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Genome-wide association analysis of plasma
lipidome identifies 495 genetic associations

Linda Ottensmann 1 , Rubina Tabassum1, Sanni E. Ruotsalainen 1,
Mathias J.Gerl 2, ChristianKlose 2, ElisabethWidén 1, FinnGen*, Kai Simons2,
Samuli Ripatti 1,3,4 & Matti Pirinen 1,3,5

The human plasma lipidome captures risk for cardiometabolic diseases. To
discover new lipid-associated variants and understand the link between lipid
species and cardiometabolic disorders, we perform univariate and multi-
variate genome-wide analyses of 179 lipid species in 7174 Finnish individuals.
We fine-map the associated loci, prioritize genes, and examine their disease
links in 377,277 FinnGen participants. We identify 495 genome-trait associa-
tions in 56 genetic loci including 8 novel loci, with a considerable boost pro-
vided by the multivariate analysis. For 26 loci, fine-mapping identifies variants
with a high causal probability, including 14 coding variants indicating likely
causal genes. A phenome-wide analysis across 953 disease endpoints reveals
disease associations for 40 lipid loci. For 11 coronary artery disease risk var-
iants, we detect strong associationswith lipid species. Our study demonstrates
the power of multivariate genetic analysis in correlated lipidomics data and
reveals genetic links between diseases and lipid species beyond the standard
lipids.

Cardiovascular disease (CVD) is the leading cause of mortality
and morbidity worldwide1 with an estimated heritability of about
50%2. Plasma lipids, routinely measured via high-density lipo-
protein cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), triglycerides (TG), and total cholesterol (TC), are estab-
lished risk factors for CVD3. The modern efficient lipidomics
technologies have extended considerably our understanding
of the variability and width of circulating lipids. Lipid species
including, for example, Cholesterol esters (CE), Ceramides (CER),
Diacylglycerols (DAG), Lysophosphatidylcholines (LPC), Phos-
phatidylcholines (PC), Phosphatidylcholine-ether (PCO), Phos-
phatidylethanolamines (PE), Phosphatidylethanolamine-ethers
(PEO), Sphingomyelins (SM) and Triacylglycerols (TAG)
potentially improve CVD risk assessment over standard
lipids4–14. Eventually, a better understanding of biological
factors underlying lipid metabolism and its connection to CVD

pathophysiology may also provide new treatment options
for CVD.

Genome-wide association studies (GWAS) have revolutionized
our understanding of genetic variation behind lipid levels15–35. With
growing sample sizes, more efficient genetic fine-mapping methods,
and the use of population isolates like Finland, several likely causal
coding variants and genes have been identified. For example, recently
reported stop-gained variants in CD36, ANGPTL8, and PDE3B provide
potential targets for the next generation of lipid-lowering
medications20,36.

Very large genetic studies have already been conducted for the
standard lipids. For example, the multi-ethnic meta-analysis from the
Million Veteran Program study, with a sample size of >600,000 par-
ticipants, identified 306 loci associated with the standard lipids19 and a
multi-ethnic meta-analysis in 1.65 million individuals identified 941
loci20. Despitemuch smaller sample sizes of lipidomeGWAS, they have
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identified new lipid-associated genetic variants and provided insights
into the genetic architecture of lipid metabolism and cardiometabolic
diseases. Additionally, the high-dimensional and correlated structure
of the lipidome27 can be utilized in a multivariate framework28 to
increase statistical power to identify new genetic associations but, to
our knowledge, such analyses have not been reported so far.

Here we report univariate and multivariate GWAS of 179 lipid
species from 13 lipid classes in 7174 Finnish individuals from the
GeneRISK cohort, followed by a phenome-wide association study
(PheWAS) of the identified lipid-associated genetic loci in 377,277
biobank participants of the FinnGen study and a colocalization ana-
lysis with these endpoints. Altogether, we identify 56 lipid-associated
loci including 8 new loci, 2 of which were identified in the univariate
GWAS (AGPAT2, SGPL1), and 6 were only revealed through the mul-
tivariate GWAS (DTL, STK39, CDS1, KCNJ12, YPEL2, AGPAT3) demon-
strating the gain in statistical power provided by multivariate
techniques. Fine-mapping identifies variants with high causal prob-
abilities for 26 loci. We also present detailed lipidomic profiles of
known CAD-associated variants. Through the large genome-wide
investigation of lipidomic measurements and a new multivariate
approach, we provide new lipid-associated loci and new insights into
lipid metabolism.

Results
Using shotgun lipidomics, we detected 179 lipid species belonging to
13 lipid classes covering 4 major lipid categories: glycerolipids, gly-
cerophospholipids, sphingolipids, and sterols (Fig. 1, Supplementary
Data 1). A hierarchical clustering based on the absolute pairwise
Pearson correlations of the plasma levels of lipids revealed 11 clusters
of correlated lipids (Fig. 1, Supplementary Figs. 1 and 2), which were
used for the multivariate GWAS. The lipid species included in each
cluster and the pairwise correlations between the lipid species in each
cluster are provided in Supplementary Data 1 and Supplemen-
tary Fig. 3.

Heritability of lipid species
We estimated the SNP-based heritability of all 179 lipid species using
>849k high-quality independent genetic variants. The heritability
estimates ranged from 0.0 to 0.45 (Fig. 2 and Supplementary Data 1).
Sphingomyelins (SMs) had the highest estimated median heritability
(median = 0.35, range =0.18–0.40) followed by Ceramides (Cer)
(median = 0.34, range = 0.05–0.36). Phosphatidylcholine-ethers (PCO)
showed the smallest median heritability (median = 0.12,

range =0–0.32) preceded by Phosphatidylethanolamines (PEO)
(median = 0.13, range =0.08–0.14). The lipids containing long-chain
polyunsaturated fatty acids (PUFA) (C20:4, C20:5, and C22:6 acyl
chains) had slightly higher median heritability (median =0.27,
range =0–0.45) compared with the other lipid species (median =0.23,
range =0–0.40). PC 18:0;0_20:4;0 had the highest heritability (0.45,
SE = 0.05) of all lipid species followed by CE 20:4;0 (0.44, SE = 0.05).
The heritability estimates for lipid species grouped by lipid classes,
lipid categories, and PUFA acyl chains are shown in box plots in Sup-
plementary Fig. 4.

Univariate and multivariate GWAS
We performed univariate GWAS for 179 lipid species and multivariate
GWAS for 11 clusters using ~11.3M high-quality genetic variants with
minor-allele frequency (MAF) > 0.002. In the univariate GWAS of 179
lipid species, we identified 26,969 variant-lipid associations at the
Bonferroni-corrected significance (BFS) threshold (P < 7.35e-10) after a
correction for 68 principal components explaining 90%of the variance
in the lipidome. The multivariate GWAS of 11 clusters revealed 13,157
variant-cluster associations at BFS (P < 4.55e-9). The genomic inflation
factors for the univariate andmultivariate GWAS ranged between 0.99
and 1.14 (Supplementary Data 2). The Manhattan plots for the lipid
classes and multivariate analyses are shown in Supplementary Figs. 5
and 6.

To define independent loci across the lipid species and clusters,
we first identified lead variants, individually for each univariate
(N = 179) and multivariate (N = 11) trait, iteratively as the variant with
the lowest P-value. Then the ±1.5Mb regions around the lead variants
were defined as lipid-associated genomic regions (GWAS regions). A
total of 495 BFS GWAS regions (357 and 138 from the univariate and
multivariate GWAS respectively) were identified. We identified a set of
the most probable causal variants in each GWAS region through fine-
mapping and considered each of them as representing a single asso-
ciation signal. We merged the identified signals that were in linkage
disequilibrium (LD; r2 ≥ 0.1) and combined the overlapping regions
across all the 190 traits to form a non-overlapping set of lipid-
associated loci. Through this process, described in detail in Methods,
Supplementary Figs. 7 and 8 for the locus LPL as an example, we
identified98 signals (SupplementaryData 2) located in 56 independent
loci across all 190 traits (Supplementary Fig. 9, Table 1). The number of
associated loci per lipid species correlated positively with the esti-
mated heritability (adjusted r2 = 0.3125, P = 2.5e-16), (Supplementary
Fig. 10).We identified 29 additional loci that were associated with lipid

Glycerophospholipids (GP)

Phosphatidylinositol (PI) n=10
Phosphatidylethanolamine-ether (PEO) n=8
Phosphatidylethanolamine (PE) n=5
Phosphatidylcholine-ether (PCO) n=27
Phosphatidylcholine (PC) n=46
Lysophosphatidylethanolamine (LPE) n=3
Lysophosphatidylcholine (LPC) n=5

Glycerolipids (GL) Triacylglycerol (TAG) n=38
Diacylglycerol (DAG) n=6

Sphingomyelin (SM) n=11
Sphingolipids (SL) Ceramide (Cer) n=4

Sterols (ST)
Cholesterol (Chol) n=1
Cholesteryl ester (CE) n=15

c1 (TAG,DAG)

c2 (PI,PC,PE)

c3 (PC,PI,CE,PCO)

c4 (LPE,LPC)
c5 (PI,PC)
c6 (PC,CE)

c7 (CE,PC)

c8 (CE,SM,Cer,Chol)
c9 (CE,PC,PI)

c10 (PE,PCO)

c11 (PEO,PCO,SM)

a b

absolute pairwise Pearson correlation

Fig. 1 | Details of lipid speciesmeasured in the GeneRISK cohort. a The 179 lipid
species belong to 13 lipid classes and 4 categories. The lipid class colors are iden-
tical to those used in the other figures. bHeatmap of the absolute pairwise Pearson

correlations between the lipid species included in the 11 clusters of themultivariate
GWAS. The clusters are marked by black lines and labeled by the included lipid
classes. The members of each cluster are listed in Supplementary Data 1.
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species or lipid clusters at genome-wide significance (GWS) but did not
reach BFS (Supplementary Table 1).

