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The value of the environment determines animals’ motivational states and sets
expectations for error-based learning' . How are values computed? Reinfor-
cement learning systems can store or cache values of states or actions that are
learned from experience, or they can compute values using a model of the
environment to simulate possible futures’. These value computations have
distinct trade-offs, and a central question is how neural systems decide which
computations to use or whether/how to combine them*®. Here we show that
rats use distinct value computations for sequential decisions within single
trials. We used high-throughput training to collect statistically powerful
datasets from 291 rats performing a temporal wagering task with hidden
reward states. Rats adjusted how quickly they initiated trials and how long they
waited for rewards across states, balancing effort and time costs against
expected rewards. Statistical modeling revealed that animals computed the
value of the environment differently when initiating trials versus when
deciding how long to wait for rewards, even though these decisions were only
seconds apart. Moreover, value estimates interacted via a dynamic learning
rate. Our results reveal how distinct value computations interact on rapid
timescales, and demonstrate the power of using high-throughput training to
understand rich, cognitive behaviors.

There are many ways to compute value. Reinforcement learning pro-
vides a powerful framework for describing how animals or agents learn
the value of different states and actions from experience and use those
value estimates to guide behavior®. The value of the environment, or
how much reward it is expected to yield, is important for motivation
and sets expectations for reinforcement learning'™.

There are many reinforcement learning methods for comput-
ing value that differ in their implementation, computational
demands, and flexibility>**°. For instance, some algorithms use a
model of the world to flexibly estimate the value of states or actions
by mental simulation or planning. Other algorithms cache values
from direct experience, without an explicit model of the environ-
ment. These different reinforcement learning methods, which
remarkably are thought to be supported by distinct neural

circuits'®”, have trade-offs between flexibility and computational
efficiency®®’. They also represent two ends of a continuum*?,
A central question in neuroscience and psychology is determining
how values are computed in animals including humans'. Moreover,
neurobiologically-inspired value computations will likely lead to
advances in next generation artificial intelligence”.

However, it is difficult to determine the value computations that
subjects use, especially over behaviorally relevant timescales of sec-
onds. In standard two-alternative forced choice tasks, the behavioral
readout is a binary choice, and the underlying values driving choice are
obscure. State-of-the-art methods for revealing how values are com-
puted use regression models that pool data over entire behavioral
sessions™, or pre-determined subsets of trials”, thereby obscuring
moment-by-moment changes in value computations. Therefore,
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whether or how multiple value computations interact on rapid time-
scales in the same subject is unclear.

Results

Rats’ deliberative and motivational decisions are sensitive to the
value of the environment

We developed a temporal wagering task for rats, in which they were
offered one of several water rewards on each trial, the volume of which
(5,10, 20, 40, 80 pL) was indicated by a tone (Fig. 1a). The reward was
assigned randomly to one of two ports, indicated by an LED. The rat
could wait for an unpredictable delay to obtain the reward, or at any
time could terminate the trial by poking in the other port (opt-out).
Wait times were defined as how long rats waited before opting out.
Trial initiation times were defined as the time from opting out or
consuming reward to initiating a new trial. Reward delays were drawn
from an exponential distribution, and on 15-25 percent of trials,
rewards were withheld to force rats to opt-out, providing a continuous
behavioral readout of subjective value (Fig. 1b)'“*%. We used a high-
throughput facility to train 291 rats using computerized, semi-
automated procedures. The facility generated statistically powerful
datasets (median = 33,493 behavioral trials, 71 sessions).

The task contained latent structure: rats experienced blocks of 40
completed trials (hidden states) in which they were presented with low
(5, 10, or 20 uL) or high (20, 40, or 80 uL) rewards”. These were
interleaved with “mixed" blocks which offered all rewards (Fig. 1c).
20uL was present in all blocks, so comparing behavior on trials

offering this reward revealed contextual effects (i.e., effects of hidden
states). The hidden states differed in their average reward and there-
fore in their opportunity costs, or what the rat might miss out on by
continuing to wait. According to foraging theories, the opportunity
cost is the long-run average reward, or the value of the environment"”.
In accordance with these theories'?°, rats adjusted how long they were
willing to wait for rewards in each block, and on average waited ~10
percent less time for 20 pL in high blocks, when the opportunity cost
was high, compared to in low blocks (p « 0.001, Wilcoxon signed-rank
test, N=291; Fig. 1d-f). These are strong contextual effects compared
to previous studies'”?,

Animals make more vigorous actions when those actions are
expected to yield larger or more valuable rewards>** . Therefore, we
analyzed how quickly rats initiated trials, as this might also reflect the
perceived value of the environment. Indeed, trial initiation times were
modulated by blocks in a similar pattern as the wait times, with rats
initiating trials more quickly in high compared to low blocks
(p <0.001, Wilcoxon signed-rank test, N=291; Fig. 1g-i; Supplemen-
tary Fig. 1). Previous work suggests that this pattern optimally balances
the energetic costs of vigor against the benefits of harvesting reward in
environments with different reward rates>*?, Therefore, both the trial
initiation times, which reflect motivation, and the wait times, which
reflect deliberating between waiting and opting out, were modulated
by the value of the environment.

Notably, while we used all behavioral trials for analyses of initia-
tion times in this study, sensitivity to the reward blocks was largely
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Fig. 1| Wait time and trial initiation time were modulated by the value of the
environment. a Schematic of behavioral paradigm. b Distribution of wait times for
one rat. Arrow indicates mean. ¢ Block structure of task. d, e Average wait time on
catch trials by reward in each block (blue = low, black = mixed, red = high) for d one
rat and e averaged across rats. f Wait time ratio (average wait time for 20 pL in high
block/low block) across all rats. Filled boxes indicated rats with p < 0.05, one-tailed
Wilcoxon rank-sum test. Population average, p = 8.26 x 10, two-tailed Wilcoxon
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signed-rank test, N=291. g, h Average trial initiation times in high (red) and low
(blue) blocks for g one rat and h all rats (V= 291). i Trial initiation time ratio (average
initiation time in high block/low block) across all rats. Filled boxes indicated rats
with p <0.05, one-tailed Wilcoxon rank-sum test. Population average,
p=1.82x10"*, two-tailed Wilcoxon signed-rank test, N=291. All error bars are
mean + S.E.M. Source data are provided as a Source Data file.
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Fig. 2 | Wait and trial initiation times use distinct estimates of the value of the
environment. a, b Mean change in wait times (a) and trial initiation times (b) from
low (blue) or high (red) blocks to mixed blocks, N =291, smoothed with a moving
window of 10 trials. ¢, d Regression coefficients for c trial initiation time and d wait
time. e, f Time constants, 7, of exponential decay parameters fit to previous trial
coefficients for wait time (purple) and trial initiation time (green) were

