits (outcome) and the
quintiles of mBMIΔ (as a predictor). The association of cardiometa-
bolic risk factors with metabolic discordant groups (Q5 relative to Q1)
were evaluated by using logistic regression adjusting for age, sex and
BMI and other appropriate covariates. Linear regression models were
used to examine the association of mBMIΔ or BMI with the plasma
lipidomic profile adjusting for the appropriate covariates and cor-
recting p-values for multiple comparison using the Benjamini-
Hochberg procedure91. The Akaike information criteria (AIC) was
used to assess the relative quality of individuals models with and
without mBMIΔ.

A logistic regression model was used to assess the relationship
between the mBMIΔ or quintiles of mBMIΔ and pre-diabetes or T2DM
(both prevalent and the 5-year incident cases) adjusting for age, sex
and BMI or these covariates plus clinical lipids, familial history of dia-
betes, and smoking status. Further, we examined the association of
mBMIΔ with the prevalent CVD and incident CVEs adjusted for age,
sex, BMI, smoking and diabetes history or these covariates plus clinical
lipids. The adjustment for clinical lipids was performed as a sensitivity
analysis, motivated by the aim of evaluating the additional value of
lipidomics in predicting metabolic status beyond / independent of
traditional clinical lipid measures. Cox regression models were fitted
to compute hazard ratios (HRs) associated with CVEs that occurred
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during the 10 years follow up using age as the time scale using coxph()
function in the survival package while logistic regression was used for
prevalent cases.

Multivariable linear regression was performed to assess the
associations between dietary components such as total fruit intake or
lifestyle habits such as total leisure PA time and TV viewing time (as
predictor variables) and mBMIΔ (as a continuous outcome variable).
We created two different models: model 1 (age, sex and BMI adjusted)
and model 2 additionally adjusted for potential confounders such as
intakeof daily total energy, total alcohol, total fat, carbohydrate, sugar,
processedmeat, redmeat, tinned fish, total fibre, fruit intake and total
protein as continuous variables and smoking, baseline diabetes status
and history of cardiovascular disease, and educational level as
dichotomous variables. STATAv15 (StataCorpLP, Inc., Texas, USA) orR
(version 3.6.1) were used to analyse the data as necessary.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Because of the participant consent obtained as part of the recruitment
process for the Australian Diabetes, Obesity and Lifestyle Study, it is
not possible to make data publicly available (including the individual
deidentified data). Individual-level data are available for analyses that
do not conflict with ongoing studies, through application to the study
lead Professor Jonathan Shaw and the AusDiab Study Committee
(Email: Jonathan.Shaw@baker.edu.au). The timeframe for response to
such requests is within two months.

Individual-level data for the Busselton Health Study are available
under restricted access for analyses that do not conflict with ongoing
studies; access is available through application to the Busselton
Population Medical Research Institute (http://bpmri.org.au/research/
database-access.html). Responses will be provided within 2 months.

The complete summary statistics for the Australian Diabetes,
Obesity and Lifestyle Study and the Busselton Health Study are pro-
vided in the manuscript and Supplementary files. Source data are
provided with this paper.

Code availability
All software and bioinformatic tools are publicly available including R
packages (https://cran.r-project.org/package=glmnet, https://cran.r-
project.org/package=ggplot2, https://cran.r-project.org/package=
ggExtra, https://cran.r-project.org/package=survival).
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