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Delineating the interplay between oncogenic
pathways and immunity in anaplastic
Wilms tumors

Xiaoping Su1,14, Xiaofan Lu 2,3,14, Sehrish Khan Bazai 2,14, Linda Dainese4,5,6,14,
Arnauld Verschuur7, Benoit Dumont 8, Roger Mouawad9, Li Xu 3,
Wenxuan Cheng 3, Fangrong Yan 3, Sabine Irtan10, Véronique Lindner11,
Catherine Paillard12, Yves Le Bouc6, Aurore Coulomb4,5,6,15 &
Gabriel G. Malouf 2,13,15

Wilms tumors are highly curable in up to 90% of cases with a combination of
surgery and radio-chemotherapy, but treatment-resistant types such as diffuse
anaplastic Wilms tumors pose significant therapeutic challenges. Our multi-
omics profiling unveils a distinct desert-like diffuse anaplastic Wilms tumor
subtype marked by immune/stromal cell depletion, TP53 alterations, and
cGAS-STING pathway downregulation, accounting for one-third of all diffuse
anaplastic cases. This subtype, also characterized by reduced CD8 and CD3
infiltration and active oncogenic pathways involving histone deacetylase and
DNA repair, correlateswith poor clinical outcomes. These oncogenic pathways
are found to be conserved in anaplastic Wilms tumor cell models. We identify
histone deacetylase and/or WEE1 inhibitors as potential therapeutic vulner-
abilities in these tumors, which might also restore tumor immunogenicity and
potentially enhance the effects of immunotherapy. These insights offer a
foundation for predicting outcomes and personalizing treatment strategies
for aggressive pediatric Wilms tumors, tailored to individual immunological
landscapes.

Wilms tumor (WT) is a common pediatric solid tumor affecting the
abdomen and closely linked to early nephrogenesis at both morpho-
logical and transcriptional levels1,2. The molecular drivers often
mutated are related but not limited to the disruption of genetic

pathways involved in the normal embryogenesis of the genitourinary
tract, with around 40 genes reported to date2. Copy number altera-
tions (CNAs), such as loss of chromosomes 1p and 16qorgainof 1qmay
contribute to tumor aggressiveness, but these do not provide insight
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into the mechanisms of tumor development or therapeutic
vulnerabilities2.

The presence of anaplasia is a potent predictor of poor outcomes
in patients with WT enrolled in the International Society of Paediatric
Oncology (SIOP) (Europe and other countries) and the Children’s
Oncology Group (COG) (North America and Canada) protocols3,4.
While WT patients in European protocols receive preoperative che-
motherapy, followed by surgery and then postoperative chemother-
apy based on the histological risk assessment of the nephrectomy
specimens, patients in American protocols are usually treated with
surgery first. Previous studies have identified frequent WT mutations
in genes such as CTNNB15,6, AMER16–9, WT16–9, and TP5310–14. More
recently, whole-exome sequencing (WES) identified recurrent muta-
tions in the SIX1 and SIX2 pathways (18.1%) and in the DROSHA/DGCR8
microprocessor genes (18.2%) in the blastemal type of WT15. Addi-
tionally, 11p15 abnormalities consisting of genetic or epigenetic
defects are reported to be at the origin of 69% of WT16,17. TP53 altera-
tions, including mutations and/or deletions, have been found in 62.5%
of diffuse anaplastic WT (DAWT) in a collaborative study involving
SIOP (n = 8) and COG (n = 32) cases, and are associated with poor
outcomes in terms of recurrence-free survival (RFS) and overall sur-
vival (OS)10,18. This study was consistent with a previous North Amer-
ican one which identified associations between TP53 mutations,
DAWT, and poor prognosis12. Moreover, some studies reported that
mutant p53 suppresses innate immune signaling to promote tumor-
igenesis by interfering with the function of the cytoplasmic DNA sen-
sing machinery cGAS-STING19.

While patients with focal anaplastic WT (FAWT) have identical
survival to thosewithout anaplasia, patients withDAWTare classified as
high-risk tumors and therefore display poor outcomes20. Despite a high
cure rate of over 90% with multimodal treatments including surgery
and radio-chemotherapy, although this might come at the expense of
high early and late toxicities21, subsets of patients whose tumors pre-
sent diffuse anaplastic features or who experience recurrence after
optimal multimodal therapies continue to pose therapeutic
challenges21,22. One of the lingering questions in treating DAWT involves
the as-yet-unexplored relationships among the transcriptome, genetic
mutations, and the tumor microenvironment (TME)23.

In this work, we perform an integrative analysis of the genome-
wide genetic, transcriptomic, and TME landscapes of DAWT relative to
FAWT to delineate their prognosis and identify therapeutic vulner-
abilities. We discover a desert-like DAWT subtype with global deple-
tion of immune/stromal cells.Wedissect the interplay betweengenetic
and immune features, in particular loss of CD8+ cells and tumor
intrinsic oncogenic pathways including histone deacetylase (HDAC)
and DNA repair pathways. We validate our observation in an inde-
pendent DAWT cohort. We also uncover that CD8+ and CD3 + T cells
are capable of stratifying prognosis in pretreated anaplastic WTs
rather than those without anaplasia. Finally, we provide evidence for
the conservation of oncogenic pathways in anaplastic WT cell line
models and identify therapeutic vulnerabilities through the use of
HDAC and/or WEE1 inhibitors.

Results
Study population
In this study, we analyzed a total of 21 WTs with anaplastic features
treated in France within the SIOP-2001 trial (Supplementary Data 1).
The cohort comprised 9 DAWTs and 3 FAWTs, including 12 females
and9maleswith amean age of 5.4 years, ranging from 1.8 to 14.3 years.
DNA and RNA of good quality and quantity were obtained from 12 and
10 patients, respectively. Additionally, matched germline DNA was
obtained from adjacent kidney tissues in 12 cases. Consequently, WES
was conducted on DNA from 12 paired WTs and their adjacent normal
tissues, while the remaining 9 samples underwent targeted sequen-
cing. RNA-seq was performed on 10 tumor samples.

Genetic landscape of WT with focal and diffuse anaplasia
Overall, 168 non-silent somatic single nucleotide variants (median 13,
range: 6–27) were identified in the 12 anaplastic WTs assessed by WES
(Fig. 1a; Supplementary Data 2). The mean nonsynonymous mutation
rate was 0.27mutations perMb, with little variation (0.12–0.52). Of the
mutations identified, 125 (74.6%) were not previously reported in the
Catalogue of Somatic Mutations in Cancer (COSMIC) database, while
43 (25.4%) had been previously reported. The majority of the muta-
tions were nonsynonymous single nucleotide substitutions (66.8%),
followed by frameshift insertions and deletions (23.2%), stop gain
(3.6%), splicing (2.8%), and non-frameshift deletions and insertions
(2.8%). No difference was observed in terms of total mutation burden
(TMB) between DAWT and FAWT (P =0.93).

TP53 and DROSHA were the only recurrent somatic mutations
identified (Fig. 1a; Supplementary Data 2). Six out of nine DAWT
(66.6%) harbored somatic (n = 5) and germline (n = 1) TP53 mutations,
while there were no mutations in FAWT. The germline mutation of
TP53 identified in PED-13T was identical to somatic mutations in PED-
19T (Exon 6: [chr17_7574002; c.G548C; p.R183P; nonsynonymous SNV;
G/C]). The mutation allelic fraction (MAF) of TP53 in DAWT was par-
ticularly high, ranging from 85% to 97%, suggesting that TP53 muta-
tions may be a truncal event. In contrast, two DAWT (22%) and two
FAWT (66.6%) had identical DROSHA hotspot mutations (E1147K) with
MAF ranging from 1.8% to 42.7%. In addition to DROSHA mutations,
cases harbored mutations in WT-related genes such as BCOR and
AMER1 (n = 1),DGCR8 (n = 1), and SIX1 (p.Q177R) (n = 1) (Supplementary
Data 2). TheMAF ofDGCR8was 92.8%, suggesting that it may also be a
truncal event. We also observed a significant co-occurrence pattern
between CNA of FBXW7 and TP53 mutation (P =0.008), as well as
between CNA of FBXW7 and CNA of TP53 (P = 0.045) (Fig. 1b).