e significantly different, p =1.30 x 10, two-tailed Wilcoxon sign-rank test, N =291,
and f uncorrelated, r=-0.03, p = 0.53, Pearson linear correlation, N=291. g, h Fast
(orange) or slow (pink) initiation time 7 (< 20th or > 80th percentile) meaningfully
divided rats based on their initiation time regression coefficients (g; p=0.02, one-
tailed permutation test, N = 116), but not wait time coefficients (h; p = 0.1, one-tailed
permutation test, N = 116). Inset shows previous trial coefficients for wait times with
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adjusted y-axis limits. i Predictions for sensitivity to previous offers (behavior
conditioned on previous offer <20 pL - > 20 pL) for fixed (light) versus sequentially-
updated (dark) estimates of environmental value, consistent with inferential and
retrospective strategies, respectively. j Wait time on 20 pL catch trials in mixed
blocks conditioned on previous reward offer. (p < 0.05 for 38/291 rats, population
average p = 0.8, two-tailed Wilcoxon rank-sum test). k Trial initiation time in mixed
blocks conditioned on previous reward offer. (p < 0.05 for 256/291 rats, population
average p =1.84 x 10, two-tailed Wilcoxon rank-sum test). I Sensitivity to previous
offers for wait time (purple) and trial initiation time (green). p=6.21x107, two-
tailed Wilcoxon sign-rank test, N =291. Colored bars are individual rats with

p <0.05, two-tailed Wilcoxon rank-sum test. All error bars are mean + S.E.M. Source
data are provided as a Source Data file.

driven by initiation times following unrewarded trials (Supplementary
Fig. 2, Methods), which accounted for more variance in initiation times.
This is consistent with previous studies showing that response out-
comes can gate behavioral strategies”*®. There were no major differ-
ences in wait times following rewarded or unrewarded trials
(Supplementary Fig. 3). To make comparisons between trial initiation
and wait times with as much statistical power as possible and the
fewest assumptions, we used all behavioral trials for subsequent ana-
lyses in this study.

Trial initiation and wait times exhibited distinct temporal
dynamics

Surprisingly, wait and trial initiation times exhibited dramatically dif-
ferent dynamics at block transitions. In mixed blocks, the wait times
following high and low blocks converged to a common value,
regardless of the previous block type, suggesting the use of a fixed
estimate of environmental value in mixed blocks (Fig. 2a). Trial initia-
tion times, however, showed longer timescale effects such that initia-
tion times in mixed blocks strongly depended on the previous block
identity (Fig. 2b; Supplementary Fig. 4). These longer timescale

dynamics, which are reminiscent of incentive contrast effects”’, were
also evident in the transitions from mixed blocks into high/low blocks
for trial initiation times, but not wait times (Supplementary Fig. 5),
indicating that trial initiation and wait times utilize distinct estimates of
the value of the environment.

To better characterize their temporal dynamics, we regressed the
trial initiation and wait times against rewards offered on previous trials.
We included current rewards as regressors in the wait time model, and
restricted this analysis to mixed blocks only. Examination of the
regression coefficients revealed qualitatively different dynamics, in
which the wait times were explained by the reward offered on the
current trial, but the trial initiation times reflected an exponentially
weighted effect of previous rewards, consistent with a model-free
temporal-difference learning rule (Fig. 2c, d). We fit exponential curves
to the previous trial coefficients for each rat, and found that the dis-
tributions of exponential decay time constant parameters (7) were
significantly different for the trial initiation and wait times (p < 0.01,
Wilcoxon sign-rank test, N = 291; Fig. 2e). Moreover, T parameters were
not correlated across models (r=0.08, p=0.18, Pearson linear corre-
lation, N =291, Fig. 2f).
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To leverage individual variability across rats, we compared rats
with fast and slow temporal integration for trial initiation times (7 from
exponential fit to regression coefficients < 20th or > 80th percentiles).
There were differences in temporal integration for trial initiation times,
but not wait times, for these groups (Fig. 2g, h trial initiation time
p<0.05, wait time p=0.1, permutation test, N=116). Collectively,
these data suggest that within a block, wait times use a fixed estimate
of the value of the environment, whereas trial initiation times are
sensitive to previous rewards (Fig. 2c, d). Indeed, for almost all rats
(87%), wait times for 20 pL offers in mixed blocks were not significantly
different if they were preceded by rewards that were smaller or larger
than 20 pL (p > 0.05, Wilcoxon rank-sum test, N =253/291). However,
for 89% of rats, trial initiation times were significantly modulated by
previous rewards, suggesting fixed and incrementally updated esti-
mates of the value of the environment, respectively (p<0.05, Wil-
coxon rank-sum test, N =256/291, Fig. 2i-1).

One factor that could in principle influence initiation times is
satiety. However, satiety effects were small, and modestly apparent as
a gradual increase in trial initiation times over the session. To control
for these effects, we regressed out initiation times against trial number
in order to detrend the slow changes over the course of a session.
However, there was no qualitative change in any of our results,
including the dynamics at block transitions, if we did not detrend
(Supplementary Fig. 6). Because the trials are self-initiated, we suspect
that when rats are sated they choose not to initiate trials, thereby
minimizing the effects of satiety on behavior, at least compared to
other factors that contribute more to the variance in initiation times
(e.g., reward history, Fig. 2c).

Computational modeling reveals distinct value computations
for sequential decisions

Our data suggest that rats’ sequential decisions (when to initiate trials
and how long to wait for rewards) reflect different value computations.
We developed behavioral models for wait and trial initiation times,
inspired by foraging theories'. The wait time model implemented a
trial value function that scaled with the offered reward and decayed to
reflect reward probability over time'®. The model’s predicted wait time
was when the value function fell below the value of the environment
(opportunity cost) on each trial (Fig. 3a). This model captured key
features of the rats’ behavior, including the monotonic relationship
between wait time and reward offer in mixed blocks (Fig. 3b) as well as
a graded dependence of wait times on the catch probability (Fig. 3c).
Different versions of the model estimated the value of the environ-
ment using different computations.

Analysis of rats’ trial initiation times suggests that they estimate
the value of the environment as a running average of rewards
(Fig. 2¢)*"7*°, We refer to this computation as retrospective, as it
reflects past experience®. Alternatively, rats’” wait times reflected the
use of discrete estimates of block value (Fig. 2a, d, j). Therefore, rats
might infer the current block®, and use fixed estimates of block
value based on that inference. We refer to this computation as infer-
ential, since it requires hidden state inference.

The inferential model selected the most likely block using Bayes’
Rule with a prior that incorporated reward history and knowledge of
the block transition structure. This model recapitulated the rats’ wait
times converging to a common value in mixed blocks (Fig. 3d-e).
Across rats, the model also captured that wait times for 20pL in mixed
blocks were not sensitive to previous rewards (Fig 2j; Fig. 3f). This
reflects the model’s use of a fixed estimate of the value of the envir-
onment in each block.

In the retrospective case, the value of the environment was esti-
mated as a recency-weighted average of offered rewards according to
a temporal-difference learning rule (Fig. 3g). A static learning rate was
unable to capture the rats’ behavior (Supplementary Fig. 7). Previous
work has shown that animals adjust their learning rates depending on

the volatility in the environment, since it is advantageous to learn
faster in dynamic environments®** %, Therefore, our model scaled the
learning rate by the trial-by-trial change in the inferential model's
beliefs about the hidden state (derivative of the posterior, see
“Methods”).