We provide the GWAS summary statistics for all 330 lead variants
and representative variants for all 179 lipid species (Supplementary
Data 2). Of the 59,070 variant-lipid associations, 8238 reached the
marginal significance threshold of P <0.05/85/68 = 8.650519e-6 cor-
rected for the 85 GWS loci and the 68 PCs that together explained 90%
of the phenotypic variance.

Further, to improve the interpretation ofmultivariate associations
we applied MetaPhat37 to identify the lipid species driving the multi-
variate association. For 61 of all 138 multivariate BFS GWAS regions, a
single lipid species was identified to be driving the association and for
47 of the regions, 2–3 driver traits were identified. The driver traits and
other MetaPhat results for the associations reaching GWS in the mul-
tivariate analysis are listed in Supplementary Data 2.

Next, we compared the findings of the univariate GWAS and
multivariate GWAS. Of the 138 BFS GWAS regions identified in the
multivariate analysis, 55 regions did not reach BFS in any univariate
analysis of the traits included in that multivariate analysis, for any
variant in LD with the lead variant (r2 > 0.1) of the multivariate ana-
lysis. The multivariate analysis identified 21 loci not found by the
univariate analysis. A comparison of the P-values of the lead variants
in the 56 loci in the univariate andmultivariate GWAS showed that all
the loci identified by the univariate GWAS reached BFS in the mul-
tivariate GWAS, except MARC1 which only reached GWS (Fig. 3). We
observed much lower P-values in the univariate compared to the
multivariate analysis for PNPLA3 (6e-19 and 3e-9 for TAG 56:6;0 and
cluster 1, respectively). TAG 56:6;0 is not contained in any multi-
variate cluster, which explains the higher P-value in the multivariate
analysis.

New lipid-associated loci
Altogether, the univariate and multivariate GWAS identified 56 lipid-
associated loci including 8 novel lipid loci (Table 2) in or near the
following genes: DTL, STK39, CDS1, AGPAT2, SGPL1, YPEL2, KCNJ12, and
AGPAT3. All these loci were identified by the multivariate GWAS but
only two were also identified in the univariate GWAS (AGPAT2 and
SGPL1). The novel lead variants included a missense variant for
AGPAT3. AGPAT2 and AGPAT3 encode enzymes in the 1-acylglycerol-3-
phosphate O-acyltransferase family, whose other member AGPAT1 is
known to be associated with standard lipids17–20 and lipid species (PC,
TAG)26,35. AGPAT1/2/3 catalyze the conversion of lysophosphatidic acid
to phosphatidic acid in the phospholipid and triacylglycerol synthesis.
In our data, these regions were associated with PC and TAG species as
well as cluster 3. MetaPhat analysis identified PC species to be driving
the associations between cluster 3 and the AGPAT1/2/3 regions. Two of
the identified novel lead variants (CDS1 and STK39) are >2-fold enri-
ched in the Finnish population. The highest enrichment was 69-fold at
the CDS1 locus associated with cluster 2, with PI species as drivers of
the association. Of note, CDS1 encodes an enzyme that regulates the
synthesis of PI.

We also report novel associations with lipid species for 11 loci that
were previously identified in GWAS of standard lipids. These loci
include ANKRD17, ELOVL6, ERMP1, GPAM, HNF4A, LCAT, MARC1, and
NPC1L1 (Table 1, Supplementary Data 2).

Fine-mapping of loci
To identify themost probable causal variants in the associated loci, we
performed fine-mapping for both the univariate and multivariate
GWAS regions.Of the 56 loci, 26 loci had at least one variantwith a high
(>0.9) posterior inclusion probability (PIP) in an informative 95%
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Fig. 2 | Heritability estimates of lipid species. a Glycerophospholipids,
b Glycerolipids, Sphingolipids, and Sterols. Data are presented as heritability esti-
mate ±1.96*SE. The lipid species are presented in descending order of the

heritability estimates. Heritability estimation was performed using n = 7174 biolo-
gically independent samples.
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Table 1 | Loci reaching the Bonferroni-corrected significance level