All WTwithout TP53mutations harboredmutations in chromatin-
modifying genes (CMGs), including polycomb repressive complex
genes EZH2 (n = 1) and BCOR (n = 1), as well as PROSER1 (n = 1), KTM2C
(n = 1), NASP (n = 1), and CDC73 (n = 1) (Fig. 1c; Supplementary Data 2).
All of these mutations were predicted to result in deleterious proteins
based on SIFT analysis24. We also observed that TP53 mutation had
significant co-occurrencewith chromosome 17p loss, 17q loss, 14q loss,
and 19q alteration (all, P < 0.05; Fig. 1c). In addition, we used GISTIC2.0
to examine focal copy-number variations in these tumors and found
recurrent focal deletions in 11q14.3 and 16q22.1 (Supplementary Fig. 1a)
and recurrent gain in 21q11.2 (Supplementary Fig. 1b).

Assessment of TP53 mutations and/or deletions in
anaplastic WT
We then analyzed the TP53 mutation status in the remaining cohort
(eight DAWT and one FAWT) and discovered five additional DAWT
with TP53mutations. Overall, 11 out of 17 (64.7%) DAWT harbored TP53
mutations, while none of FAWT had them (Supplementary Data 1).
Consistent with the high allelic TP53 mutation fraction obtained, all
cases with TP53 mutations showed deletion of the second allele. Of
note, all four patients with metastatic DAWT harbored TP53mutations
and died with a median OS of 9.8 months (range: 5.9–12.3 months). In
contrast, 7 out of 13 (53.8%) DAWT patients with localized disease
(stage I-III) harbored TP53 mutations; notably, three patients (42.9%)
who harbored TP53 mutation died within two years, showing margin-
ally inferior OS as compared to those in TP53 wild type
(n = 6) (P =0.08).

Distinct transcriptome and immunity landscape among kidney
cancers
We then asked whether WTs display different expression profiles
compared to other kidney tumors, such as clear-cell, papillary, and
chromophobe RCC. To this end, we performed unsupervised con-
sensus clustering on a dataset of 95 kidney tumors (Supplementary
Data 3). As expected, each histopathological subtype clustered
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separately from the others. In particular, WTs split into two clusters,
one of which contained all the FAWT (P = 0.046), and DAWT or
favorable histology WTs (FHWTs) were scattered across both clusters
(Fig. 1d). Subsequent unsupervised clustering using 24 microenviron-
ment cells led to the identification of two distinct subtypes: immune-

rich and immune-cold. The immune-rich subtype had significantly
higher infiltration of immune and stromal cells (both, P <0.001). As
expected, clear cell renal cell carcinoma (ccRCC) fell into the immune-
rich subtype due to its high immune and stromal cell infiltration,
whereas chromophobe renal cell carcinoma (ChRCC) demonstrated a
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Fig. 1 | Genome-wide landscape of 12 Wilms tumors (WTs) identified by whole-
exome sequencing and transcriptome pattern among 95 representative
patients with four types of kidney cancers. a OncoPrint showing the mutation
and copy number alteration (CNA) ofWilms tumor-related genes.bGeneticmutual
exclusivity or cooccurrence in the SFCE-WT cohort using a one-side Fisher’s exact
test (. P <0.1, * P <0.05, ** P <0.01). c OncoPrint showing broad CNA (>25%) and
mutations in a selection of frequently mutated genes arranged vertically by func-
tional group. Total mutation burden was annotated at the top panel, and clin-
icopathological information was annotated in the bottom panel. d Heatmap
showing the distinct expression pattern of four kidney cancers by unsupervised
consensus clustering with most variable genes. e Twomicroenvironment subtypes

with different immune/stromal infiltrations among 95 patients were identified by
unsupervised clustering using curated signatures of 24 microenvironment cell
types. Immune enrichment score (IES), stromal enrichment score (SES) and other
cohort information were annotated at the top panel. SFCE Société Française du
Cancer de l’Enfant, TARGET Therapeutically Applicable Research to Generate
Effective Treatments, TCGA The Cancer Genome Atlas, PSL Pitié-Salpêtrière Hos-
pital, DAWT diffuse anaplastic Wilms tumor, FAWT focal anaplastic Wilms tumor,
FHWT favorable histology Wilms tumor, ChRCC chromophobe renal cell carci-
noma, ccRCC clear cell renal cell carcinoma, PRCC papillary renal cell carcinoma.
Source data are provided as a Source Data file.
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cold infiltration pattern (Fig. 1e). Of note, all FAWT cases were found in
the immune-rich subtype, while DAWT and FHWT were distributed
across both clusters (Fig. 1e).

Association between desert-like anaplastic WT, TP53 mutation
and poor outcome
We then examined the TME landscape of WTs in our SFCE-WT cohort
(n = 10). Unsupervised clustering was performed on 24 microenviron-
ment cells and two TME phenotypes were identified (Fig. 2a). TME-C1
(n = 5) showed higher infiltration in all types of microenvironment
cells, including immune, myeloid, and stromal cells compared to TME-

C2 (n = 5). Conversely, TME-C2 showed a generally desert-like pheno-
type. Therefore, we designated these two subtypes as either “infil-
trated-like”WT (iWT) or “desert-like”WT (dWT). Of note, the dWTwas
tightly associated with TP53 mutations (four [80%] vs 0; P =0.048)
compared to iWT. Within the DAWT cases, the desert-like tumors also
enriched in TP53 loss of function (mutations and copy number loss)
compared to infiltrated-like tumors (P =0.048). Analysis of the tertiary
lymphoid structures (TLS) signature revealed a universal immune-
depleted pattern in dWT (P = 0.008; Fig. 2b). Further deconvolution
revealed significant lower proportion of bulk immune cells in dWT
compared to iWT (P = 0.016; Fig. 2c). Patients with dWT also showed
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Whitney test, and estimated drug sensitivity of l HDAC inhibitor and m WEE1
inhibitor between dWT (n = 5) and iWT (n = 5) using one-sided Student’s t-test. For
all boxplots, the center line represents the median, box hinges represent first and
third quartiles and whiskers represent ± 1.5× interquartile range. Source data are
provided as a Source Data file.
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significantly poor RFS and OS (both, P =0.013; Fig. 2d, e) compared to
those with iWT.

As a universal absence of adaptive immune infiltration in TP53-
mutated dWT was observed, and regarding the potential relationship
between the cGAS-STING pathway, TP53mutation, and immunity19, we
assessed the expression of these genes in our WT subtypes. Accord-
ingly, in regard to the differential gene expression between dWTs and
iWTs, we noted downregulation of the TMEM173 gene encoding STING
(5.1-fold decrease, false discovery rate [FDR] <0.001) and the MB21D1
gene encoding cGAS (3-fold decrease, P =0.015, FDR =0.089) with
associated negative enrichment for pathways related to cytosolic DNA
sensing and innate immunity in dWT (Fig. 2b). Using Hallmark and
Reactome associated gene sets, we performed gene set enrichment
analysis (GSEA) and found that p53 (normalized enrichment score
[NES] = −2.00, FDR =0.003), interferon-γ (IFN-γ) (NES = −2.52, FDR =
0.0001), and epithelial mesenchymal transition (EMT; NES = −2.58,
FDR =0.003) pathways were significantly downregulated in dWT as
compared to iWT (Fig. 2f), while HDACs deacetylate histones (NES =
1.66, FDR =0.046), DNA double-strand break repair (NES = 2.20,
FDR =0.004), and chromatin-modifying enzymes (NES = 1.76, FDR =
0.004) pathways were activated (Fig. 2g). Notably, polycomb targets
were upregulated indWT,whichwasconsistentwith overexpressionof
the EZH2 polycomb gene or signature of EZH2 partners (both,
P =0.008; Fig. 2h, i). Although no significant association between TMB
and TME phenotypes was observed (P =0.92), we found that dWT
tended to harbor a higher fraction of genome altered (FGA) as com-
pared to iWT (P = 0.075; Fig. 2j).