The retrospective model captured several key features of rats’ trial
initiation times, which we modeled as inversely proportional to the
value of the environment® (Fig. 2g-i). First, with a sufficiently small
learning rate (< 0.1, Fig. 2g), the model integrated reward history on
long timescales such that trial initiation times in mixed blocks depen-
ded on the previous block identity. Second, the dynamic learning rate
captured the rapid behavioral dynamics at block transitions. Finally,
integrating over previous trials captured the dependence of trial
initiation times on previous rewards in mixed blocks (Fig. 2k, Fig. 3i). We
explored versions of the dynamic learning rate that did not reflect
inference, including using the unsigned reward prediction error or a
running average of reward prediction errors®*. However, these models
could not capture both short and long timescale dynamics at block
transitions (Supplementary Fig. 7). This suggests that trial initiation
times reflect a retrospective computation that is influenced by sub-
jective belief distributions®**. In other words, while trial initiation and
wait times reflect distinct value computations, those computations
interact when states are uncertain via a dynamic learning rate.

We fit the retrospective and inferential models to rats’ wait times.
By several model comparison metrics, wait times were better fit by the
inferential model that used hidden state inference to select block-
specific estimates of the value of the environment (p «0.001, Wil-
coxon signed-rank test, N=291; Fig. 3j, Supplementary Fig. 8), con-
sistent with that model reproducing the wait time dynamics (Figs. 2a
and 3d). We also used the model to identify trials in mixed blocks
where the rats were likely to make mistaken inferences. The rats’ wait
times reflected these mistaken inferences, further indicating that their
wait times were well-described by the inferential model (p < 0.001,
Wilcoxon signed-rank test comparing wait times for 20puL in mis-
inferred high vs. low blocks, N =291; Supplementary Fig. 9).

We also developed a belief state model that estimated the value of
the environment as the weighted average of block-specific values,
weighted by their posterior probabilities. The inferential and belief
state models make qualitatively similar predictions about the average
wait times. In fact, when the posterior beliefs are stable, which is often
the case, the belief state and inferential models are identical, and
model comparison did not favor one model over the other (Supple-
mentary Fig. 8).

To leverage individual differences, we turned to the inferential
model of wait times. We added a parameter, A, that controlled the
extent to which the model used an optimal prior, A=1, versus an
uninformative prior, A = 0 (Fig. 3k; Supplementary Fig. 10). We divided
the rats into groups with low or high values of A (1<20th or>80th
percentiles; Supplementary Fig. 11), and compared the parameters of
logistic functions fit to the average wait time dynamics for these
groups. Rats with optimal and poor inference exhibited significantly
different dynamics at transitions from mixed into low or high blocks,
indicated by different inverse temperature parameters (mix to low/
high, p <0.05, one-tailed permutation test, N =180 Fig. 31). There was
no difference in the dynamics of trial initiation times for those same
groups of rats (mixed to low: p = 0.3, mixed to high: p = 0.2, one-tailed
permutation test, N =180; Fig. 31). Therefore, individual differences in
trial initiation (Fig. 2g, h) and wait times (Fig. 31) are dissociable.

Block sensitivity for wait times requires structure learning

Structure learning is the process of learning the hidden structure of
environments, including latent states and transition probabilities
between them™. If wait and trial initiation times differentially required
knowledge of latent task structure, they should exhibit different
dynamics over training. In the final stage of training, when rats were
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Fig. 3 | Computational modeling reveals distinct value computations for wait
time and trial initiation. a Model schematic. b Example wait time model (orange)
performance for mixed blocks only in held-out test data (maroon). ¢ Rats’ (left;
sample sizes in methods) and model-predicted (right) wait times in mixed blocks as
a function of catch probability (lighter gray = lower catch probability). d Example
opportunity cost and wait time dynamics from low (blue) or high (red) blocks to
mixed block from inferential model. e Inferential model fit (orange) to rat data
(maroon) can capture wait time behavior in held-out test data. f Inferential model fit
to data predicts that wait times for 20 pL in mixed blocks are not sensitive to
previous rewards (N =291 fits). g Example opportunity cost and wait time dynamics
from low (blue) or high (red) blocks to mixed block from retrospective model.

h Retrospective model can qualitatively capture trial initiation time behavior in low

Trials from block switch

(blue) and high (red) blocks. i Retrospective model captures conditional trial
initiation time trend across rats (N = 291 fits). j Model comparison using A BIC
prefers inferential model compared to retrospective model when fit to wait time
data (p=1.07 x 10", two-tailed Wilcoxon Signed-rank test, N =291). k Schematic
for sub-optimal inference model. I Transitions from mixed to low (blue) or high
(red) blocks for wait time (left) or trial initiation time (right) separated by quality of
inference for A <20th (light colors) or > 80th percentile (dark colors). *p < 0.05,
one-tailed non-parametric shuffle test comparing logistic fit parameters, N=116
(Wait time mixed to low slope p = 0.02, mixed to high right asymptote p=0.003,
Trial initiation time mixed to low slope p = 0.15, mixed to high right asymptote
p=0.21). All error bars are mean + S.E.M. Source data are provided as a Source
Data file.

introduced to the hidden states, their wait times for 20puL gradually
became sensitive to the reward block (Fig. 4a). We observed a gradual
increase in the magnitude of reward and block regression coefficients
that mirrored the behavioral sensitivity to hidden states (Fig. 4b). In
contrast, trial initiation times exhibited block sensitivity on the first
session in the final training stage (Fig. 4a). This sensitivity was com-
parable early and late in training, consistent with animals using pre-
vious rewards to a similar extent at these timepoints (Fig. 4c). These
data suggest that block sensitivity for wait times, but not trial initiation

times, required learned knowledge of hidden task states, and that
these decisions reflected computations with distinct learning
dynamics.

The modest increase in trial initiation time block sensitivity over
training is consistent with the gradual use of a dynamic learning rate
that reflected learned knowledge of the blocks. A hallmark of the
dynamic learning rate was the overshoot after transitions from high to
mixed blocks (difference between maximum trial initiation time after
transitioning and the trial initiation time 20 trials post-transition;
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bars are mean + S.E.M. Source data are provided as a Source Data file.

Fig. 2b). The overshoot became more prominent with training
(Fig. 4d), on a similar timescale as block sensitivity for wait times
(Fig. 4e), suggesting a shared mechanism.

Reducing state uncertainty did not change trial initiation times
Why would animals use a retrospective computation at trial initiation,
but rely on an inferential computation as rats deliberated just 1-2
seconds later? In non-human primates, the decision to initiate trials
can also reflect retrospectively computed values that differ from the

values governing the subsequent choice*>*. One possibility is that
motivation and approach behavior rely on neural circuits that do not
support inference'®. Another possibility is that actions more distal to
rewards are more likely to be retrospective, because there are more
steps required to mentally simulate outcomes for forward-looking
strategies like planning*>**. According to either hypothesis, the deci-
sion of when to initiate a trial is inherently retrospective.