Locus Chr Mv
trait

Mv lead variant Mv
minP

Uv trait Uv lead variant UvminP HDL LDL TC TG LS

RF00019 1 4 rs7529794 1e-12 LPE 18:0;0 rs7529794 4e-13 X X

PCSK9 1 7 rs11591147 3e-23 SM 34:1;2 rs11591147 2e-19 X X X

DOCK7 1 2 rs3913007 4e-28 PI 18:0;0_20:4;0 rs1168104 6e-25 X X X X X

AC105942.1 1 5 rs1265169 1e-25 PC 18:0;0_18:2;0 rs34396223 7e-13 X

DTL 1 5 rs116329252 4e-11 PC 18:0;0_18:2;0 rs116329252 3e-5

MARC1 1 1 rs2642442 4e-8 TAG 54:4;0 rs2642442 5e-11 X X X X

GALNT2 1 10 rs6672758 2e-9 PC O-16:1;0/18:1;0 rs6672758 4e-10 X X X

APOB 2 7 rs1367117 4e-11 CE 16:0;0 rs1367117 3e-9 X X X X X

GCKR 2 3 rs1260326 1e-17 TAG 50:4;0 rs1260326 4e-22 X X X X X

ABCG8 2 9 rs4245791 3e-32 CE 20:2;0 rs4245791 9e-32 X X X X

STK39 2 8 rs143928330 3e-10 SM 34:2;2 rs143928330 1e-5

AC021074.3 3 2 rs12638256 1e-39 PI 18:0;0_18:1;0 rs12638256 5e-20 X X X X

ANKRD17 4 8 rs187918276 4e-15 SM 40:1;2 rs187918276 3e-17 X X X X

CDS1 4 2 rs191460656 2e-9 PI 16:0;0_18:2;0 rs191460656 3e-5

ELOVL6 4 3 rs5022521 5e-33 CE 16:1;0 rs5022521 3e-7 X X

SMIM13 6 6 rs9468401 6e-20 CE 22:6;0 rs9468401 2e-5 X

AGPAT1 6 3 rs1061808 4e-31 TAG 50:1;0 rs1061808 4e-9 X X X X X

PEX6 6 6 rs9462860 5e-13 PC 18:0;0_22:6;0 rs4987173 3e-9 X X X X

NPC1L1 7 8 rs41279633 9e-11 CE 18:0;0 rs17725246 4e-8 X X

MLXIPL 7 8 rs3812316 9e-12 DAG 18:1;0_18:2;0 rs13235543 9e-11 X X X X

AC022784.1 8 3 rs4841133 4e-13 PC 18:0;0_18:2;0 rs4841133 9e-8 X X X X X

LPL 8 1 rs3916027 2e-10 TAG 56:6;0 rs10105606 2e-12 X X X X X

ERMP1 9 8 rs142911112 1e-20 SM 32:1;2 rs140094646 1e-8 X X

ABO 9 8 rs977371848 2e-10 CE 18:0;0 rs992108547 7e-14 X X X X

AGPAT2 9 3 rs2236514 2e-12 PC 16:0;0_22:5;0 rs2236514 4e-12

JMJD1C 10 8 rs10822163 4e-9 Cer 42:2;2 rs10822163 4e-6 X X X X

SGPL1 10 8 rs12763964 6e-17 Cer 42:2;2 rs12763964 2e-10

PKD2L1 10 3 rs603424 4e-26 PC 16:1;0_18:1;0 rs603424 1e-11 X X

GPAM 10 2 rs7096937 1e-13 PI 18:0;0_20:4;0 rs7096937 1e-5 X X X X

PNLIPRP2 10 3 rs4751995 9e-12 PC 16:0;0_18:2;0 rs4751995 1e-6 X X X X

FADS2 11 7 rs174562 1e-783 PC 18:0;0_20:4;0 rs174537 1e-438 X X X X X

CPT1A 11 3 rs2229738 9e-18 CE 20:4;0 rs2229738 7e-11 X X X

RN7SL786P 11 3 rs10160784 2e-14 PC 18:1;0_20:2;0 rs656095 4e-9 X X X

ZPR1 11 3 rs964184 3e-42 TAG 54:4;0 rs964184 9e-39 X X X X X

SOAT2 12 8 rs11170421 7e-35 CE 18:0;0 rs2280696 4e-24 X

HNF1A 12 8 rs1169306 6e-22 SM 38:2;2 rs1169306 4e-12 X X X X

AL161670.1 14 8 rs7157785 2e-197 SM 32:1;2 rs7157785 3e-95 X X X X

LIPC 15 2 rs10468017 2e-126 PE 16:0;0_20:4;0 rs2043085 4e-104 X X X X X

NTAN1 16 3 rs1136001 1e-52 CE 20:3;0 rs1135999 2e-36 X X X

CETP 16 3 rs17231506 1e-33 PC 16:0;0_18:2;0 rs17231506 8e-15 X X X X X

LCAT 16 7 rs4986970 1e-16 CE 20:4;0 rs4986970 2e-4 X X

GLTPD2 17 8 rs79202680 1e-79 SM 40:1;2 rs79202680 4e-60 X X X X

KCNJ12 17 7 rs6587148 2e-9 PC 16:1;0_20:4;0 rs6587148 2e-6

YPEL2 17 11 rs149807191 2e-9 PC O-
16:0;0/20:4;0

rs149807191 7e-8

ABHD3 18 2 rs181026394 5e-38 PC 14:0;0_18:2;0 rs181026394 7e-20 X

SMUG1P1 18 2 rs1540037 1e-15 PI 18:1;0_18:1;0 rs1540037 8e-17 X X X X

CERS4 19 8 rs2336171 2e-189 SM 38:2;2 rs2336171 6e-53 X X X X X

TM6SF2 19 8 rs190121281 3e-24 TAG 56:6;0 rs189452885 2e-15 X X X X

APOE 19 8 rs7412 2e-65 CE 18:2;0 rs7412 8e-36 X X X X X

SPHK2 19 8 rs61751862 6e-16 SM 34:2;2 rs61751862 1e-7 X

TMC4 19 2 rs8736 2e-301 PI 18:0;0_18:2;0 rs8736 5e-107 X X

LINC01722 20 8 rs438568 1e-135 Cer 42:2;2 rs364585 7e-52 X X X

NINL 20 3 rs6037125 6e-12 CE 20:3;0 rs6037125 2e-6 X X X
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credible set either in univariate or multivariate GWAS (Supplementary
Data 3). Altogether, 50 high PIP variants were identified. Variants with a
highPIPwere found from13 loci in both theunivariate andmultivariate
analyses (ABHD3, AGPAT2, APOE, CERS4, GCKR, GLTPD2, HNF4A,
LINC01722, LIPC, PCSK9, PKD2L1, SMUG1P1, and ZPR1), from 1 locus
(LPL) only in the univariate analysis and from 12 loci only in the mul-
tivariate analysis (AGPAT3, CPT1A, DOCK7, ELOVL6, LCAT, MYRF,
NPC1L1, SGPL1, SMIM13, SPHK2, STK39, TM6SF2). Of the 50 variants, 18
variants that reached a PIP > 0.9 in the multivariate analysis had a low

PIP (<0.1) in the univariate analyses. In Supplementary Data 3 the full
FINEMAP results are listed and the results for the novel loci are sum-
marized in Supplementary Table 2. The representative variants of the
informative credible sets of the BFS univariate and multivariate GWAS
regions are plotted by the credible set size against the top posterior
inclusion probability (PIP) in Supplementary Fig. 11.

In total, we found 53 variants that affect themolecular function of
a protein among the representative variants of credible sets or in high
LD (r2 > 0.95) with them (Supplementary Data 3). These 53 functional

Table 1 (continued) | Loci reaching the Bonferroni-corrected significance level

Locus Chr Mv
trait

Mv lead variant Mv
minP

Uv trait Uv lead variant UvminP HDL LDL TC TG LS

HNF4A 20 2 rs1800961 1e-10 CE 18:3;0 rs1800961 1e-10 X X X

AGPAT3 21 3 rs62229686 7e-17 PC 16:0;0_22:5;0 rs62229686 5e-9

PNPLA3 22 1 rs2294915 3e-9 TAG 56:6;0 rs738409 6e-19 X X X X X

Loci foundbyprevious studies for standard lipidsor lipid species aremarkedwith an X. Loci are listed as italic gene names. Novel loci are bolded. Two-sided P-values calculated using a linear-mixed-
model (uv) and canonical correlation analysis (mv) are reported.
mv multivariate, uv univariate, mv trait cluster number, uv trait lipid species, lead variant rsid, minPminimum of P-values of mv or uv GWAS, LS lipid species.
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Fig. 3 | Comparison of the univariate and multivariate P-values for 56 lipid-
associated loci. The loci are colored by the lipid class from the univariate analysis
and labeled by the cluster number from the multivariate analysis. The x-axis shows
the P-values of the top associated univariate lead variant of the loci. The y-axis
shows the P-values of the top associated multivariate lead variant of the loci. Two-
sided P-values were calculated using a linear-mixed-model (uv) and canonical
correlation analysis (mv). If no variant reached P < 5e-8 for the locus in univariate

analysis, the minimum univariate P-value of the lead variant of the multivariate
analysis is shown. Known loci and novel loci are annotated by the locus name in
black and red, respectively. Dark blue dashed lines represent the genome-wide
significance level (P < 5e-8) and dark blue dot-dashed lines represent the multiple
testing-corrected significance level (uv: 7.352941e-10, mv: 4.545455e-9). Black line
shows the diagonal. The lipid class names are listed in Fig. 1. The axes are capped
at 300.
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variants were distributed among 32 of our 56 loci. For the univariate
analyses, 34 missense variants and 2 splice region variants were found
across 24 loci. For the multivariate analyses, 1 splice acceptor variant
(PNLIPRP2), 2 splice donor variants (LILRB3, ABHD12), 1 frameshift
variant (ABHD12), 1 inframe deletion variant (NINL), 38 missense var-
iants and2 splice region variantswere found, distributed across 27 loci.
Among the 18 functional variants with PIP > 0.5 in the univariate or
multivariate fine-mapping, 9 variants were predicted to be among the
top 1% of the most deleterious substitutions (CADD score > 2038) and
are reaching the GWS threshold in at least one GWAS. These are mis-
sense variants for genes ABHD3, APOE, APOB, G6PC1, HNF4A, LCAT,
LIPC, LPL, and SPHK2.

The fine-mapping revealed multiple independent signals (Sup-
plementary Data 2) at 24 of the 56 loci including novel signals for well-
known lipid genes. For example, for LIPC, we found 5 signals repre-
sented by variants: rs6493996, rs2043085, rs1077834, rs113298164,
and rs201563586, of which the last one is a highly Finnish-enriched
missense variant, not in LD with any of the previously reported
signals20,35,39,40.

A comparison to fine-mapping results of the standard lipids in
UKBwas performed for 45 of our high PIP variants that were directly or
through an LD-neighbor (r2 > 0.1) contained in the UKB fine-mapping
results (Supplementary Data 3). Of the 45 variants, 15 variants have a
CADD score > 10, indicating that the variant is predicted to be among
the 10 % of the most deleterious substitutions38 (Table 3). Of these 15
variants, 8 variants reach a PIP > 0.1 in UKB for at least one standard
lipid. The other 7 variants had a PIP < 0.001 for all standard lipids and
were not contained in any 95 % credible set in UKB. Of the 7 variants, 3
variants were rare and only reached a PIP > 0.9 in our multivariate
analysis. Detailed quality control assessment of these variants is in
Supplementary Note 1. Of the 30 variants with a CADD score ≤ 10, 17
variants (or their LD neighbors) reach a PIP > 0.1 in UKB for at least one
standard lipid. We observed a lower Pearson correlation between the
standard lipids and the lipid species or LCP-phenotypes associated
with the variants that had only low PIP inUKB (Supplementary Note 2).