Given the activation of the HDAC gene set in dWT, we then ana-
lyzed the regulons of potential epigenetic regulators relevant to can-
cerous chromatin remodeling. Out of 20 chromatin remodeling
regulons, eight showed significantly higher activity in dWT relative to
iWT (all, P < 0.05; Fig. 2k). HDAC inhibitors, a class of small-molecular
therapeutics, are now approved by the Food and Drug Administration
(FDA) as anticancer agents. Also, clinical trials of several HDAC inhi-
bitors for use as anti-cancer drugs are ongoing25. In this context, we
investigated the potential therapeutic effect of the FDA-approved
HDAC inhibitor vorinostat. We estimated the IC50 for vorinostat
through a predictive model-based strategy and found that dWT had a
higher likelihood of responding to vorinostat considering significantly
lower IC50 values as compared to iWT (P =0.039; Fig. 2l). Since DNA
damage checkpoint kinasesATRandWEE1 are amongkey regulators of
DNA damage/repair pathways26, we then estimated the IC50 for WEE1
(AZD1775) and ATR (AZD6738) inhibitors based on promising early
clinical trial results in other cancer types27–31. We inferred that dWTwas
more sensitive to WEE1 inhibitor (AZD1775) as compared to iWT con-
sidering significantly lower IC50 values (P = 0.011; Fig. 2m), while no
statistical difference was observed concerning ATR inhibitor
(AZD6738).

External validation using an independent WT cohort
We then decided to validate our finding in 36 eligible DAWTs retrieved
from the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) cohort. Likewise, an infiltrated-like (n = 24) and a
desert-like (n = 12) WT phenotype were identified using the same
unsupervised strategy (Supplementary Fig. 2a, b). Consistently,
deconvolution revealed significantly lower proportionof immune cells
in dWT compared to iWT (P =0.0007; Supplementary Fig. 2c).We also
found that patients with dWT showed an inferior overall prognosis as
compared to those with iWT (P =0.0004; Supplementary Fig. 2d). In
addition, subclass mapping revealed that the iWT (P = 0.01, FDR =
0.040) and dWT (P = 0.036, FDR =0.072) subtypes exhibit significant
transcriptomic similarity between the SFCE-WT and TARGET-WT
cohorts (Supplementary Fig. 2e). Additionally, in the SFCE-WT and
TARGET-WT cohorts, we discerned 2286 and 1582 upregulated genes
(FoldChange > 2, P <0.05, FDR <0.25), along with 1833 and 284

downregulated genes (FoldChange <0.5, P <0.05, FDR <0.25) respec-
tively, when comparing dWT to iWT. To quantify the extent of simi-
larity, we applied the representation factor (RF) to calculate the
statistical significance of the overlap between these gene sets. This led
to the identification of a common subset comprising 737 upregulated
genes (RF = 3.4, P <0.0001) and 54 downregulated genes (RF = 2.8,
P <0.0001) (Supplementary Fig. 2f). These findings reinforce the
robustness and reproducibility of our research. Interestingly, even
though no statistical association was observed between TP53 muta-
tion, 17q loss, and TME phenotypes of DAWTs from the TARGET-WT
cohort (both, P >0.4), we found that the p53 pathway (NES = −1.41,
FDR =0.049) was significantly downregulated in dWT as well as IFN-γ
(NES = −1.83, FDR =0.003) and EMT pathways (NES = −1.81, FDR =
0.003; Supplementary Fig. 2g). Consistently, we noted a down-
regulation of the TMEM173 (2.1-fold decrease, FDR<0.001; Supple-
mentary Fig. 2b) with no significant decrease identified for theMB21D1
(1.3-fold decrease, P = 0.24, FDR =0.42) with associated negative
enrichment for pathways related to cytosolic DNA sensing and innate
immunity in dWT. We observed that dWT showed significant upregu-
lated HDACs deacetylate histones (NES = 1.56, P =0.022, FDR =0.180),
DNA double-strand break repair (NES = 1.26, P = 0.035, FDR =0.246),
and chromatin-modifying enzymes (NES = 1.64, P = 0.013, FDR =0.132)
pathways (Supplementary Fig. 2h). We also observed overexpression
of the EZH2 polycomb gene and the signature of EZH2 partners (both,
P <0.05; Supplementary Fig. 2i, j) in dWT as compared to iWT; no
statistical difference was observed concerning FGA. In addition, 20
chromatin remodeling regulons were identified, of which 19 regulons
showed significantly higher activity in dWT versus iWT (all, P < 0.05;
Supplementary Fig. 2k). Consistently, dWT also showed a higher like-
lihood of responding to HDAC inhibitor vorinostat (P = 0.0099; Sup-
plementary Fig. 2l) and WEE1 inhibitor AZD1775 (P = 0.046;
Supplementary Fig. 2m), while no statistical difference was observed
for ATR inhibitor AZD6738. Of note, we also identified two TME phe-
notypes using 60 eligible FHWTs from the TARGET-WT cohort (Sup-
plementary Fig. 3a) where no prognostication-relevance was observed
(P = 0.72; Supplementary Fig. 3b), suggesting the prognostic value of
TME phenotypes in WT might be limited to tumors with anaplastic
features.

Prognostic value of CD8 and CD3 in anaplasticWTs treated with
preoperative chemotherapy
As the global downregulation of immune genes in dWTs, we investi-
gated through immunohistochemistry (IHC) whether this could be
related to the total of number of tumor-infiltrating lymphocytes (TILs)
and immune checkpoint protein expression (PD-1 and PD-L1). There-
fore, we counted TILs per 10 high-power fields (HPF) by assessing CD8
and CD3 for 11 samples, including 10 DAWTs and one FAWT, with
available pathological slice images in our 21 anaplastic WTs. Specifi-
cally, two dWTs (PED-18T and PED-14T) and two iWTs (PED-21T and
PED-09T) were investigated out of the 10 cases with transcriptome
data. We observed over 5-fold higher CD8 (mean: 265 vs 47), as well as
almost 5-fold higher CD3 (mean: 440 vs 90) in iWTs compared todWTs
(Fig. 3a, Supplementary Data 1). In addition, we found that both CD8
(P = 0.019) and CD3 (P = 0.012) were capable of stratifying the prog-
nosis of anaplastic WTs regarding both RFS and OS (Fig. 3b, c). All
patients with low CD8 or CD3 harbored TP53mutationwhile two cases
had TP53 mutation in patients with high CD8 (100% vs 28.6%,
P =0.045), and three cases had TP53 mutation in patients with high
CD3 (100% vs 37.5%, P =0.012). We then questioned if CD8 and CD3
held prognostic value for non-anaplastic WTs. To this end, we col-
lected another unselected cohort that contains 42 pretreated non-
anaplastic WTs included in the French SIOP-2001 protocol, including
three epithelial (7%), five blastemal (12%), seven stromal (17%), eight
regressive (19%), and 19mixedWTs (45%); these cases have at least one
available slice to evaluate CD8 or CD3. Conversely, no statistical
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association was observed between the TILs count and prognosis in
these cases (both, P >0.05; Supplementary Fig. 4a, b). EZH2 over-
expression is closely associated with immune suppression in various
cancers, as it can downregulate antigen presentation, induce immune
checkpoint molecules, and modulate immune cell function, collec-
tively enabling cancer cells to evade immune surveillance and escape
immune-mediated destruction32–34. Consistently, we found that the
expression of EZH2 protein showed strongly inverse correlation
between CD8 (R = −0.36, P =0.007) and CD3 (R = −0.22, P =0.073) in
WTs (Fig. 3d). In addition, out of the 53 pretreated WTs, membranous
staining of PD-1 and PD-L1 was observed in one (2%) and four (8%)
cases, respectively.