Theoretical work in reinforcement learning has suggested that the
brain should select the strategy that is the fastest and most accurate
when taking into account uncertainty®’. Therefore, perhaps trial
initiation times are retrospective because the rats’ subjective beliefs
about the inferred state have more uncertainty before they hear the
reward offer. Model simulations of a Bayes’ optimal observer did show
that the reward offer reduced the uncertainty of subjective beliefs
about the hidden state (comparing variance of prior to variance of
posterior, p < 0.001, Wilcoxon sign-rank test).

To test this hypothesis, we modified the task for a randomly
selected subset of rats in which the reward cue was presented before
they initiated the trial, when the center light turned on; they heard the
tone again at trial initiation, as in the standard task (Fig. 5a). Their trial
initiation times became sensitive to the offered reward (Fig. 5b).
However, trial initiation times for 20pL in mixed blocks were still
modulated by the previous reward, consistent with the use of incre-
mentally updated estimates of the value of the environment within a
block (p<0.05 for 13/16 rats; Fig. 5c). Moreover, how quickly they
initiated trials in mixed blocks continued to depend on the previous
block identity (Fig. 5d). These data indicate that there may be some-
thing inherently retrospective about the motivational decision to
initiate a trial.

Discussion

We used high-throughput training to collect statistically powerful
datasets and leverage individual variability across hundreds of animals.
Consistent with previous work, rats adjusted their behavior as we
varied the richness of the environment in a way consistent with fora-
ging theories”?%**¢, and behavioral economic theories of reference
dependence*’*%, Notably, we found that animals used multiple, parallel
computations to estimate the richness of the environment, and rapidly
switched between these computations on single trials, indicating that
value computations vary on fine timescales (seconds). Our data are
consistent with evidence for multiple decision-making systems that
rely on distinct neural circuits™'>***°, While animals’ decisions of how
long to wait for rewards relied on hidden state inference, the decision
of when to initiate the trial was governed by a retrospective compu-
tation that calculated the value of the environment as the running
average of rewards. Reducing state uncertainty before the trial did not
change the value computations governing trial initiation times, sug-
gesting that this decision may be inherently retrospective, although
influenced by subjective belief distributions via a dynamic
learning rate.

Recent work in psychology, machine learning, and neuroscience
has characterized how parallel value computations might be
combined*%4%515*, For instance, in multi-step decision tasks, interac-
tion effects in regression models are thought to reflect the use of
combined retrospective and inferential value estimates'", and hybrid
strategies for computing values have been approximated as a weigh-
ted average of retrospective and inference-based values*’. Our findings
add to this body of work. Instead of simply combining or averaging
values that were computed in different ways, rats seemed to coordi-
nate their dynamics: changes in subjective beliefs about inferred states
acted as a gain on retrospective value learning rates. Moreover, we
tested the prevailing hypothesis about arbitration between these
parallel value computations, namely, that agents should use the value
estimate with the lowest uncertainty®’. We reduced state uncertainty
by playing the reward cue before rats initiated trials. However, trial
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Fig. 5| Value computations for motivation do not depend on state uncertainty.
a Schematic of pre-initiation cue experiment. b Trial initiation time varied as a
function of offered volume for rats that trained on the original task (black) before
transitioning to pre-initiation cue task (pink) and for rats that trained exclusively on
the pre-initiation cue task. ¢ Trial initiation times were still sensitive to previous
reward (behavior on trials offering 20pL conditioned on the previous reward offer)
after training on the pre-initiation cue task. (pink; p < 0.05 for 13/16 rats, population
p=103x10"*, two-tailed Wilcoxon Rank-sum test, N = 16). d Trial initiation times in
mixed blocks depended on previous block type in pre-initiation cue task. All error
bars are mean + S.E.M. Source data are provided as a Source Data file.

initiation times still reflected retrospective value computations
(Fig. 5¢, d). We hypothesize that different neural circuits mediate these
rapid sequential decisions (starting the trial versus deciding how long
to wait), and that these circuits support or favor distinct value com-
putations due to their connectivity and other neurobiological
constraints.

Alternatively, previous work has suggested that actions more
distal to rewards are more likely to be retrospective, because there are
more steps required to mentally simulate outcomes for forward-
looking strategies like planning*>*’. Therefore, one potential reason
that trial initiation times were retrospective is because they were more
distal to rewards. However, in multi-step decision-making tasks (i.e.,
the two-step task), the first action, which is diagnostic of how value is
computed, generally reflects computations that use a model of the
world to flexibly estimate values'**>*°. Compared to the two-step task,

the first action in our task is a similar number of states away from the
terminal reward state, but the temporal delays are longer. Therefore, it
is possible that temporal proximity to reward may determine how
values are computed.

It may be counterintuitive that the retrospective computation
produced faster dynamics at block transitions than hidden state
inference (Fig. 2a, b). Two features of the models explain this obser-
vation. First, the inferential model selects the block with the maximum
posterior probability. This argmax operation nonlinearly thresholds
whether changes in the posterior produce changes in the inferred
state. In contrast, the retrospective model’s estimate of the value of the
environment is directly influenced by graded, subthreshold changes in
the posterior via the dynamic learning rate. Subthreshold changes in
the posterior necessarily precede changes that cross threshold for
inferring a state change. Second, the inferential model’s prior is
recursive: the posterior on one trial becomes the prior on the next trial.
This means that the prior accumulates information over trials to infer
state changes, instead of making them instantaneously. Indeed, indi-
vidual differences in the informativeness of rats’ priors predicted the
dynamics of their inferred state changes (Fig. 3I).

The contextual effects we observed likely reflect efficient coding
of value"*’’, According to the efficient coding hypothesis, to repre-
sent stimuli efficiently, neurons should be tuned to stimulus distribu-
tions that animals are most likely to encounter in the world®°. Recent
studies have shown that biases in value-based decision-making,
including the contextual effects observed here, reflect efficient value
coding”*"*8, Previous studies examined how neurons adapted to
reward or stimulus distributions over blocks of trials or sessions,
implying gradual, experience-dependent adjustments in behavioral
sensitivity and neural tuning"**¢%, Our findings suggest that if animals
have learned the reward or stimulus distributions associated with a
particular state, they can condition their subjective value representa-
tions on that inferred state, perhaps via discrete, state-dependent
adjustments in neural sensitivity®>. A major future question is how
multi-regional neural circuits represent belief distributions for hidden
state inference, and condition rapid adjustments in efficient neural
representations of value on inferred states.

Methods

Subjects

A total of 291 Long-Evans rats (184 male, 107 female) between the ages
of 6 and 24 months were used for this study (Rattus norvegicus). The
Long-Evans cohort also included ADORA2A-Cre (N=10), ChAT-Cre
(N=2), DRD1-Cre (N=3), and TH-Cre (N=12). Animal use procedures
were approved by the New York University Animal Welfare Committee
(UAWC #2021-1120) and carried out in accordance with National
Institutes of Health standards.