Gene prioritization
Next, we prioritized genes in the 98 identified GWS loci first by using
functional variants and second by using FOCUS41, which together
prioritized 49 genes (Supplementary Data 4). First, we prioritized
genes basedon the functional variants thathad PIP > 0.5 or thatwere in
high LD (r2 > 0.95) with such variants. Of the 20 prioritized genes, 11
were found both in the univariate and multivariate analysis (AGPAT3,
APOE, CERS4, CPT1A, GCKR, HNF4A, LIPC, PCSK9, SOAT2, SPTLC3,

TM6SF2), 3 only in the univariate analysis (G6PC1, LPL, TMC4) and 6
only in the multivariate analysis (ABHD3, APOB, ELOVL2, ERMP1, LCAT,
SPHK2). FOCUS prioritized, at PIP > 0.5, 32 genes of which 17 were
found both in the univariate and multivariate analysis (APOA5, AQP9,
BFAR, CETP, CNOT3, DHX33, DOCK7, FNDC4, GRAMD4, LIPG, MIB1,
NOMO1, PLEKHH1, PNPLA3, PPP6R1, SCGB2A2, SYNE2), 4 only in the
univariate analysis (APOB, APOA1, NLRP1, SCARB1) and 11 only in the
multivariate analysis (CCDC86, CERS4, CNN3, DDX49, ERMP1, GPAM,
HNRNPM, MLEC, PRPF19, PYGB, ZNF506).

We further assessed gene expression of the prioritized genes in 54
tissues using FUMA42. We observed high expression levels in liver for a
majority of prioritized genes for both prioritization methods (Sup-
plementary Fig. 12). To assess tissue specificity of prioritized genes
FUMA identifies sets of differentially expressed genes (DEG), defined
as the gene sets that are more (or less) expressed in a specific tissue
compared to all other tissues. The up-regulated DEG sets were sig-
nificantly enriched (P ≤ 0.05 corrected for multiple testing) for liver
tissue for both gene prioritization methods (Supplementary Fig. 13).
The top two enriched gene sets from Gene Ontology biological pro-
cesses are ‘lipid metabolic process’ (adjusted P = 3e-17) and ‘cellular
lipid metabolic process’ (adjusted P = 1e-15) for the functional variant
approach, and ‘protein containing complex remodeling’ (adjusted
P = 1e-9) and ‘lipid homeostasis’ (adjusted P = 2e-9) for FOCUS. The
gene set enrichment results for the prioritized genes are in Supple-
mentary Data 4.

We assessed whether the prioritized genes were included in any
gene set from FUMA with the name containing the term lipid. For the
functional approach, 3 out of 20 genes were not among the lipid gene
sets (ERMP1, G6PC1, TMC4), and for FOCUS, the numbers were 20 out
of 32 (e.g. ZNF506,CNOT3,GRAMD4). In total, of the 49 genes, 22 genes
were not among FUMA’s lipid gene sets.

Phenome-wide association study (PheWAS)
To explore the disease relevance of the identified lipid-associated loci,
we used data for 953disease endpoints from 377,277 participants from
the FinnGen study. We performed PheWAS for the 264 GWAS lead
variants and 287 representative variants of credible sets which were
not among the lead variants. We identified 2937 variant-disease asso-
ciations for variants in 46 GWS loci reaching the P-value threshold of
P < 5.24659e-5 (corresponding to 0.05 corrected for the number of
endpoints (953) included in the PheWAS; Supplementary Data 5).
Amongst the 9 novel lipid-associated loci, the PheWAS revealed that
the cluster 11 associated intronic variant rs149807191 at the YPEL2
locus associated alsowith hypertensionendpoints (minimumP = 2e-7).

Table 2 | Novel loci reaching the Bonferroni-corrected significance level

Locus Trait Chrom Lead variant P-value Function MAF Finnish enrichm.

DTL cluster 5 (PC 18:0;0_18:2;0) 1 rs116329252-A 4e-11 intron 0.04 0.87

STK39 cluster 8 (SM 34:2;2) 2 rs143928330-G 3e-10 intergenic 0.03 2.94

CDS1 cluster 2 (PI 16:0;0_18:2;0) 4 rs191460656-T 2e-9 intron 0.07 68.87

AGPAT2 PC 16:0;0_22:5;0
cluster 3 (PC 16:0;0_22:5;0,
PC 16:0;0_22:4;0,
PC 18:0;0_22:5;0)

9 rs2236514-C 4e-12
2e-12

intron 0.35 1.00

SGPL1 Cer 42:2;2
cluster 8 (Cer 42:2;2,SM 34:2;2)

10 rs12763964-C 2e-10
6e-17

intron 0.21 0.86

KCNJ12 cluster 7 (PC 16:1;0_20:4;0) 17 rs6587148-C 2e-9 intron 0.38 0.99

YPEL2 cluster 11 (PC O-16:0;0/20:4;0) 17 rs149807191-T 2e-9 intron 0.06 1.42

AGPAT3 cluster 3 (PC 16:0;0_22:5;0,
PC 18:0;0_22:5;0)

21 rs62229686-T 7e-17 missense 0.04 1.44

Locus locus name identical to gene name from VEP in italic, trait lipid species or multivariate cluster (driver trait frommetaPhat analysis), lead variant rsid-minor allele, function variant function from
VEP, Finnish enrichm. Finnish enrichment calculated as ratio of minor-allele frequencies between our Finnish data and non-Finnish-non-Swedish-non-Estonian European samples in gnomAD v2.1.
Bolded if >2. Two-sided P-values calculated using a linear-mixed-model (uv) and canonical correlation analysis (mv) are reported.
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Figure 4 shows the connection between 9 selected PheWAS end-
points (representing cardiovascular disease, hyperlipidemia, diabetes,
metabolic disorders, and neurological disease) and the lipid species
and multivariate clusters through shared associated variants. Only the
associations reaching the GWS threshold corrected for the number of
endpoints (P < 5.24659e-11 = 5e-8/953) and simultaneously showing a
colocalization (CLPP > 0.01) are illustrated. Of the 179 lipid species,
137 species are included in Fig. 4. We identified 45 instances where
links in the loci FADS2, ZPR1,CERS4, TM6SF2, andHNF1Awere detected
in PheWAS but not by the colocalization analysis, and they together
with the colocalization results for all 953 FinnGen endpoints can be
found in Supplementary Data 6. Supplementary Fig. 14 shows the
connection of all 45 BFS endpoints, ordered by disease groups, con-
nected with >3 lipid species.

Coronary artery disease loci associations
Of the 236 conditionally independent coronary artery disease (CAD)
GWS variants at 196 loci43, 11 reach the BFS threshold P < 7.35e-10 for
the univariate analysis and 1 additional variant reaches the BFS
threshold P < 4.55e-9 for the multivariate analysis (Fig. 5). The most
widely-associated variant is near ZNF259, located in the BUD13-
ZNF259-APOA5-APOA1-SIK3 gene-cluster, which increases the levels of
DAGs, PCs, PE 18:0;0_18:2;0, PIs, and TAGs and decreases the level of
PC O-16:1;0/18:1;0. This variant is also associated with statin medi-
cation (P = 8e-130, Beta = +0.19) and disorders of lipoprotein meta-
bolism and other lipidemias (P = 9e-58, Beta = +0.18) in FinnGen. We
summarized these associations and the 71 associations reaching the
significance threshold corrected for multiple testing (P < 7.352941e-4
for univariate and P < 4.545455e-3 for multivariate analyses) in Sup-
plementary Data 6. Of the 15 CAD variants that were GWS associated
with a lipid species or clusters of lipid species, 4 variants with the
nearest genes NAT2 (rs4646249), LPL (rs268, rs894211), and MYH11
(rs12691049) were not located within ±1.5Mb of the lipid variants

reported by Cadby et al.35 to be nominally associated with coronary
atherosclerosis.

Discussion
We present a genetic study of plasma lipidome with 7174 participants
and 179 lipid species followed by a large-scale PheWAS analysis to
reveal new lipid-associated variants and the relationship between lipid
species and cardiometabolic disorders. Our study provided several
advantages in gaining new information on the genetics of lipid meta-
bolism due to (1) the large sample size of 7174 individuals, (2) the
unique genetic background of the Finnish population, (3) high reso-
lution lipidomicmeasurements, and (4) themultivariate approach. We
demonstrate a considerable gain of power from the multivariate ana-
lysis of correlated lipid species compared to a commonly used uni-
variate analysis, and expand current knowledge in thefield through the
analysis of lipidome compared to the standard lipids. We identified
variants thatwere highly associatedwith both lipid species and disease
endpoints, including cardiovascular disease, liver disease, chole-
lithiasis, diabetes, and lipid disorders.

We found that the heritability estimates of lipid species ranged
from 0 to 0.45. Previous studies have reported heritability estimates
ranging from 0.10 to 0.5421,35. We observed the highest median herit-
ability estimates for the lipid classes SM, and Cer (>0.30). A previous
Finnish study reported the highest heritability estimates for Cer
(0.39)21. In a recent Australian study35 among the lipid classes included
inour study, CE andLPE reached the largest heritability (0.38), and also
Cer (0.34) and SM (0.36) were among the most heritable classes. We
acknowledge that the differences in heritability estimates between the
lipid speciesmay reflect also the differences inmeasurement accuracy
in addition to the differences in the actual heritabilities.