Oncogenic signaling pathways identify WT cell lines with
anaplasia
Thedevelopment of anoncogenic state linkedwith the deregulationof
cell signaling pathways is key to controlling cell growth and cell fate.
To analyze whether the proposed WT phenotypes are reproducible
basedon the relevant oncogenic signaling pathways inWilms cell lines,
we collected 12 models from Gene Expression Omnibus (GEO),
including six WT cell lines, four WT primary cultures, and two WT
patient-derived xenograft (PDX) explants (WT cells/PDX/primary-cul-
tures). We further conducted supervised clustering using the TME-
specific cancer-related pathways on these models. Strikingly, ana-
plastic WT (n = 4) and non-anaplastic WT (n = 8) models were com-
pletely separated. Non-anaplastic WT models showed similar

signatures to iWT; conversely, anaplastic WT models shared similar
signatures with dWT (P =0.002; Fig. 4a). Infiltrated-like models
exhibited activation of p53 (P =0.004), IFN-γ (P =0.004), and EMT
(P = 0.004) pathways, while desert-like models displayed activation of
chromatin remodeling (P =0.048), DNA repair (P =0.079), and HDAC
(P = 0.048) pathways. Although no statistical difference was observed
in EZH2 expression (P =0.57), desert-like samples showed significantly
higher enrichment of EZH2 partners signature (P = 0.008; Fig. 4b). We
then questioned if cell lines capture sufficient heterogeneity in tumors
from the transcriptome aspect. To answer this, we performed subclass
mapping and revealed that iWT (P = 0.001, FDR =0.004) in the SFCE-
WTcohort showeda significant overlap in transcriptomeprogramwith
non-anaplastic models from the WT cells/PDX/primary-culture data-
set, while dWT (P = 0.012, FDR =0.048) showed significant similarity
with those anaplastic models (Fig. 4c). In the GEO-WT dataset, we
discovered 2368 upregulated and 1631 downregulated genes when
comparing dWT to iWT. Furthermore, there was a common subset of
1016 upregulated genes (RF = 3.1, P <0.0001) and 510 downregulated
genes (RF = 2.8, P < 0.0001) shared with the SFCE-WT cohort (Fig. 4d).
These findings suggested that including non-anaplastic WTs as con-
trols allowed us to capture tumor heterogeneity to the maximum in
anaplastic WT subtype. In addition, these data highly supported the
conservation of the oncogenic pathway deregulation between
patients’ samples and cancer cells and suggested that cancer cells
could be used to test the sensitivity of therapeutic agents targeting
components of a specific pathway.
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Fig. 3 | Prognostic value of tumor-infiltrating lymphocytes in pretreated ana-
plasticWilms tumors (WTs). a Immunohistochemistry images of CD8 and CD3 in
different tumor microenvironment (TME) subtypes of WT, including two samples
for iWT (PED-18T and PED-14T) and two samples for dWT (PED-09T and PED-21T).
Immunostaining using anti-CD3 and anti-CD8 antibodies was performed using
standard protocol. Results on these tumors are shown atmagnification x200 (scale
bar 100 μm), with marked hallmark of anaplasia. Positive CD3 and CD8 lympho-
cytes were counted on 10 field at high-power fields (HPF, x400). b Kaplan-Meier

curves of recurrence-free survival (RFS) (left panel) and overall survival (OS) (right
panel) with two-sided log-rank test regarding the count of CD8 in anaplastic WTs
(n = 11). c Kaplan-Meier curves of RFS (left panel) and OS (right panel) with two-
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are provided as a Source Data file.
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In vitro drug sensitivity test
Regarding the conservation of the oncogenic state between human
and cell lines, we tested the sensitivity of 17.94 WT cell lines to several
drugs, including a WEE1 inhibitor (adavosertib), two HDAC inhibitors
(MS-275 and vorinostat), a triple inhibitor (UVI500) targeting HDAC,
DNMT and SIRT, two EZH2 inhibitors (GSK126 and tazemetostat), an
ATR inhibitor (ceralasertib), and a PARP inhibitor (olaparib), based on
in-silico analyses that suggested their potential efficacy in treating
WTs. (Fig. 5a). We found that the 17.94 cells were most sensitive to the
WEE1 inhibitor (adavosertib at 169 nM), followed by the triple inhibitor
(UVI500 at 312.6 nM) and HDAC inhibitors (MS-275 at 684.4 nM and
vorinostat at 1420 nM). The 17.94 cells were not sensitive to the EZH2,
ATR, or PARP inhibitors, with IC50 values above 15 µM.

Since theWEE1 and HDAC inhibitors showed therapeutic efficacy,
we hypothesized that combination therapy might increase their sen-
sitivity in 17.94 WT cells. We tested this by using adavosertib and
vorinostat alone and in combination over a range of concentrations,
and found a synergistic effect of the combination (combinational

index [CI] value = 0.069) (Fig. 5b). We also conducted a clonogenic
survival assay to evaluate the effectiveness of each inhibitor individu-
ally and observed a significant decrease in 17.94 WT cells clonogenic
potential when treated with adavosertib, UVI500, MS-275, or vorino-
stat, as shown by a reduction in the number of colonies compared to
control cells (Fig. 5c, d).

Recent studies have shown that HDAC and WEE1 inhibition can
have an immunostimulatory effect through various mechanisms,
including activation of ERVs35–39. Therefore, we analyzed the effect of
adavosertib on the expression of chemokines (CXCL9 and CXCL10)
and PD-L1, as well as the promotion of antigen presentation in cells
treated with IFN-γ relative to the control (i.e., Dimethyl sulfoxide
[DMSO]). We found that 17.94 WT cells stimulated with IFN-γ and
treated with either WEE1 (adavosertib) (2−ΔΔCt: CXCL9 = 924.4;
CXCL10 = 561.52) or HDAC inhibitors (MS-275) (2−ΔΔCt: CXCL9 = 980.77;
CXCL10 = 1,167.86) showed induction of CXCL9 and CXCL10 expres-
sion compared to the control (2−ΔΔCt: CXCL9 = 582.03; CXCL10 =
410.45) (Fig. 5e, f). The level of increase was similar to that observed
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with the EZH2 inhibitor (GSK126) (2−ΔΔCt: CXCL9= 1,306.58; CXCL10 =
817.21), which has been shown to activate interferon-stimulated genes
in different models (Fig. 5e, f). While the HDAC inhibitor MS-275
increased MHC class I HLAs (A-C and E-G) (2−ΔΔCt: 18.52) and PD-L1
expression (2−ΔΔCt: 142.36) in IFN-γ stimulated cells as compared to
control (2−ΔΔCt: class I HLAs = 9.46; PD-L1 = 89.84), adavosertib (2−ΔΔCt:
class I HLAs =10.04; PD-L1 = 76.31) had no effect. This suggests

differences in action mechanisms between the two drugs (Fig. 5g, h).
This is consistent with the EZH2 inhibitor (GSK126), which further
enhanced PD-L1 level (2−ΔΔCt:134.62) after stimulation with IFN-γ in
GSK126-treated cells compared to control cells (DMSO) (2−ΔΔCt: PD-
L1 = 89.84) (Fig. 5h). These data suggest that blocking HDAC or tyr-
osine kinase cell-cycle progression regulator WEE1 may provide ther-
apeutic vulnerabilities through cytotoxic effects and might also
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restore tumor immunogenicity, increasing the effects of immune
checkpoint inhibitors in desert-like WTs.