Rats were pair housed when possible, but were occasionally single
housed (e.g., if fighting occurred between cagemates). Animals were
water restricted to motivate them to perform behavioral trials. From
Monday to Friday, they obtained water during behavioral training
sessions, which were typically 90 minutes per day, and a subsequent ad
libitum period of 20 min. Following training on Friday until mid-day
Sunday, they received ad libitum water. Rats were weighed daily.

Behavioral training

Rats were trained in a high-throughput behavioral facility in the Con-
stantinople lab using a computerized training protocol. They were
trained in custom operant training boxes with three nose ports. Each
nose port was 3-D printed, and the face was protected with an epoxied
stainless steel washer (McMaster-Carr #92141A056). All ports con-
tained a visible light emitting diode (LED; Digikey #160-1850-ND), and
an infrared LED (Digikey #365-1042-ND) and infrared photodetector
(Digikey #365-1615-ND) that enabled detection of when a rat broke the
infrared beam with its nose. Additionally, the side ports contained
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Table 1| Shaping procedure

Stage Center poke time 5uL 10uL 20 L 40 puL 80 L Reward delay Reward probability Blocks
Increment to 1s X (6] 1

2 1s X X (0] 1

3 1s X X X (0] 1

4 1s X X X X (0] 1

5 1s X X X X X (0] 1

6 Variable (0.8-1.2 s) X X X X X Incrementto 1.5 s 1

7 Variable (0.8-1.2s) X X X X X Variable (from exponential) 0.85

8 Variable (0.8-1.2 s) X X X X X Variable (from exponential) 0.65-0.85 X

stainless steel lick tubes (McMaster-Carr #8988K35, cut to 1.5 mm) that
delivered water via solenoid valves (Lee Company #LHDA1231115H).
There was a speaker mounted above each side port that enabled
delivery of stereo sounds (Bohlender Graebener). The behavioral task
was instantiated as a finite state machine on an Arduino-based beha-
vioral system with a Matlab interface (Bpod State Machine r2, San-
works), and sounds were delivered using a low-latency analog output
module (Analog Output Module 4ch, Sanworks) and stereo amplifier
(Lepai LP-2020TI).

Research technicians loaded rats in and out of the training rigs in
each session, but the training itself was computer automated. All rig
computers automatically pulled version-controlled software from a git
repository and wrote behavioral data to a MySQL (MariaDB) database
hosted on a Synology server. Rig computers automatically loaded each
rat’s training settings file from the previous session, and following
training, wrote a new settings file to the server for the subsequent day
of training. Rig computers automatically loaded files for specific rats
based on a schedule on the MySQL database. Human intervention was
possible but generally unnecessary.

Sound calibration. We calibrated sounds using a hand-held Precision
Sound Level Meter with a 1/2" microphone (Bruel & Kjaer, Type 2250).
The microphone was calibrated with a sound level calibrator (Bruel &
Kjaer, Type 4230). Tones of different frequencies (1, 2, 4, 8, 16 kHz)
were presented for 10 seconds each; these tones were selected
because they are in the trough of the behavioral audiogram for rats®*,
They are also on a logarithmic scale and thus should be equally dis-
criminable to the animals. We adjusted the auditory gain in software
for each frequency stimulus to match the sound pressure level to
70 dB in the rig, measured when the microphone was proximal to the
center poke.

Task logic. LED illumination from the center port indicated that the
animal could initiate a trial by poking its nose in that port - upon
trial initiation the center LED turned off. While in the center port,
rats needed to maintain center fixation for a duration drawn uni-
formly from [0.8, 1.2] seconds. During the fixation period, a tone
played from both speakers, the frequency of which indicated the
volume of the offered water reward for that trial [1, 2, 4, 8, 16 kHz,
indicating 5, 10, 20, 40, 80 pL rewards]. Following the fixation
period, one of the two side LEDs was illuminated, indicating that
the reward might be delivered at that port; the side was randomly
chosen on each trial. This event (side LED ON) also initiated a
variable and unpredictable delay period, which was randomly
drawn from an exponential distribution with mean=2.5s. The
reward port LED remained illuminated for the duration of the delay
period, and rats were not required to maintain fixation during this
period, although they tended to fixate in the reward port. When
reward was available, the reward port LED turned off, and rats could
collect the offered reward by nose poking in that port. The rat could
also choose to terminate the trial (opt-out) at any time by nose
poking in the opposite, un-illuminated side port, after which a new

trial would immediately begin. On a proportion of trials (15-25%),
the delay period would only end if the rat opted out (catch trials). If
rats did not opt-out within 100s on catch trials, the trial would
terminate.

The trials were self-paced: after receiving their reward or opting
out, rats were free to initiate another trialimmediately. However, if rats
terminated center fixation prematurely, they were penalized with a
white noise sound and a time out penalty (typically 2s, although
adjusted to individual animals). Following premature fixation breaks,
the rats received the same offered reward, in order to disincentivize
premature terminations for small volume offers.

We introduced semi-observable, hidden states in the task by
including uncued blocks of trials with varying reward statistics': high
and low blocks, which offered the highest three or lowest three
rewards, respectively, and were interspersed with mixed blocks, which
offered all volumes. There was a hierarchical structure to the blocks,
such that high and low blocks alternated after mixed blocks (e.g.,
mixed-high-mixed-low, or mixed-low-mixed-high). The first block of
each session was a mixed block. Blocks transitioned after 40 success-
fully completed trials. Because rats prematurely broke fixation on a
subset of trials, in practice, block durations were variable.

Criteria for including behavioral data. In this task, the rats were
required to reveal their subjective value of different reward offers. To
determine when rats were sufficiently trained to understand the
mapping between the auditory cues and water rewards, we evaluated
their wait time on catch trials as a function of offered rewards. For each
training session, we first removed wait times that were greater than
two standard deviations above the mean wait time on catch trials in
order to remove potential lapses in attention during the delay period
(this threshold was only applied to single sessions to determine whe-
ther to include them). Next, we regressed wait time against offered
reward and included sessions with significantly positive slopes that
immediately preceded at least one other session with a positive slope
as well. Once performance surpassed this threshold, it was typically
stable across months. Occasional days with poor performance, which
often reflected hardware malfunctions or other anomalies, were
excluded from analysis. We emphasize that the criteria for including
sessions in analysis did not evaluate rats’ sensitivity to the reward
blocks. Additionally, we excluded trial initiation times above the 99th
percentile of the rat’s cumulative trial initiation time distribution
pooled over sessions.

Shaping. The shaping procedure was divided into 8 stages (Table 1).
For stage 1, rats learned to maintain a nose poke in the center port,
after which a 20 pL reward volume was delivered from a random illu-
minated side port with no delay. Initially, rats needed to maintain a 5
ms center poke. The center poke time was incremented by 1 ms fol-
lowing each successful trial until the center poke time reached 1, after
which the rat moved to stage 2.