Our sample size is over 3-fold compared to themost recent GWAS
on the same lipidome measures (2181 individuals) (Tabassum et al.
201921). This increase is reflected in the number of univariate GWS

Table 3 | Fine-mapping results

Locus Variant Function Gene CADD Finnish
enrichm.

MAF Traits (P-value)

PCSK9 rs11591147-T missense PCSK9 10.4 3.10 0.033 CE 18:2;0 (2e-14),
3 SMs: SM 34:1;2 (2e-19), c3 (1e-14), c8 (2e-13)

GCKR rs1260326-T missense GCKR 13.2 1.07 0.349 2 DAGs: DAG 18:1;0_18:2;0 (1e-12), 16 TAGs: TAG 50:4;0 (4e-22),
c2 (4e-13), c3 (1e-17)

SMIM13 rs1292311927-T* splice_region ELOVL2 22.9 FIN-specific 0.004 c6 (2e-7)

LPL rs268-G missense LPL 21.3 1.01 0.023 3 TAGs: TAG 54:4;0 (1e-9)

LIPC rs201563586-A* missense LIPC 24.9 FIN-specific 0.002 c2 (8e-8)

rs113298164-T missense LIPC 24.1 4.41 0.017 5 PCs: PC 18:0;0_18:2;0 (1e-12),
PC O-16:2;0/18:0;0 (3e-12),
5 PEs: PE 16:0;0_20:4;0 (4e-47),
c2 (3e-62), c3 (2e-7), c4 (2e-10),
c5 (4e-15), c7 (2e-7), c10 (1e-10)

LCAT rs4986970-T missense LCAT 23.2 0.83 0.028 c7 (1e-16)

ABHD3 rs1253048206-G* intergenic 11.8 0.017 c2 (3e-6)

rs186249276-T* missense ABHD3 23.7 29.64 0.004 c2 (4e-19), c3 (5e-12)

APOE rs7412-T missense APOE 26.0 0.56 0.053 5 CEs: CE 18:2;0 (2e-14), c3 (3e-23), c6 (2e-18), c7 (2e-53), c8 (2e-
65), c11 (4e-14)

rs429358-C missense APOE 16.7 1.29 0.189 2 CEs: CE 20:2;0 (9e-12), c7 (1e-29), c9 (8e-12)

SPHK2 rs61751862-C* missense SPHK2 22.1 2.45 0.031 c8 (6e-16)

LINC01722 rs61738161-A* missense SPTLC3 18.0 2.24 0.086 3 Cers: Cer 42:2;2 (3e-17), c8 (7e-19)

HNF4A rs1800961-T missense HNF4A 21.4 1.41 0.052 2 CEs: CE 18:3;0 (1e-10), c2 (1e-10)

AGPAT3 rs62229686-T* missense AGPAT3 16.3 1.44 0.039 c3 (7e-17)

Locus gene name in italic, variant rsid-minor allele, *variants reaching only low PIP (<0.1) in UKB, function variant function from VEP, gene gene name from VEP in italic,MAFminor-allele frequency,
Finnish enrichm. Finnish enrichment calculated as ratio of MAF between our Finnish data and non-Finnish-non-Swedish-non-Estonian European samples in gnomAD v2.1. Bolded if >2. Variants not
detected outside Finland in gnomAD are marked as FIN-specific.
Variants with a CADD score >10 and a high PIP (>0.9) in GeneRISK are listed. Traits for which the variant reaches a high PIP are listed and, in the case ofmultiple species of a lipid class, the number of
species and the species for which the variant reaches the lowest P-value are given. Two-sided P-values calculated using a linear-mixed-model (uv) and canonical correlation analysis (mv) are
reported.
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Fig. 4 | Heatmap of PheWAS associations for selected disease endpoints. Each
entry in the heatmap represents a possible association between a disease group
(row) and a lipidome trait (column). The red color indicates that at least one variant
among the lead variants or representative variants of the lipidome trait is also
associated with the disease at the multiple testing-corrected threshold
P < 5.24659e-11 and the lipidome trait and disease colocalize at CLPP > 0.01. Two-

sided P-values for lipidome traits were calculated using a linear-mixed-model (uv)
and canonical correlation analysis (mv). Two-sided P-values for disease endpoints
were calculated usingmixed-model logistic regression. The gray color denotes that
no suchassociation is observed. The columns are split by lipid classes. The effective
sample size Neff (see the “Methods” section) and the number of loci are given
beneath each disease endpoint.
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Fig. 5 | Effect estimates of 11 CAD risk-increasing alleles on lipid species.Variant
ids are defined as rsid-risk-increasing allele. Included are species that reach the
multiple testing-corrected threshold of 7.352941e-10 for at least one of the var-
iants. Associations reaching the genome-wide-significant (P < 5e-8) or the multiple
testing-corrected threshold are indicated by one or two asterisks, respectively.

Colored effect estimates are shown for the associations reaching nominal sig-
nificance corrected for the number of PCs explaining 90% of the variance
(P < 7.352941e-4). Two-sided P-values for lipid species were calculated using a
linear-mixed-model.
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findings (68 in our study vs. 35 in Tabassum et al.). Two other recent
lipidome studies have been carried out with 5662 Pakistani individuals
plus 13,814 British individuals (Harshfield et al. 202134), and 4492
Australian individuals predominantly of European ancestry (Cadby
et al. 202235). Even though the sample sizes in lipidome studies are still
small compared to the existing GWAS on standard lipids (19,20), the
high-dimensional lipidome phenotypes complement the standard
lipid analyses by identifying new lipid-associated loci, providing a
refined picture of the genetic associations and allowing multivariate
analyses. Here, we have identified 13 lipid-associated loci that were not
captured by any standard lipids study, not even by the largestGWASof
standard lipids with >1.65 million participants20. The 10 lipid species
associated with these loci are less correlated with the standard lipids
than the remaining lipid species (Pearsoncorrelationof 0.41 compared
to 0.48, Supplementary Data 1), reiterating that the standard lipids do
not completely capture the complex lipid metabolism.

The Finnish genetic background of our study population provides
a unique opportunity to discover variants that are enriched in the
Finnish population but extremely rare outside of Finland, and to
identify new independent signals in known lipid loci. We identified two
new lipid-associated loci that are enriched in the Finnish population.
These two enriched loci and the other 6 new loci reach P-values
between 9e-6 and 2e-3 for lipids in a recent metabolome study of 6136
Finnishmen in theMETSIMcohortmeasuredbyMetabolonplatform44.
This indicates that our novel associations replicated (at P < 3e-3) in an
independent cohort from the same population using a different mea-
surement technique. A missense variant in SPHK2, encoding sphingo-
sine kinase 2 which plays an important role in sphingolipid
metabolism, was found to be associated with SMs in our study and has
also been reported for SMs by the METSIM study44. The unique LD
pattern of the Finnish population also facilitated an identification of
additional independent variants associated with lipids in the known
lipid loci through fine-mapping. For example, the LIPC region has been
reported to contain three independent signals for standard lipids20 and
in addition to these a fourth independent signal has been reported to
be associated with lipid species35. In addition to these four signals, our
study identifies a new independent signal at a missense variant
(rs201563586), not in LD with any of the previously reported signals.
This variant has a high PIP (>0.90) in our fine-mapping analysis and is
highly enriched in the Finnish population, indicating the benefits of
studying population isolates in genetic studies.

Another advantage of our study is the multivariate approach that
showed a considerable gain in power in the discovery of new loci over
the standard univariate GWAS. The multivariate GWAS identified 36%
more BFS loci compared to univariate GWAS (55 vs. 35; Fig. 3) and
discovered 6 new loci (DTL, STK39, CDS1, YPEL2, KCNJ12, and AGPAT3),
not detected by the univariate GWAS. The interpretation of a multi-
variate association is often not straightforward in terms of the original
traits. To improve the interpretation of the multivariate associations,
we applied a recent statistical method37 that decomposes the multi-
variate association into a smaller set of driver traits. Informative
decompositions with at most 3 driver traits were observed for 78% of
the BFS GWAS regions (108 of 138) found by the multivariate analysis.
These regions represented eight such loci that did not reach BFS in any
univariate analysis. Two examples are the association between cluster
7 and the APOB locus driven by CE 16:0;0 and CE 20:4;0, and the
association between cluster 8 and a missense variant in SPHK2 driven
by SM 34:2;2 and SM 38:2;2.