Discussion
WTs with anaplastic features are a rare and aggressive subset,
accounting for only 10% of cases, and pose significant challenges in
terms of treatment and cure40. Understanding the implications of
these aggressive tumors for prognosis and therapeutic vulnerability is
of utmost importance to guide the development of effective clinical
trials for children affected by this disease. We reported herein the
discovery and the validation of an aggressive subtype ofDAWT, known
as desert-like DAWT, which was characterized by depletion of immune
and stromal cells, TP53 alterations, chromosome instability, unique
endogenous retroviruses expression, and activation of specific onco-
genic signaling pathways. This subtype had a lower level of CD8
cytotoxic lymphocytes, suggesting immune evasion and poor out-
comes. In contrast, we also identified a highly infiltrated DAWT sub-
type with high levels of cytotoxic lymphocytes and a signature of TLS.
This suggests the presence of functional CD8+ cells and good out-
comes, similar to what has been observed in different adults tumors,
such as breast and nonsmall cell lung cancer41. High enrichment of the
TLS signature also indicates its importance in adaptative immune
response42.

Through multiple lines of evidence, we identified a striking
interplay between TP53 alterations, immune infiltration, over-
expression of H3K27methyltransferase EZH2, and activation of several
chromatin remodeling pathways. The transcriptome analysis was
backed up with profiling of the count of T cells, CD3 and CD8, which
confirmed the loss of CD8+ cytotoxic cells in TP53 mutated tumors,
along with increased expression of EZH2. Our findings were further
validated in the TARGET cohort, although patients in this cohort had
not received pretreatment with chemotherapy, unlike the patients in
the SFCE-SIOP cohort. Notably, although no TP53 somatic mutations
were enriched in desert-like DAWT in the TARGET cohort, the TP53
pathway was downregulated, and this was associated with a down-
regulation of cGAS-STING, which senses cytosolic double-stranded
DNA and triggers an antiviral innate immune response.

These findings suggest that mechanisms of immune evasion may
differ between pretreated and untreated DAWT. In the pretreated
tumors, mutant p53 might exert cancer-promoting gain-of-function
activities by disrupting the cytoplasmic DNA sensing machinery and
the cGAS-STING pathway, leading to the suppression of the innate
immune response through altered cytokine production19. In untreated
tumors, dysfunction of the p53 pathway may downregulate the cGAS-
STING pathway and impair the activity and recruitment of T and
myeloid cells, resulting in immune evasion43. Unlike adult cancers,WTs
had low expression of the PD-L1 immune checkpoint. These results
would explain the limited effectiveness of PD-1 inhibitors in this con-
text, although definitive data using larger cohorts are expected to be
reported soon23.

While the composition of the iWT and dWT subtypes within the
DAWT may include samples from other histopathological subtypes
(i.e., FAWT), our IHC analysis suggested that the TME plays a sub-
stantial role in determining the aggressiveness of DAWT tumors
regardless of their initial classification. Specifically, CD8+ and
CD3 + T cells are potent prognostic markers in pretreated anaplastic

WTs. To better understand the characteristics and behavior of these
immune cells in these aggressive tumors, further research is needed.
Single-cell RNA sequencing (RNA-seq) analysis could also provide
insights into the identity of these cells and how they interact with
cancer cells through ligand-receptor interactions. This information
could inform the development of targeted immunotherapies
for WTs.

Our consistent finding of a tight association between EZH2 over-
expression and immune depletion in DAWT provide preliminary evi-
dence suggesting that EZH2 dysregulation contribute to shaping TME
in these aggressive tumors. In several cancers overexpression of EZH2
leads to the silencing genes associated with antigen presentation or
tumor-suppressor genes32. Specifically, EZH2 plays a crucial role in
maintaining the low immunogenicity of bladder cancer cells by tran-
scriptionally repressing cytokines and MHC class II antigen presenta-
tion genes, which leads to immune evasion and further shapes an
immune-cold tumor microenvironment44. Cumulative evidence sug-
gests that EZH2 was instrumental in conferring tumor cells with resis-
tance to immune-mediated destruction, thereby underscoring the
merit of prioritizing EZH2 as a target in immunotherapeutic strategies
to potentially enhance treatment efficacy34.

Therapeutic options for aggressive tumors remain a challenge
due to the lack of available immunocompetent murine models.
Herein, we unraveled the conservation of oncogenic pathways in
aggressive tumors in cell lines, suggesting the possibility to use those
as a model to assess therapeutic options. Therefore, the use of 17.94
anaplastic WT lines—one of the rare models commercially available—
showed the efficacy of WEE1 and HDAC inhibitors and HDAC in this
setting. Notably, we also observed that WEE1 inhibition led to an
increase in interferon-response genes following interferon-gamma
activation; we could not exclude that this effect might be related to
activating ERV as recently described, although this was not directly
tested in our model39. A combination of WEE1 and HDAC inhibitors
has been previously shown to be effective in human acute myeloid
leukemia cells with various genetic mutations, regardless of TP53
mutations, and this might be worth exploring as a treatment option
in this population45.

We acknowledge the limitations of our in vitro work, which is
based on a single cell line and does not fully capture the complexity
of the tumor microenvironment. However, only one anaplastic cell
(17.94) was commercially available, regarding the rarity of the dis-
ease. In addition, due to the unavailability of suitable murine cell
lines or animal models for this specific tumor, conducting in vivo
studies was not feasible to directly address the specific hypotheses of
our study. To mitigate these limitations, we have leveraged multiple
external datasets, including various models, to validate and
strengthen our findings. Future studies should aim to address these
limitations using larger cohorts allowing to better expand upon our
findings.

In summary, we reported on the discovery of desert-like WT with
prognostic and therapeutic relevance. We also provided mechanistic
data on the efficacy of epigenetic therapies using HDAC with/without
WEE1 inhibitors in this setting. Therefore, blocking eitherHDAC and/or
tyrosine kinase cell-cycle progression regulator WEE1 may represent
therapeutic vulnerabilities in these tumors, potentially restoring their
tumor immunogenicity.

Fig. 5 | Testing of various epigenetic drugs. aAssessment of IC50 forWilms tumor
cell line (17.94) when exposed to different epigenetic drugs at a range of con-
centration for 72 h. The bar plot demonstrates ranked IC50 (nM) for different
inhibitors in the 17.94 cell line (n = 4 independent experiments). b Dose-response
effects of drugs combined treatment on the viability of the 17.94 cell line (n = 4
independent experiments). Clonogenic survival assay results depicted as c dot bar
plot and d representative images showing the number of colonies in 17.94 cell line
treated or untreated with various inhibitors (n = 9 biological samples, each with 3