Stages 2-5 progressively introduced the full set of reward
volumes and corresponding auditory cues. Rats continued to receive

Nature Communications | (2023)14:7573



Article

https://doi.org/10.1038/s41467-023-43250-x

deterministic rewards with no delay after maintaining a 1s center poke.
Each stage added one additional reward that could be selected on each
trial- stage 2 added 40 pL, stage 3 added 5 L, stage 4 added 80 pL, and
stage 5 added 10 pL. Each stage progressed after 400 successfully
completed trials. All subsequent stages used all 5 reward volumes.

Stage 6 introduced variable center poke times, uniformly
drawn from [0.8-1.2] s. Additionally, stage 6 introduced determi-
nistic reward delays. Initially, rewards were delivered after a 0.1 s
delay, which was incremented by 2 ms after each successful trial.
After the rat reached delays between 0.5 and 0.8 s, the reward delay
was incremented by 5 ms following successful trials. Delays between
0.8 and 1s were incremented by 10 ms, and delays between 1 and
1.5 s were incremented by 25 ms. Rats progressed to stage 7 after
reaching a reward delay of 1.5s.

In stage 7, rats experienced variable delays, drawn from an
exponential distribution with mean of 2.5s. Additionally, we intro-
duced catch trials (see above), with a catch probability of 15%. Stage 7
terminated after 250 successfully completed trials.

Finally, stage 8 introduced the block structure (see above). We
additionally increased the catch probably for the first 1000 trials to
35%, to encourage the rats to learn that they could opt-out of the trial.
After 1000 completed trials, the catch probability was reduced to
15-20%. All data in this paper was from training stage 8.

Training for male and female rats. We collected data from both male
and female rats (160 male, 114 female). Male and female rats were
trained in identical behavioral rigs with the same shaping procedure
described above. Early cohorts of female rats experienced the same
reward set as the males. However, female rats are smaller, and they
consumed less water and performed substantially fewer trials than the
males. Therefore, to obtain sufficient behavioral trials from them,
reward offers for female rats were slightly reduced while maintaining
the logarithmic spacing: [4, 8, 16, 32, 64 pL]. For behavioral analysis,
reward volumes were treated as equivalent to the corresponding
volume for the male rats (e.g., 16 pL trials for female rats were treated
the same as 20 plL trials for male rats). The auditory tones were iden-
tical to those used for male rats. We did not observe any significant
differences between the male and female rats, in terms of contextual
effects, or behavioral dynamics at block transitions (Supplemen-
tary Fig. 12).

We tracked most female rats’ stages in the estrus cycle using
vaginal cytology, with vaginal swabs collected immediately after each
session using a cotton-tipped applicator first dipped in saline. Samples
were smeared onto a clean glass slide and visually classified under a
light microscope. For the current study, data from female rats was
averaged across all stages of the estrus cycle.

Behavioral models

We developed separate behavioral models to describe rat’s wait time
and trial initiation time data. Both wait time and trial initiation time
should depend on the value of the environment. For the wait time data,
we adapted a model from'® which described the wait time, WT, in terms
of the value of the environment (i.e., the opportunity cost), the delay
distribution, and the catch probability (i.e., the probability of the trial
being unrewarded). Given an exponential delay distribution, we
defined the predicted wait time as

WT=Drlog (& R ;TKT> .

@
where 7 is the time constant of the exponential delay distribution, C is
the probability of reward (1-catch probability), R is the reward on that
trial, k is the opportunity cost, and D is a scaling parameter. In the
context of optimal foraging theory and the marginal value theorem,
which provided the theoretical foundation for this model, each trial is a

depleting patch whose value decreases as the rat waits”. Within a
patch, the decision to leave depends on the overall value of the
environment, kx, which is stable within trials but can vary across trials
and hidden reward states, i.e., blocks.

Equation (1) was shown to be normative for a Markov Decision
Process in which the value of the environment was constant for the
foreseeable future'. However, given that the value of the environment
changed over blocks in our task, it is possible that this equation is not
normative for our case. However, this formulation qualitatively cap-
tured features of the data, including the graded dependence of wait
times on the catch probability, and sensitivity to reward volumes and
blocks. Therefore, we found it to be a useful, if not necessarily nor-
mative, process model of behavior.

For the trial initiation time, we adapted a model® which describes
the optimal trial initiation time, TI, given the value of the environment,
K, as

, @

where D is a scale parameter.

We initially evaluated two different ways of calculating the value
of the environment for these models, which are shared between the
wait time and trial initiation time models: a retrospective and infer-
ential model (see below). We assumed independent log-normal noise
for each trial, with a constant variance of 8 s for the wait time model
and 4 s for the trial initiation time model. The log-normal noise model
outperformed alternative noise models, such as gamma and ex-
Gaussian noise. The noise variance terms were selected from a grid
search using data from a subset of animals.

Inferential model. The inferential model has three discrete value
parameters (Kiow, Kmixed Khigh), €ach associated with a block. For each
trial, the model chooses the k associated with the most probable block
given the rat’s reward history. Specifically, for each trial, Bayes’ Theo-
rem specifies the following:

P(B;|R;) o< P(R;|B,)P(By). (3

where B; is the block on trial ¢ and R, is the reward on trial ¢. The
likelihood, P(R;| B,), is the probability of the reward for each block, for
example,

1 if R =
P(Rt|Bt=Low)={3' if R,=5,10,20 uL @

0, ifR,=40,80uL.

To calculate the prior over blocks, P(B,), we marginalize over the pre-
vious block and use the previous estimate of the posterior:

P(B)="_ P(B/|B,_)P(B;_;IR;_y). ®)

B[*l

P(B;| B.-y), referred to as the hazard rate, incorporates knowledge of
the task structure, including the block length and block transition
probabilities. For example,

1-H,,  forB,_;=Low
P(Bt = L0W|Bt71) = H(). for Bt—l =Mixed (6)
0, for B,_, =High

where Hy =1/40, to reflect the block length. The model assumed a flat
block hazard rate for the following reasons. (1) Since animals broke
center fixation on a subset of trials, the actual block duration was
highly variable. Based on the distributions of experienced block
durations, it is unlikely that rats would have learned a perfect step-
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function hazard rate. (2) The blocks spanned several to tens of
minutes, making it unlikely that rats would keep a running tally of
trials on such long timescales. (3) Gradual changes in wait times at
block transitions are not consistent with the use of a veridical step-
function hazard rate. (4) We considered an alternative parameteriza-
tion in which the veridical step-function hazard rate was blurred with
a Gaussian, but this would have required a number of nontrivial
design choices, such as whether the trial counter should be reset
after misinferred block transitions, regardless of when they occurred
in the actual block. (5) Wait times reflected misinferred blocks based
on a constant block hazard rate (Supplementary Fig. 9), suggesting
that this simplification was a reasonable approximation of the
inference process. Including Hp as an additional free parameter did
not improve the performance of the wait time model evaluated on
held-out test data in a subset of rats, so Ho was treated as a
constant term.

The model selected a fixed value of the environment associated
with the most likely block. This formulation is related to an established
approximation for solving partially-observable Markov decision pro-
cesses (POMDPs) known as the Most Likely State algorithm®. This
algorithm is well-studied, has precedence in the literature as a heuristic
approximation for the full posterior distribution over states, and may
be biologically plausible as it is computationally tractable compared to
more complex solutions to POMDPs.