Individual lipid species havebeen shown topredict cardiovascular
disease risk more accurately than the standard lipids21. We observed
disease associations with lipidome-associated variants for various
disease groups (Fig. 4). For statin medication, we observed a shared
genetic association with 58% of the lipid species and all multivariate
clusters. Another widely lipidome-associated endpoint was chole-
lithiasis (47%). The multivariate clusters and CE species are sharing

genetic associations with all disease groups. Species of the classes SM,
TAG, DAG, and a few species of the classes PC, PCO, PE, and PI show
similar patterns for most disease groups, except for Alzheimer’s dis-
ease, vascular dementia, or diabetic retinopathy. While these shared
associations could point to interesting connections between lipid
levels and diseases, there are two limitations with such observations.
First, a shared association does not automatically mean that the
potential causal variant in the region is the same for the lipid trait and
the disease. However, the colocalization analysis supported that the
causal variants are shared for most of the pairs of lipid species and
diseases highlighted by the PheWAS analysis. Second, the disease
endpoints in Fig. 4 have varying effective sample sizes and therefore
some differences between the observed associations across the dis-
eases could simply reflect the differences in statistical power.

We also examined the lipidomic profiles of 11 knownCAD variants
(Fig. 5). The CAD locus ZNF259 showed the widest set of associations
with 46 lipid species and 9 clusters of lipid species. The effect of the
ZNF259 polymorphism was previously only reported for standard
lipids, with the first report45 stating that individuals carrying the risk-
increasing G allele showed increased TG levels and decreased LDL-C
levels. We analyzed the effect of the polymorphism on lipid species:
individuals with the G allele showed increased levels of DAGs, PCs, PE
18:0;0_18:2;0, PIs, and TAGs and decreased levels of PCO-16:1;0/18:1;0.
Our list of marginal lipid associations of the CAD-associated variants
contained three such CAD loci associated at GWS with lipid species or
clusters that were not included in the previous report35 of the CAD-
associated lipid variants.

To summarize, our study identifies novel genetic lociwith a role in
lipid metabolism, points towards functional effects on detailed circu-
lating lipid measures, and shows connections to cardiometabolic and
related diseases.We also highlight the benefits of utilizingmultivariate
methods for association testing in multiple correlated phenotypes.
Our comprehensive catalog of detailed lipid associations provides new
opportunities for studying the role of lipids in disease-associated loci.
For instance, the univariateGWAS summary statisticsweprovide could
be utilized for development of polygenic risk scores and Mendelian
Randomization studies. Further analyses employing group variables
such as aggregating lipids sharing a particular fatty acid in their side
chain or sharing a head group, or utilizing lipid ratios might lead to an
identification of new associations.

Methods
Study participants
We use data from the prospective GeneRISK cohort46 whose principal
aim is to assess the impact of communication of genetic risk infor-
mation of CVD to study participants. The cohort includes 7292 parti-
cipants (4642 women, 2624 men), who were recruited from Southern
Finland during 2015–2017 at age of 45–66 years. Participants were
recruited from the Kymenlaakso province in South-Eastern Finland by
identifying 4857 individuals from the population register at random
and inviting them by mail. Further 1369 individuals were recruited
from customers of Helsinki and Turku offices of a private and occu-
pationalhealth careprovider.Additionally, online advertisingwas used
to recruit 1116 blood donors. Individuals under guardianship, with
previous history of Atherosclerotic Cardiovascular Disease and preg-
nant women were excluded from the study. The basic study char-
acteristics are presented in Supplementary Table 3. The participants
were instructed to fast overnight for 10 h before the collection of
blood samples for plasma, serum, and DNA extraction. The biological
samples (DNA, blood, serum, plasma) and the participants’ demo-
graphic information and health data, genetic data and lipidomic data
are stored in the THL Biobank [https://thl.fi/en/web/thl-biobank/for-
researchers/sample-collections/generisk-study]. The GeneRISK study
was carried out according to the principles of the Helsinki declaration
and the Council of Europe’s (COE) Convention of Human Rights and
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Biomedicine. All study participants gave their informed consent to
participate in the study. The study protocols were approved by The
Hospital District of Helsinki and Uusimaa Coordinating Ethics com-
mittees (approval No. 281/13/03/00/14 (GeneRISK)).

Ethics statement for FinnGen is listed in Supplementary Note 3.

Lipidomics
Mass spectrometry-based lipid analysis was performed for 7302 indi-
viduals from the GeneRISK cohort by shotgun lipidomic analysis at
Lipotype GmbH (Dresden, Germany). The analysis was performed by
direct infusion in a QExactive mass spectrometer from Thermo Sci-
entificwith aTriVersaNanoMate ion source fromAdvionBiosciences47.
The lipidomics data were analyzed using lipid identification software
and a data management system developed in-house by Lipotype
GmbH48,49. The lipidswith a high signal-to-noise ratio (>5) and amounts
at least 5-fold higher than the corresponding blank samples were
included. By including 8 reference samples per 96-well plate batch,
reproducibility was assessed and the lipid amounts were corrected for
batch variations and analytical drift if the P-value of the slope was
<0.05 with an R2 > 0.75 and the relative drift >5%. The lipid species
detected in more than 70% of the samples were included (179 lipid
species from 13 lipid classes). After the samples with a very low total
lipid content and with >30% of the 179 lipids missing were excluded
(N = 26), data from 7276 individuals remained.

The lipid molecules were identified at the species or subspecies
level. The lipid species are named in the following notation: class name
<sum of carbon atoms>:<sum of double bonds>;<sum of hydroxyl
groups>. The annotation of lipid subspecies includes information on
their acyl moieties and, if available, on their sn-position. The acyl
chains are separated either by “_” if the sn-position on the glycerol
cannot be resolved or else by “/”. Further explanation is given by Gerl
et al.50. The lipid identifiers of the SwissLipids database51 [http://www.
swisslipids.org] and the shorthand notation52 are provided in Supple-
mentary Data 1.

Genotyping and imputation
Genotyping was performed using the HumanCoreExome BeadChip
from Illumina Inc. (San Diego, CA, USA) and genotype calling was done
with GenomeStudio and zCall at the Institute for Molecular Medicine
Finland (FIMM). The genotype data was lifted over to the human gen-
ome build version 38 (GRCh38/hg38) according to the protocol
described in [https://doi.org/10.17504/protocols.io.nqtddwn]. In the
pre-imputation quality control (QC), potential outliers based on genetic
ancestry were removed. We performed a principal component analysis
(PCA) using 61,106 good quality (minor-allele frequency (MAF) ≥0.05,
Hardy-Weinberg equilibrium P-value (HWE) > 1e-6 and missingness
<10%) and approximately independent (LD pruning with PLINK v1.9: r2

threshold of 0.2, window size 50 kb, step size 5) genetic variants. Based
on the PCA and the place of birth information from the questionnaire,
the individuals with non-Finnish ancestry or birthplace were removed.
However, the samples born in Estonia, Russia, and Sweden, but clus-
tered with the samples of Finnish ancestry in PCA, were retained in the
analysis. Samples (N = 30) with extreme heterozygosity (beyond ±4 s.d)
were excluded. After the quality control filtering, 7174 samples, con-
sisting of 4579 females and 2595 males, with both genotype and lipi-
dome data were considered for the subsequent analyses.

The genotype data pre-phasing was done with Eagle v2.3.553 with
the number of conditioning haplotypes set to 20,000. The genotypes
were imputed with Beagle v4.154 using the population-specific
Sequencing Initiative Suomi (SISu) v3 reference panel based on high-
coverage (25–30x) whole-genome sequences for 3775 Finnish indivi-
duals. The procedure is described in [https://doi.org/10.17504/
protocols.io.nmndc5e]. In the post-imputation QC, the variants with
imputation INFO score <0.70 and MAF <0.01 were excluded and
12,776,997 variants remained. The measured levels of the lipid species

were adjusted for age, sex, collection site (clinic), lipidmedication,first
10 genetic PCs, and ancestry (separate indicator variables for indivi-
duals born in Russia, Estonia, and Sweden) using linear regression.
After adjusting for the above-mentioned covariates, the residuals were
inverse-normal transformed andwereused as outcome variables in the
association analyses.

Hierarchical clustering of lipid species
A hierarchical clustering was performed using the absolute pairwise
Pearson correlations of the inverse-normal transformed plasma levels
of lipids to identify clusters of correlated lipids for the multivariate
GWAS. The clustering analysis was performed separately for glycer-
olipids (44 lipid species from TAGs and DAGs) and the remaining lipid
species (135 species belonging to glycerophospholipid, sphingolipid,
and sterol). As highly correlated traits cause instability in multivariate
association analyses, we iteratively excluded one member from each
pair of lipid species with a correlation >0.8 until no pair with a corre-
lation >0.8 remained. The hierarchical clustering was performed on
the remaining lipid species using an average Euclidean distancemetric
on the pairwise correlations and clusters were identified by visually
inspecting the dendrogram.

We then calculated Variance inflation factors (VIF) within each
cluster for each clustermember using the R package ‘car’. (Technically,
to apply the ‘car’ package, the cluster members were considered
independent variables in a regression model where the outcome
variablewas a randomlygenerated variablewhose exact valuemadeno
difference to the calculation of VIFs.) Through this approach, we
identified cluster members that were highly correlated with some lin-
ear combination of the other members of the cluster. We iteratively
removed the cluster member with the largest VIF until the maximum
VIF within the cluster was below 5.