technical replicates). Data was presented as mean± standard deviation, and a two-
sidedMann-Whitney test was applied to measure the P values between the control
cells (DMSO) and the cells treated with various inhibitors. RT-qPCR was preformed
tomeasure themRNA levels for e, f chemokines (CXCL9 and CXCL10); gMHCclass
I surface receptor expression and h PD-L1 expression in 17.94 WT cells either sti-
mulated or left unstimulated with IFN-γ in the absence/presence of various inhi-
bitors (n = 2 independent experiments, with triplicates). Data was presented as
mean ± standard deviation. Source data are provided as a Source Data file.
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Methods
Patients and tumors selection
Clinicopathological data of WTs treated in France through the SIOP-
2001 protocol were collected from children registered in 31 centers of
the Société Française de Cancérologie de l’Enfant (SFCE); available
frozen sample or formol-fixed-paraffin-embedded (FFPE) tissue blocks
for tumor and normal kidney were included in the study. All tumors
were evaluated by the local pathologist and reviewed at the national
level by A.L.C. and L.D. DNA and RNA extractions were performed
according to a standard protocol using the phenol-chloroform tech-
nique. Informed consent was obtained from all participating families
to conduct the study. The study has been approved by the ethical
committee of the Pitié-Salpêtrière Hospital (IDF-6, Ile de France) and
conducted in accordance with the Helsinki Declaration. FFPE tissue
blocks were used for IHC. Out of a total number of 180WT, 37 (20.6%)
caseswere classified ashigh-risk, 141 (78.3%) as intermediate risk, and 2
(1.1%) as low-risk. Among those, 21 (11.6%) harbored focal (n = 4) or
diffuse anaplasia (n = 17); those cases were subsequently used in this
study for extensive genetic and/or transcriptomic analysis. Out of the
21WTwith anaplasia, 9DAWTand3 FAWThadmatchednormal kidney
samples available. DNA has been extracted from all samples using
DNeasy Blood & Tissue Kit (Quiagen) from 10–30mg of tissues
according to manufacturer’s instructions. For samples with available
frozen tissues following DNA extraction, RNA has been extracted from
additional 10–30mg of tissues using the RNeasy Kit (QiagenQIAGEN)
according to the manufacturer’s instructions. Quality control (QC) of
extracted nucleic acids was performed using an Agilent 2100 Bioana-
lyzer. Twelve samples with matched germline and tumor DNA passed
the QC and were subjected to WES. The remaining nine samples have
either low quantity or quality allowing to perform WES, and were
therefore used for targeted sequencing. RNA has been successfully
extracted from15 samples but only 10 samples passedAgilentQC (RNA
integrity number > 7) andwere therefore used for subsequent RNA-seq
profiling. Clinicopathological details of those cases are reported in
Supplementary Data 1. Eleven cases that have FFPE blocks are available
for immune markers analysis including CD8 and CD3 counts. Follow-
up and clinical data were collected in the SIOP 2001 database. The
median follow-up time for the study cohort was 70 months (inter-
quartile range 34–87 months).

WTs treated with preoperative chemotherapy
A total of 53 pretreated WTs (11 anaplastic and 42 non-anaplastic)
included in the French SIOP-2001 protocol were used to investigate
the distribution and the prognostic role of TILs in WTs. Specifically,
TIL’s (CD8 and CD3) architecture and counts, as well as immune
checkpoint proteins (PD-1 and PD-L1) expression were analyzed.

RNA sequencing
The total RNA for 10 cases (Supplementary Data 1) was converted
into a library of template molecules for sequencing on the Illumina
HiSeq 2000 according to the NuGen Ovation RNA-seq System V2
protocol. In brief, first, single-stranded cDNA was synthesized from
100 ng of DNase1-treated total RNAusing amix of DNA/RNA chimeric
primers that hybridize to both the 50 portions of the poly (A)
sequence and randomly across the transcript. Second, strand
synthesis produced double-stranded cDNA, which was amplified
using single-primer isothermal strand-displacement amplification.
The resultant cDNA was fragmented to 200 bp (mean fragment size)
with the S220 Focused-ultrasonicator (Covaris) and used to make
barcoded sequencing libraries on the SPRI-TE Nucleic Acid Extractor
(Beckman-Coulter). Libraries were quantitated by qPCR (KAPA Sys-
tems), multiplexed and sequenced—four samples per lane—on the
HiSeq2000 using 75 bp paired-end sequencing. The resulting data
were analyzed with the current Illumina bcl2fastq2 pipeline (v2.20)
to generate raw FASTQ files. The raw, paired-end reads were aligned

to the human reference genome, GRCh38/hg38, using MOSAIK
(v1.1.0021) alignment software. MOSAIK works with paired-end reads
from Illumina HiSeq 2000 and uses both a hashing scheme and the
Smith-Waterman algorithm to produce gapped optimal alignments
and to map exon junction-spanning reads with a local alignment
option for RNA-seq. The resulting alignments were then saved as a
standard bam file.

We then counted the mRNA-mapped reads annotated in GEN-
CODE25 to generate the raw counts for each gene using the HTSeq-
count script distributed with the HTSeq package. As a comparator,
randomly selected 15 DAWTs and 15 FHWTs derived from previously
published RNA-seq data46, with available expression profiles (Sup-
plementary Data 3). As an additional control, The Cancer Genome
Atlas level-1 raw data was authorized to assess and a dataset com-
prised of ccRCC (n = 15 cases)47, papillary renal cell carcinoma (PRCC;
n = 15 cases)48, and ChRCC (n = 15 cases)49 listed in Supplementary
Data 3 was also randomly selected. Another 10 ccRCC samples were
collected from Pitié-Salpêtrière Hospital (PSL), resulting in four kid-
ney cancer types with a total of 95 samples. To ensure comparability,
we analyzed the data using the same framework for sequencing
alignment and quantification with the same genome annotation. For
all samples with raw count data, the number of fragments per kilo-
base of non-overlapped exon per million fragments mapped was
computed first and transferred into transcripts per kilobase million
(TPM) values, which are more comparable between samples50. All
TPM values went through log2 transformation and were combined as
a single cohort. To mitigate potential batch effects introduced by
different cohorts, we employed the ComBat algorithm, a function
included in the R package sva (v3.46.0), using default parameters.
ComBat is an empirical Bayes framework that estimates and removes
batch-specific variability, thus allowing us to effectively correct for
any potential batch effects introduced by different cohorts. We
included the cohort as a covariate in our statistical models to further
account for any variability associated with the different cohorts.
Principal component analysis was further performed to confirm the
removal of cohort-specific effects.

Whole exome-sequencing and somatic mutation detection
WES was performed on genomic DNA derived from paired tumor-
normal samples related to those 12 cases using Agilent human V5
(51Mb) capture and the HiSeq2000 sequencing platform (Supple-
mentary Data 1). Average coverage was ~100x for cancer samples and
50x for matched normal. After raw paired-end reads from WES were
aligned/mapped to the human genome reference (hg38) and PCR
duplicate reads were removed by MOSAIK aligner, we then analyzed
the resulting alignments using the Bayesian model-based software
GigaBayes/FreeBayes that enables the efficient analysis of billions of
aligned short-read sequences. The program evaluates each aligned
base and base quality value at each position to indicate putative single-
nucleotide variations (SNVs) and short insertions/deletions (indels),
and their corresponding SNV probability value (PSNV). Base quality
values are converted to base probabilities corresponding to each of
the four possible nucleotides. Using a Bayesian formulation, a PSNV (or
indel probability value, as appropriate) is calculated as the likelihood
that multiple different alleles are present between the reference gen-
ome sequence and the reads aligned at that position. If the probability
value exceeds a prespecified threshold, the SNV or indel candidate is
reported in the output. In this study, we used a PSNV cutoff value (0.9)
to define a high-confidence SNV or short indel candidate51,52. We fil-
tered out all known SNVs/indels in the University of California, Santa
Cruz (UCSC) dbSNP 135 and 1000 Human Genome Project single
nucleotide polymorphisms (SNP) databases and kept any mutations,
which are in the COSMIC database, curated by the Wellcome Trust
Sanger Institute. The variation classification for each mutation was
annotated by ANNOVAR (v2020Jun08) (Supplementary Data 2)53.

Article https://doi.org/10.1038/s41467-023-43290-3

Nature Communications |         (2023) 14:7884 10



Furthermore, we evaluated TP53 mutations status using Sanger
sequencing in the additional 9DAWTandFAWT forwhichWESwas not
performed54. All TP53 somatic mutations detected by WES were also
confirmed by Sanger sequencing.

External WT cohorts for validation
For in-silico validation, twoexternalWTcohortswere used. Thefirst
validation cohort was retrieved from the TARGET initiative
(accession number phs000218/DS-PEDCR), containing 114 WT
cases with poor outcomes and for which transcriptome expression
profiles and clinical outcomes were available. The TARGET-WT
cohort included 42 DAWTs and 72 FHWTs that relapsed. The tran-
scriptome raw count data were converted to TPM values accord-
ingly. Genetic alterationof theTARGET-WTcohortwasdownloaded
from the cBioPortal (https://www.cbioportal.org/). The second
validation cohort was downloaded from the GEO (accession num-
ber GSE156065) according to the literature55. The GEO-WT dataset
encompasses a total of 12 models; four out of these 12 WT models
presented with anaplastic features, while the remaining eight
models had no anaplastic features. We extracted transcriptome
expression data in TPM values and corresponding model informa-
tion for the GEO-WT dataset.