Belief state model. Like the inferential model (above), the belief state
model has three distinct value parameters and calculates the prob-
ability of being in each block using Bayes' Rule. However, rather than
selecting the value associated with the most probable block, the model
uses the weighted average of each value, weighted by that probability,
that is,

K= BZP(BARJKB[- 7)

While this model uses the full posterior distribution over states, model
comparison found that it was comparable to the simpler Most Likely
State algorithm (above; Supplementary Fig. 8). In fact, when the belief
distributions were stable (e.g., in adaptation blocks), these models
were identical. For that reason, we exclusively used the Most Likely
State model (above) for this paper.

There may be alternative normative strategies for this task given
different sets of assumptions. For instance, assuming an infinite time
horizon, one might compute the average kappa under the Markov
process determining block transitions, starting from the current state.
With a sufficiently long time horizon, this average will be dominated by
the steady-state distribution of the Markov process, which would
predict no contextual modulation of wait times. Given that the rats
exhibited strong contextual effects, this strategy is not consistent with
their behavior. We therefore did not explore such a model in the
current manuscript.

Inferential model with lambda parameter. To account for potentially
sub-optimal inference across rats, we developed a second inferential
model. This model also uses Bayes' rule to calculate the block prob-
abilities, except with a sub-optimal prior, Priors,pope. Specifically, we
introduce a parameter, A, that generates the sub-optimal prior by
weighting between the true, optimal prior (P(B,), Eq. 5), and a flat,
uninformative prior (Priorg,, uniformly 1/3), that is,

Priorgpope =AP(B;) + (1 — A)Priorg,,. )]
When A=1, this model reduces to the optimal inferential model, and

when A =0, this model uses a flat prior and the block probabilities are
driven by the likelihood.

Retrospective model. The retrospective model has a single, trial-
varying k variable which represents the recency-weighted average of
all previous rewards. This average depends on the learning rate para-
meter a with the recursive equation

Keop =K.+ a,6,, 9)

where k; is the value of the environment on trial ¢, r; is the reward on
trial ¢, §;=r,— K, is the reward prediction error (RPE), and «; is a
dynamic learning rate given by a,=G-ao. In order to capture the
dynamics of the trial initiation times around block transitions, we
included a gain term, G, on the learning rate, which is inversely related
to the trial-by-trial change in the mixed block probability from by the
inferential model, given by

1
" 1—|P(B, =Mixed|R,) — P(B,_, =Mixed|R, ;)|

G, 10)

We used trial-by-trial changes in the mixed block probability as a
summary statistic of changes in the full posterior distribution. Given
the distribution of rewards and the transition structure between
blocks, there is always some ambiguity about whether the hidden state
is a mixed block, and the posterior block probabilities sum to one.
Therefore, changes in the mixed block probability reflect changes in
the full posterior on every trial.

The dynamic learning rate we implemented is consistent with
previous work showing that humans and animals can adjust their
learning rates depending on the volatility and uncertainty in the
environment**~%, Other models using either (1) a single, static learning
rate (G =1), or (2) a dynamic learning rate where the gain term was the
unsigned reward prediction error on that trial (G = |6,/) were unable to
capture the observed trial initiation time dynamics at block transitions
(Supplementary Fig. 7).

Fitting and evaluating models. We used MATLAB’s constrained
minimization function, fmincon, to minimize the sum of the negative
log likelihoods with respect to the model parameters. 100 random
seeds were used in the maximum likelihood search for each rat;
parameter values with the maximum likelihood of these seeds were
deemed the best fit parameters. Before fitting to rat’s data, we con-
firmed that our fitting procedure was able to recover generative
parameters (Supplementary Fig. 13). When evaluating model perfor-
mance fit to rat data, we performed 5-fold cross-validation and eval-
uated the predictive power of the model on the held-out test sets. To
compare the different models, we used Bayesian Information Criterion
(BIC), BIC= log(n) - k+2 - nLL, where n is the number of trials, k is the
number of parameters, and nLL is the negative log-likelihood of the
best-fit model evaluated on all data. We confirmed the model com-
parison by also comparing Akaike Information Criterion (AIC =
2-k+2-nLL where k is the number of parameters and nLL is the
negative log-likelihood of the best-fit model evaluated on all data) and
cross-validated negative log-likelihood, which gave similar
results to BIC.

We only fit models to the rats’ wait time data. This is because the
distribution of trial initiation times was generally heavy-tailed, and
seemed to reflect multiple processes on different interacting timescales
(e.g., reward sensitivity on short timescales, attention, motivation, and
satiety on longer timescales). These processes made it challenging to fit
the data with a single process model. Therefore, we used the inferential
and retrospective trial initiation time models to generate qualitative
predictions that we could compare to the rats’ data.

Statistical analyses
Wait time and trial initiation times: sensitivity to reward blocks. For
all analyses, we removed wait times that were one standard deviation
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above the pooled-session mean. Without thresholding, the contextual
effects are qualitatively similar. Outlier wait times tend to occur in low
blocks, likely due to attentional or motivational lapses. Therefore, the
main difference is that the wait time curves in low blocks are both
flatter and longer compared to the thresholded data (Supplementary
Fig.14). When assessing whether a rat’s wait time differed by blocks, we
compared each rat’s wait time on catch trials offering 20 pL in high and
low blocks using a non-parametric Wilcoxon rank-sum test, given that
the wait times are roughly log-normally distributed. We defined each
rat’s wait time ratio as the average wait time on 20 pL catch trials in
high blocks/low blocks. For trial initiation times, we compared all trial
initiation times for each block, again using a non-parametric Wilcoxon
rank-sum test. We defined each rat’s trial initiation time ratio as the
average trial initiation time in high blocks/low blocks.

Trial initiation times were bimodally distributed, with the differ-
ent modes reflecting whether previous trials were rewarded or not.
Unrewarded trials included opt-out trials and trials where rats pre-
maturely terminated center fixation (violation trials). Analyzing these
trial types separately showed that trial initiation times following
unrewarded trials were modulated by blocks in a similar pattern as the
wait times, with rats initiating trials more quickly in high compared to
low blocks (Supplementary Fig. 2). While we used all behavioral trials
for analyses of trial initiation times throughout the manuscript, we
note that trial initiation times following rewarded trials exhibited a
different pattern (Supplementary Fig. 2), consistent with previous
studies showing that response outcomes gate behavioral strategies” >,
Specifically, following rewarded trials, there was a weak positive cor-
relation between reward magnitude and trial initiation time, in con-
trast to the strong negative correlation we observed following
unrewarded trials. We interpret the positive correlation as potentially
reflecting micro-satiety effects. However, as these effects were weak,
most of the variance in the trial initiation times were driven by those
following unrewarded trials.

To assess block effects across the population, we first z-scored
each rat’s wait time on all catch trials and trial initiation time on all
trials. For wait times, we computed the average z-scored wait time on
catch trials offering 20 pL in high and low blocks for each rat, and
compared across the population using a paired Wilcoxon sign-rank
test. Similarly for trial initiation times, we averaged all z-scored trial
initiation times for high and low blocks for each rat, and compared
across the population using a paired Wilcoxon sign-rank test.