The hierarchical clustering of the absolute pairwise Pearson cor-
relations led to 11 clusters of correlated lipid species (Supplementary
Figs. 1 and 2). Based on the VIFs, one trait was removed from clusters 1
and 5 and two traits were removed from clusters 3 and 8. A heatmap of
correlations for species included in the clusters is shown in Fig. 1. A list
of lipid species included in each cluster before and after removing
traits is given in Supplementary Data 1. Separate heatmaps of the
correlations within each cluster are included in Supplementary Fig. 3
and the correlation values between the lipid species are listed in
Supplementary Data 1.

We computed pairwise Pearson correlations between the 179 lipid
species and the standard lipids (HDL-C, LDL-C, TC, and TG). The cor-
relation values are shown in Supplementary Figs. 15 and 16 for the lipid
species and lipid classes, respectively. The correlation values between
the lipid species and the standard lipids are listed in Supplementary
Data 1. For each lipid species, we obtained the maximum absolute
correlationmaxCor across the standard lipids.We compared themean
of these maxCor values between two groups of lipid species: (1) the
lipid species associated with the loci not previously reported for the
standard lipids and (2) the remaining lipid species.

SNP-based heritability estimates
The SNP-based heritability estimates for each lipid species were cal-
culated using biMM (release from 03.03.2017)55. The genetic relation-
ship matrix (GRM) used for the heritability estimates was calculated
using 849,501 LD-pruned autosomal SNPs with imputation INFO score
>0.95, MAF >0.01, and missingness <3%. The LD pruning was done
with PLINK v1.9 using a window size of 1000 kb, step size of 1, and
pairwise r2 threshold of 0.7. Additionally, high LD regions were
excluded56.

Univariate GWAS for 179 lipid species
The inverse-normal transformed residuals adjusted for the covariates
mentioned abovewere used in the association analysis performedwith
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the linear-mixed-model softwareMMMv1.0157. The number of samples
per GWAS ranged between 5287 and 7174 because the samples with
missing values for a specific lipid species were excluded in the GWAS
for that lipid species. After excluding very rare variants (MAF < 0.002)
and the variants with low imputation quality (INFO<0.8), 11,318,730
variants were included in the GWAS. To account for multiple testing,
the Bonferroni-corrected significance (BFS) threshold was set as P-
value < 7.352941e-10 (5e-8/68) as 68 principal components of themean
imputed lipidome data were required to explain >90% of the pheno-
typic variance. All P-values reported in this study are two-sided.

Multivariate GWAS for 11 lipid clusters
The multivariate analysis of the 11 clusters identified through the
hierarchical clustering was performed with metaCCA v1.13.158.

Phenotypic correlations needed for the analysis were estimated
from the GWAS summary statistics using metaCCA. The beta coeffi-
cients of the univariate GWAS were standardized using the formula
suggested by metaCCA:

βstand =
βffiffiffiffi
N

p
se

, ð1Þ

where N denotes the sample size of the respective univariate GWAS
and se denotes the standard error. The metaCCA P-values were cal-
culated from a chi-square distribution using the mean GWAS sample
size as parameter N. The BFS threshold for the multivariate GWAS was
set to P-value < 4.545455e-9 (5e-8/11) as the multivariate analysis was
performed for 11 clusters.

The dataset used by Cichonska et al.58 to test metaCCA consisted
of variantswith INFO>0.8 andMAF >0.05. Toassess the robustnessof
the multivariate analysis for rare (MAF <0.01) and low-frequency var-
iants (0.01≤MAF<0.05) we simulated data under the null hypothesis
for four SNPswithdifferentMAFs covering range (0.005–0.042). In the
simulation, the genotypes were permuted 100,000 times and then
univariate GWAS were done with MMM and multivariate GWAS with
metaCCA. The results of the simulation are described in detail in the
Supplementary Note 4. We observed slightly inflated multivariate P-
values for rare and low-frequencyvariants and are therefore correcting
the multivariate P-values of such variants using the genomic inflation
factor (λ)59 determined through this simulation approach. The simu-
lation was performed for each rare or low-frequency variant that
reached the genome-wide significance level (P < 5e-8) in the multi-
variate analysis but not in any of the univariate analyses.

Further, for each of the clusters, MetaPhat (release from
01.07.2020)37 was applied to identify the traits driving themultivariate
association at each lead variant of the multivariate analysis. The soft-
ware determines sets of central traits for multivariate associations
using Bayesian Information Criterion and P-value statistics. For each
multivariate association, we report the driver traits and the optimal set
of traits as defined by MetaPhat.

Defining lead variants in the GWAS regions
For both the univariate and multivariate GWAS, a lead variant in a
GWAS was defined iteratively as the variant with the lowest P-value.
After each new lead variant was identified, a 1.5Mb region on each side
of the variant defined the GWAS region of the lead variant, and other
variants in that region were excluded from the further search for lead
variants. For each GWAS, overlapping GWAS regions were combined
into a single combined GWAS region, for which the lead variant is
defined as the variant with the lowest P-value among the lead variants
of the overlapping regions, and the other lead variants are listed as
secondary lead variants. The maximum width of a region was set to
6Mb, and for overlapping regions exceeding this threshold the origi-
nalwindowsize of ±1.5Mbwas iteratively shrunk by 10%until thewidth
of the combined GWAS region was below 6Mb (or the shrunk regions

did not overlap anymore). The process was stopped after no variant
outside the GWAS regions had reached genome-wide significance
(GWS) of P-value < 5e-8. Similarly,we alsodefined the leadvariants that
reached Bonferroni-corrected significance (BFS).

To determine which of the lead variants from the multivariate
analysis were also identified by the univariate analyses, we checked
whether there were such variants that reached BFS or GWS in the
univariate GWAS of any trait included in the multivariate analysis and
had r2 > 0.1 with the lead variant of the multivariate analysis.

A lead variant was considered “novel” if the lead variant was not in
LD (r2 < 0.1)with anyof the knownvariants identified in previousGWAS
that included standard lipids or lipid species (listed in Supplementary
Data 7). LD-proxies for the previously reported variants that were not
included in our GWAS were obtained using LDproxy from LDlink
release 5.3.360. In LDproxy, we used the data on the 1000 Genomes
project’s Finnish population for LD calculation. For variants that were
monoallelic in the Finnish reference panel, we did the LD calculation
with the combined European population. From the SNPs with r2 > 0.8
and within 500 kb of the target variant, the one with the highest r2 was
chosen as an LDproxy. For 448 variants, no proxy was found, of which
151 variants were monoallelic in both the Finnish and the European
populations or were not biallelic variants, or were not contained in
dbSNPbuild 155. For the remaining 297 of the 448 variants, none of the
proxies were contained in our GWAS, no proxies with r2 > 0.8 were
found or the variants were not included in the 1000G reference panel.
For these 297 previously reported variants, we additionally checked if
any of our lead variants were located within ±1.5Mb.

We report the closest gene for all lead variants using SNP-nexus
v461–65 (overlapped gene if available or nearest upstream or down-
stream gene). The variant’s function was predicted with Variant Effect
Predictor (VEP) v103.1 (McLaren et al. 2016) and the most severe
function was annotated to the variant. The possible functions were
ordered by severity according to the ranking from Ensembl [https://m.
ensembl.org/info/genome/variation/prediction/predicted_data.html].
We defined the functional variants as having at least one of the fol-
lowing functions (orderedby severity frommore severe to less severe):
transcript_ablation, splice_acceptor_variant, splice_donor_variant,
stop_gained, frameshift_variant, stop_lost, start_lost, tran-
script_amplification, inframe_insertion, inframe_deletion mis-
sense_variant, protein_altering_variant, splice_region_variant.

GWAS of linear combination phenotypes (LCP-GWAS)
To enable fine-mapping of the multivariate associations, linear com-
bination phenotypes (LCP) were constructed as a weighted sum of the
traits where the weights corresponded to the optimal combination
phenotype reported by metaCCA for the lead variant66. GWAS region-
specific LCP-GWAS were performed with fastGWA-mlm from GCTA
v1.93.267, with the same covariates as were used in the
univariate GWAS.

We calculated pairwise Pearson correlations between the LCP
phenotypes and the standard lipids. (Supplementary Data 2).

Fine-mapping
Fine-mapping was performed with FINEMAP v1.468 for each GWAS
region. For each fine-mapped region, the in-sample linkage dis-
equilibrium (LD) matrix was computed using LDstore269 from the
genotype dosages. The maximum number of causal variants in a locus
was set to 10. The number of independent association signals for each
fine-mapped GWAS region was determined by the number of infor-
mative credible sets (CS) among those CS for which FINEMAP gave the
highest posterior probability. A CS was considered informative if the
minimum r2 among its variants was ≥ 0.1. We chose the top variant
from each CS to represent the association signal except if the CS
contained functional variants in high LD (r2 > 0.95) with the topvariant,
in which case the functional variant having the largest r2 with the top
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variant was chosen as the representative variant66. The GWAS lead
variant was chosen as the representative variant if no informative CS
was obtained. The MHC region (chr 6: 25–34Mb) was excluded from
the fine-mapping and there the GWAS lead variant was defined as the
representative variant.