Unsupervised consensus clustering for kidney cancers pooled
mRNA profile
According to the upper decile median absolute deviation, genes with
high variation were identified for unsupervised consensus clustering.
We then performed unsupervised hierarchical clustering with k = 5 as
the number of clusters, also the number of kidney cancer types, with a
distancemeasurementof 1-Pearson’s coefficient andWard’s linkage for
each run, and the final hierarchical clustering based on the consensus
matrix. The consensus process randomly extracted 90% of features
and samples for 500 perturbations.

Estimation of immune/stromal cells and tumor purity in WTs
The presence of infiltrating immune/stromal cells and tumor purity in
tumor tissue was estimated by R package “estimate” (v1.0.13)56. As
there were cases with relatively high tumor purity in the TARGET-WT
cohort, we reasoned that samples with tumor purity greater than 0.98
were not robust for estimatingmicroenvironment cell abundance. As a
result, 96 out of 114 cases with TP53 mutation status were kept in this
study (Supplementary Data 4).

Calculation of microenvironment cell abundance
We modified two gene signatures, LM2257 and MCPcounter (v1.2.0)58,
to construct our compendium59. As LM22 does not contain signatures
related to fibroblasts and endothelial cells, extra 40 genes were added
to account for these cells (32 genes for endothelial cells and8genes for
fibroblasts) fromMCPcounter to our compendium,which consisted of
364 genes representing 24 microenvironment cell types (Supplemen-
tary Data 5). We used gene set variation analysis on these gene sets to
generate enrichment scores for each cell by using the R package GSVA
(v1.46.0). The signature of TLS was retrieved from the literature60, and
the corresponding enrichment score for TLS was presented as a geo-
metric mean value. To describe the constituent pattern (i.e., relative
cell proportions) of microenvironment cell subsets within clusters,
tumor purity was used to adjust the enrichment scores of each
microenvironment cell subset. The adjusted enrichment score was
calculated as the enrichment score divided by (1 - tumor purity)61.
Major cellular compartments for epithelial tumors were deconvolved
using TR4, a signaturematrix consisting of bulk immune cell (CD45+),
epithelial (EPCAM+), endothelial (CD31+), and fibroblast (CD10+)
populations62. To impute cell type proportions, CIBERSORTx was
applied independently to both SFCE and TARGET cohorts with default
parameters63.

Copy number variation analysis
Recurrent focal somatic copy number alterations were detected and
localized using GISTIC2.0 through the GenePattern platform (https://
www.genepattern.org/) with the thresholds of copy number amplifi-
cations/deletions being equal to ±0.2 and q-value threshold being
equal to 0.25 with a confidence level of 75%64. FGA, which represents
the percentage of genome that has been affected by copy number
gains or losses, was calculated for a sample of ourWT cohort based on
copy number segment data as follows:

R= copy number of segments=2 ð1Þ

FGA=Br=B ð2Þ

It is the fraction of genome with log2(copy number) larger than
0.2 versus genome with copy number profiled where Br denotes the
number of bases in segments with log2R

�
�

�
�>0:2 and B represents the

number of bases in all segments65. FGA scores of the TARGET-WT
cohort were directly retrieved from cBioPortal66.

Differential expression and function enrichment analyses
Differential expression analysis based on raw count data was con-
ducted by R package edgeR (v3.40.0) where the Benjamini-Hochberg
method was implemented to adjust nominal P values (FDR) for
multiple tests. For GSEA based on transcriptome expression data, we
prepared a pre-ranked gene list according to the descending ordered
log2FoldChange value derived from differential expression analysis;
we then leveraged the R package clusterProfiler (v4.6.0) to deter-
mine functional enrichment based on the Molecular Signature
Database (MSigDB)67,68. Additionally, EZH2 partners retrieved from
the term KAMMINGA_EZH2_TARGETS in MSigDB were identified
from a stem cell gene network analysis69, where coregulated and
positively correlated gene sets were identified as EZH2 targets or
partners. The corresponding enrichment score was calculated using
a single-sample GSEA (ssGSEA) approach through the R package
GSVA (v1.46.0)70.

Transcriptomic similarity
We performed subclass mapping through the GenePattern platform
to evaluate the transcriptomic similarity between subclasses
from independent data sets71. Mapping result is represented as a
subclass association matrix filled with P-values for each subclass
association.

Regulon analysis
We used the R package RTN (v2.22.0) to reconstruct transcriptional
regulatory networks (regulons) including a total of 71 candidate reg-
ulators that were relevant to cancerous chromatin remodeling72,73.
Specifically, mutual information analysis and Spearman rank-order
correlation computed the possible associations between a regulator
and all potential targets from the transcriptome expression profile,
and permutation analysis was used to erase associations. The FDR
threshold was set as 0.01 for the SFCE-WT cohort and 0.00001 for the
TARGET-WTcohort because ofdifferent sample sizes. A bootstrapping
strategy removed unstable associations through 1000 times of
resampling with a consensus bootstrap greater than 95%. Data pro-
cessing inequality filtering eliminated the weakest associations in the
triangles of two regulators and common targets. Individual regulon
activity was estimated using a two-sided GSEA.

Drug sensitivity prediction
Expression profile and drug sensitivity data of human cancer cell lines
(CCLs) were downloaded from the largest publicly available pharma-
cogenomics database: Genomics of Drug Sensitivity in Cancer (GDSC)
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(https://www.cancerrxgene.org/). The half maximal inhibitory con-
centration (IC50) was provided as a measure of drug sensitivity, and
lower IC50 values indicate increased sensitivity to treatment. A total of
727 CCLs with both expression and drug sensitivity records were
identified. K-nearest neighbor imputation was applied to impute the
missing IC50 values. We then employed the R package pRRophetic
(v0.5) to predict the chemotherapeutic sensitivity for each WT case
withdefault settings74; the estimated IC50 of each sample treatedwith a
specific chemotherapy drug was obtained by ridge regression, and
prediction accuracy was measured through tenfold cross-validation
with the GDSC training set.

Immune infiltrate assessment
The immunohistochemical characterization of the immune response
was performed using whole-slide staining. The FFPE samples were
cut into 4 µm thick sections and placed on glue-coated glass slides for
IHC. Sections were deparaffinized in xylene, rehydrated sequentially
in ethanol, and placed into a phosphate-buffered saline solution
(PBS; pH 7.4). The following antibodies were tested: CD3 and CD8.
Details of antibodies are summarized in Supplementary Table 1. The
latter immunoreactions were evaluated by two pathologists (L.D. and
A.L.C.), who chose a minimum of 10 HPF (x400) representative of
each case.

IHC assessment of EZH2
Todetermine the global levels of EZH2 in tumors,weperformedTissue
Microarrays (TMAs), including at least three replicate tumor samples
of 4mm spots taken from donor tissue blocks in a highly representa-
tive fashion. We analyzed the level of the EZH2 using the Abcam
antibody (ab191080). The level of staining, referring to the percentage
of positive cells showing nuclear positivity, was assessed indepen-
dently by two pathologists (L.D. and A.L.C.), who were blinded to
clinical and pathological data.