To assess the effects of catch probability on wait times, we trained
cohorts of rats with different catch probabilities. The cohorts varied in
size: N=[3, 183, 61, 151, 39] for catch probability =[0.1, 0.15, 0.2, 0.25,
0.35], respectively.

Block transition dynamics. To examine behavioral dynamics around
block transitions, for each rat, we first z-scored wait times for catch
trials of each volume separately in order to control for reward volume
effects. We then computed the difference in z-scored wait times for
each volume, relative to the average z-scored wait time for that
volume, in each time bin (trial relative to block transition), before
averaging the differences over all volumes (A z-scored wait time). For
trial initiation times, we z-scored all trial initiation times. In order to
remove satiety effects, for each session individually, we regressed trial
initiation time against z-scored trial number and subtracted the fit.

For each transition type, we averaged the A z-scored wait times
and trial initiation times based on their distance from a block transi-
tion, including violation trials (e.g., averaged all wait times four trials
before a block transition). Finally, for each block transition type, we
smoothed the average curve for each rat using a 10-point moving
average, before averaging over rats.

When comparing block transition dynamics in rats with different
quality priors, specifically from mixed blocks to high or low, we chose
rats in the top or bottom 20th percentile of fit A’s and averaged each

group’s block transition dynamics for both wait time and trial initiation
time. To compare the normalized dynamics of each group, we fit
4-parameter logistic functions of the following form:

y=A+(D — A)/(1+ exp(—C(X — X)) a
to the behavioral curves and compared the four parameters: A (the
lower asymptote), D (the upper asymptote), C (the inverse tempera-
ture), and xo (x-value of the sigmoid’s midpoint). To determine sig-
nificance for our observed differences, we performed a non-
parametric shuffle test. We generated null distributions on differences
in the fit parameters by shuffling the labels of the upper and lower
percentile A rats, refitting the logistic to the new shuffled groups’
average dynamic curves, and comparing the fit parameters 500 times.
We then used these null distributions to calculate p-values for the
observed differences in parameters: the area under this distribution
evaluated at the actual difference of parameter values (between high
and low A rats) was treated as the p-value.

Trial history effects. To assess wait time sensitivity to previous offers,
we focused on 20 L catch trials in mixed blocks only. We z-scored the
wait times of these trials separately. Next, we averaged wait times
depending on whether the previous offer was greater than or less than
20 pL. For trial initiation times, we used all 20 L trials in mixed blocks.
We averaged z-scored trial initiation times depending on whether the
previous offer was greater or less than 20 pL. For both wait time and
trial initiation time, we defined the sensitivity to previous offers as the
difference between average wait time (trial initiation time) for trials
with a previous offer less than 20 pL and trials with a previous offer
greater than 20 pL. We compared wait time and trial initiation time
sensitivity to previous offers across rats using a paired Wilcoxon
signed-rank test.

To capture longer timescale sensitivity across rewards, we regres-
sed previous rewards against wait time and trial initiation time. We
focused only on mixed blocks. Additionally, we linearized the rewards
by taking the binary logarithm of each reward (log,(reward)). For wait
time, we z-scored wait times for catch trials in mixed blocks. Then, we
regressed wait times on these trials against the current offer and pre-
vious 9 log,(reward) offers, including violation trials, along with a
constant offset term. Reward offers from a different block (e.g., a pre-
vious high block) were given NaN values. For trial initiation times, we
again z-scored for mixed block trials only. Then, we regressed against
the previous 9 log,(reward) offers, not including the current trial, along
with a constant offset. Additionally, we set the reward for violation and
catch trials to O, since rats do not receive a reward on these trials.

For both wait time and trial initiation time, we used Matlab’s
builtin regress function to perform the regression. With the coeffi-
cients, we found the first non-significant coefficient (coefficient that
whose 95% confidence interval contained 0), and set that coefficient
and all following coefficients to O. Finally, we fit a negative exponential
decay curve, y=Dexp —x/7, to each rat’s previous trial coefficients
(that is, only the previous 9 trial coefficients) for both wait time and
trial initiation time and reported the time constant of the exponential
decay (tau) for each. If all previous trial coefficients were equal to O (as
was the case for a vast majority of the wait time coefficients), the time
constant was reported as 0. We correlated wait time regression time
constants and trial initiation time regression time constants using
Matlab’s builtin corr.m function.

Learning dynamics. To assess learning dynamics, we included all ses-
sions after stage 8, not just the sessions that passed criteria for inclusion
(above). Because of data limitations examining each session individually
(e.g., not every session included both a high and low block), we grouped
subsequent sessions into pairs (i.e., we grouped sessions 1 and 2, ses-
sions 3 and 4, etc.). For each session-pair, we calculated the wait time
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and trial initiation time ratios as above. To assess the emergence of
block effects on wait time data, we regressed wait time for each session
against both the current reward and a categorical variable representing
the current block identity (1=low block, 2=mixed block, 3=high
block). To assess the emergence of previous trial effects on trial initia-
tion time, we regressed trial initiation time for each sessions against the
previous reward. We smoothed each regression coefficient over ses-
sions using a 5-session moving average. Finally, we set outlier coeffi-
cients (3 scaled median absolute deviations away from a 5-point moving
median, using Matlab’s builtin isoutlier function) to NaN. Finally, we
averaged regression coefficients over sessions across rats.

Pre-initiation cue task
To modulate the subjective uncertainty in the rat’s estimate of state
(block) before trial initiation time, we ran a subset of rats on a variation
of the task where we cued reward offer before rats initiated a trial
(N=16). All other aspects of the task remained identical: reward offer
cued played again after the rat initiated the trial, rats waited uncued
exponentially-distributed delays for rewards, etc. We included both rats
that initially trained on the original task before switching to the pre-
initiation cue task (N=12), as well as rats who were trained only on the
pre-initiation cue task (V=4). To allow the rats who had started on the
original task time to adjust to the new task, we only included data after
30 pre-initiation cue sessions. For the rats who were exclusively trained
on the pre-initiation cue task, we included all stage 8 sessions. For all
rats, we did not exclude sessions using the wait time criteria (see above).
To compare effects for rats who had started on the original task,
we performed all analyses for data collected on the original task and on
the pre-initiation cue task. First, to confirm that the rats learned that
the tone before trial initiation indicated the upcoming reward, we
averaged z-scored trial initiation times by the offered reward in mixed
blocks. We excluded post-violation trials in the original task session,
because those trials repeat the same volume as the previous trial so the
rat could conceivably use that to modulate their trial initiation time. All
other analyses (sensitivity to the previous reward and previous reward
regression) were performed as described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The rat behavioral data and model fits generated in this study have
been deposited in a Zenodo database under https://doi.org/10.5281/
zenodo.10031483. Source data are provided with this paper.

Code availability
Code used to analyze data and generate figures is available at https://
github.com/constantinoplelab/published/tree/main/rat_behavior.
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