Defining independent signals and physical loci across all traits
Earlier we defined the GWAS regions separately in each univariate or
multivariate GWAS and these regions were used in fine-mapping. Next,
we used the representative variants from the fine-mapping results to
determine the set of independent signals across all traits. We merged
the signals across the traits if their representative variants were in LD
(r2 ≥ 0.1). For each signal, we took the union of the corresponding
GWAS regions to define physical boundaries for the signal and finally,
we combined the overlapping signal regions to form a single set of
physical loci across all traits. The locus definition process is summar-
ized in a flow chart and visualized for the locus LPL in Supplementary
Figs. 7 and8, respectively. The locus namesweredefined by the closest
gene to the top variant with the lowest P-value across the associated
traits except if there was a missense variant among the top variants, in
which case the locus was named by the gene corresponding to the
missense variant. Novel loci are defined as loci containing only GWAS
regions whose lead variants were all novel.

Comparison of fine-mapping results to fine-mapping results of
standard lipids
We checked how the variants that got a high posterior inclusion
probability (PIP) > 0.9 in theGeneRISKdata, or the other variants in the
same locus in LD with them (r2 > 0.1 in GeneRISK), were fine-mapped
across the standard lipids (HDL-C, LDL-C, TG, TC) in the UK Biobank
(UKB) data by Finucane lab [https://www.finucanelab.org/data]. For
this, the chromosomal positions of theUKBdatawere lifted over to the
human genome build version 38 (GRCh38/hg38) with liftOver70. We
considered only the variants included in both data sets. We acknowl-
edge that the UKB variants thatwere not present in GeneRISK, but that
were in LD with a GeneRISK variant with a high PIP, could explain why
some high PIP variants in GeneRISK may have lower PIP in UKB.

Gene prioritization and pathway enrichment analysis
We prioritized genes for which we found functional variants with
PIP > 0.5 in fine-mapping of the univariate or multivariate GWAS. For
the functional variants, we obtained functional variant scores from
Variant Annotation Integrator71 and CADD scores from CADD v1.638.

Additionally, we performed a gene prioritization analysis using
FOCUS v0.741, which computes credible sets of genes based on a
posterior inclusion probability (PIP). We performed Transcriptome-
wide association studies (TWAS) and tissue-agnostic fine-mapping
with FOCUS using the GTEx v8 eQTL reference panel weight database
and in-sample LD.We used theMASHR-based GTEx v8 eQTLdatabases
from PrediXcan72–74 to create the weight database. As input, we used
the univariate GWAS and the multivariate LCP-GWAS filtered for
INFO >0.8 and MAF >0.002 and cleaned the data with the munge
command from FOCUS. We classified the GTEx tissues into two cate-
gories, category 1 containing subcutaneous adipose tissue, visceral
adipose tissue, liver, and whole blood, which were deemed the most
relevant for lipid-related phenotypes in a previous study34, and cate-
gory 2 containing the remaining tissues.

We utilized FUMA v1.3.7 software’s GENE2FUNC tool42 to obtain
information on the expression of the prioritized genes and identify
pathways enriched for the prioritized genes.

Phenome-wide association analyses
Phenome-wide association analyses (PheWAS) were performed for the
GWAS lead variants and the representative variants of credible sets in
377,277 participants from the FinnGen biobank (FinnGen release 9)75.

From FinnGen, all 953 endpoints of the following categories (ICD-10
Chapter listed in parentheses if available) were included: cardiometa-
bolic endpoints, diabetes endpoints, diseases marked as autoimmune
origin, drug purchase endpoints, gastrointestinal endpoints, neoplasms
fromhospital discharge (II), neoplasms fromcancer register (II), diseases
of the blood and blood-forming organs and certain disorders involving
the immune mechanism (III), endocrine nutritional and metabolic dis-
eases (IV), diseases of the nervous system (VI), diseases of the circulatory
system (IX), neurological endpoints, diseases of the digestive system
(XI). These ICD-10 chapters were chosen because diseases within these
chapters have beenpreviously reported to be associatedwith changes in
lipid metabolism, such as II: breast cancer76, III: Systemic Lupus
Erythematosus77, IV: lipid metabolism disorders and diabetes mellitus78,
VI: Alzheimer’s disease79, IX: Coronary artery disease35, XI: Nonalcoholic
Fatty Liver Disease80. For all endpoints, at least 50 cases exist. The
included endpoints for each data source are listed in Supplementary
Data 5. We report the associated endpoints reaching the threshold
P<0.05 corrected for the number of included endpoints (P<0.05/
953 = 5.24659e-5) for each lead variant and representative variant of a
credible set. Additionally, we identified the endpoints reaching the GWS
threshold corrected for the number of included endpoints (P< 5e-8/
953 = 5.24659e-11). Due to the high correlation between many end-
points, these thresholds are likely very stringent.

We focused on the PheWAS endpoints connected with >3 lipid
species or multivariate clusters and then assigned disease groups to
the endpoints. We selected 11 endpoints of 5 disease groups to be
included in a heatmap. The selected endpoints were chosen by
selecting the endpoint with the largest effective sample size Neff

among the endpoints of the same disease and by selecting the end-
points with the most specific diagnoses based on expert medical
knowledge. Neff was defined as:

Neff = N θ 1� θð Þ , ð2Þ

with θ being the proportion of cases.Weprovide a list of the endpoints
and their disease groups and effective sample size in Supplementary
Data 5, where the selected endpoints are highlighted.

Colocalization analysis
Our colocalization approach uses the probabilistic model from
eCAVIAR81 to integrate GWAS and eQTL data. The aim of the coloca-
lization analysis is to find genomic regions where genetic association
signals on two phenotypes colocalize to the same genetic variant(s).
We base the colocalization analysis on the fine-mapping results of the
phenotypes. Our own fine-mapping results were utilized for the uni-
variate and multivariate lipid phenotypes. The FinnGen disease end-
points were fine-mapped with SuSiE82. The colocalization analysis was
performed between the informative credible sets (minimum LD
between variants r2≥ 0.1) of the univariate andmultivariate lipidGWAS
and the 953 Finngen endpoints utilized in the PheWAS analysis.

For each pair (k, j) of credible sets CST,k (from trait T) and CSD,j
(from disease D), we compute the causal posterior probability (CLPP)
as the the probability of a shared causal variant:

CLPPk,j =
X

s2CST ,k\CSD,j

PIPT ,k sð Þ � PIPD,j sð Þ , ð3Þ

where the sum is over the shared variants in both credible sets and the
PIPs are the credible set-specific posterior inclusion probabilities. This
CLPP calculation is similar to equation 8 in81. We used aCLPP threshold
of 0.01 to suggest that the causal variants are shared as in81.

Association between coronary artery disease loci and lipidome
We assessed associations of the coronary artery disease (CAD) variants
identified by a recent study43 with the lipid species and clusters of lipid
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species in our study. Of the 241 conditionally independent GWS
associations with CAD at 198 loci, 236 variants at 196 loci were either
included in our GWAS, or their LD-proxies were found in our GWAS
(LD-proxies were defined using the same approach as with the lead
variants). We summarized the associations at three levels of sig-
nificance: (1) P <0.05 corrected for multiple testing by the number of
PCs explaining 90%of the variance (univariate analyses) or the number
of clusters (multivariate analyses) (P <0.05/68 = 7.352941e-4 for uni-
variate and P <0.05/11 = 4.545455e-3 for multivariate analyses), (2) the
GWS threshold P < 5e-8 and (3) the GWS threshold corrected for mul-
tiple testing (P < 5e-8/68 = 7.352941e-10 for univariate and P < 5e-8/
11 = 4.545455e-9 for multivariate analyses).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The univariate GWAS summary statistics generated in this study have
been deposited in the GWAS catalog under accession codes
GCST90277238-GCST90277416. The DNA, blood, serum, and plasma
samples of the GeneRISK study participants, in addition to their
demographic information, health, genotype, and lipidomics data are
stored in the THL Biobank [https://thl.fi/en/web/thl-biobank/for-
researchers/sample-collections/generisk-study]. The GeneRISK data
are available under restricted access via procedures outlined in the
Finnish Biobank Act and access can be obtained for biomedical
research by contacting admin.biobank@thl.fi. A response to requests
will be received within three weeks. Researchers may use the data only
for purposes described in the application and are allowed to share the
data with others only with a written approval from the THL Biobank.
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