Cell viability assays
WT 17.94 cell line was chosen as was one of the rare anaplastic Wilms
cell lines commercially available75. The 17.94 cell line (cat no. ACC 741)
was purchased from Leibniz-Institut DSMZ-Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH. The identity of the cell line
was confirmed by short tandem repeat (STR) analysis. The 17.94 cells
were tested negative for Mycoplasma and were maintained in media
(DMEM [GIBCO, 41965-039], 10% FBS [PAN biotech, P30-3602], MEN-
NEAA [Gibco, 11140-035], 1mMPyr-Na [Gibco, 11360-039], and Pen
strep [Gibco, 15140-122]). The vorinostat (cat. no. HY-1022), entinostat
(MS-275; cat. no. HY-12163), GSK126 (cat. no. HY-13470), tazemetostat
(EPZ-6438; cat. no. HY-13803), adavosertib (cat. no. HY-10993), cer-
alasertib (cat. no. HY-19323), and Olaparib (cat. no. HY-10162) inhibi-
tors were purchased from MedChemExpress. The UVI5008 (triple
inhibitor) was given as a gift by Hinrich Gronemeyer (IGBMC). All the
inhibitorsweredissolved inDMSO for the study. The 17.94 cell linewas
trypsinized (Trypsin-EDTA [Gibco, 25200-072]), counted (5000 cells),
and seeded in a 96-well plate on day 0. After 48 h incubations, the
media was replaced with the 100 µl media with a required concentra-
tion of inhibitor or DMSO vehicle (as control sample) per well. To
calibrate the IC50, different concentrations (~20 nM to 80 µM, on a
logarithmic scale) for each inhibitor were applied to the 17.94 cell line.
Each experiment was performed in quadruplicate (n = 4 independent
experiments) and kept in an incubator for 72 h at 37 °C, supplemented
with 5%CO2. The assaywas stopped by adding PrestoBlueCell Viability
Reagent (cat. no. A13261, Invitrogen) to each well following the man-
ufacture protocol. The output was read with a microplate reader
(BertholdMithras LB940). For statistical analysis, IC50 was obtained by
fitting four-parameter logistic curves using the ratio obtained for each
inhibitor absorbance value to the control using GraphPad Prism
(version 9).

Combinational effect of WEE1 inhibitor and vorinostat on WT
cell line
The 17.94 cell lines were plated in 96-well plates according to the
methodology mentioned in the Cell viability assay section. To cali-
brate IC50, a range of concentration (~20 nM to 80 µM, on a loga-
rithmic scale) was selected. The cells were treated alone or in
combination with the same concentrations of vorinostat and ada-
vosertib. They were kept for 72 h in the incubator at 37 °C supple-
mented with 5% CO2. To end the assay, PrestoBlue cell viability
reagent (cat. no. A13261, Invitrogen) was added according to manu-
factures instructions and the plates were read out using the micro-
plate plate reader (Berthold Mithras LB940). Each experiment was
performed in quadruplicate (n = 4 independent experiments); and
the IC50 obtained from biological experiments was used to calculate
the CI using the formula below:

CI =
D1

Dx1
+

D2

Dx2
ð3Þ

Here, D represents the combined concentration of the drugs, and
Dx shows the concentration of single drug alone. The CI value < 1
indicates synergism, = 1 shows additivity, and > 1 represents antag-
onism, respectively76–78.

Clonogenic survival assessment
WT 17.94 cells were seeded at 5000 cell density in six-well plates
and kept at 37 °C supplemented with 5% CO2. After 48 h of incu-
bation, the cells were treated with various inhibitors according to
the IC50 obtained for each inhibitor. The cells were incubated for
48 h with the various inhibitors and later media was replaced with
the fresh one. The cells were kept in the incubator for an additional
20 days by adding 1ml of media after three days. At the end of the
assay, the media from cells were removed, washed with cold PBS
(1x), and fixed with 3.4% formaldehyde. The colonies were stained
with crystal violet. Later pictures were taken and then the colonies
were counted using the ImageJ (1.53n). Each biological experiment
was performed in triplicate. The data is presented as mean ±
standard deviation.

Cell line testing with drugs with/without IFN-γ stimulation
WT 17.94 cells were randomly divided into four groups: 1) a control
group that was not treated with an inhibitor and stimulated with the
IFN-γ; 2) cells treated with the inhibitor using IC50 concentration (for
48 h); 3) cells stimulated with the IFN-γ (20 ng) (for 12 h); 4) cells
treated with the inhibitor (for 48h) and stimulated with the IFN-γ
(20 ng) (for12 h). For each group, two biological experiments were
performed in triplicates. The cell lysates were collected for RNA
extraction using standard-based TRIzol RNA extraction according to
manufacturer instructions. Reverse transcription-quantitative PCR
(RT-qPCR) was performed using the SuperScript™ IV Reverse Tran-
scriptase (Invitrogen, 18090050) using random hexamer primer
(Invitrogen, SO142). The RT-qPCR was performed using a 20μL reac-
tion system in a real-time PCR machine with SYBR green master mix
(LightCycler-480SYBR, Roche) according tomanufacture instructions.
The relative expression of the genes CXCL9 (F: TCAATTTTCTCGCAG-
GAAGG; R: ACCAACCAAGGGACTATCCAC), CXCL10 (F: CGTGGA-
CAAAATTGGCTTG; R: GCTGTACCTGCATCAGCATTAG), PD-L1 (F:
GGTTGTGGATCCAGTCACCT; D: TGTGCTGGTCACATTGAAAA), and
HLA class I (covering HLAs A-C and E-G; (F: CCTACGACGGCAAGGAT-
TAC; R: TGCCAGGTCAGTGTGATCTC) were normalized according to
housekeeping gene Actin (F: ACATCTGCTGGAAGGTGGAC; R:
CCCAGCACAATGAAGATCAA) by calculating the standard 2−ΔΔCt

method. Each biological experiment was performed in triplicate. The
data is presented as mean ± standard deviation.
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Statistical analyses
All statistical tests were executed by R (v4.2.2). The Student’s t-test or
Mann-Whitney test were used for analyzing continuous data, while
Fisher’s exact test was used for analyzing categorical data. Spearman’s
coefficient was used for evaluating correlations between two con-
tinuous variables. Survival rates were analyzed using Kaplan-Meier
curves, with differences determined using a log-rank test through R
package “survival” (v3.4.0). Relationships between lymphocyte count
and patient survival were computed using R package survminer
(v0.4.9) where patients were stratified using an optimal cutoff deter-
mined by the maximally selected rank statistics. Mutual exclusivity
analysis was conducted using a one-side Fisher’s exact test. The sta-
tistical significance of the overlap between two groups of genes was
estimated by calculating the RF and associated probability. The RF is
calculated as the ratio of the number of overlapping genes to the
expected number of overlapping genes based on the number of genes
in each group (i.e., differentially expressed genes) and the total num-
ber of genes in the genome that had robust expression (raw count > 0
in all the samples) across different cohorts (16,475 genes annotated by
GENCODE25). RFs of > 1, <1, and 1 respectively indicate more overlap
than expected from two independent groups, less overlap than
expected, and that the twogroups have the number of genes expected
for independent groups of genes. The probability of overlapping was
estimated by exact hypergeometric probability or normal approx-
imation when the exact hypergeometric probability was difficult to
calculate. For unadjusted comparisons, a P value < 0.05 was con-
sidered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw RNA-seq data of the French SIOP-2001 WT cohort have been
deposited in the GEO database under accession code GSE224266. The
variant call data of French SIOP-2001 WT study are provided in Sup-
plementary Data 2; other data required to verify the published results
are provided as Source Data. The underlying raw WES data are not
available for this manuscript because the patients’ family did not
consent to the release, sharing or distribution of the data. The RNA-seq
data for TARGET-WT cohort under accession code phs000218/DS-
PEDCR are available under controlled access [https://gdc.cancer.
gov]46. The genetic alteration data for TARGET-WT cohort is publicly
available in the cBioPortal database under project Pediatric Wilms’
Tumor (TARGET, 2018) [https://www.cbioportal.org/]46. The remaining
publicly available data used in this study are available in the GEO
database under accession code GSE15606555, in the ArrayExpress
database under accession code E-MTAB-361079, and in the GDSC
database for drug screening data [https://www.cancerrxgene.org/]80.
The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with
this paper.

Code availability
The central script and customized functions used in this study are
available on the GitHub website at https://github.com/xlucpu/WTs/
tree/main.
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