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An environmental justice analysis of air
pollution emissions in theUnited States from
1970 to 2010

Yanelli Nunez 1,2 , Jaime Benavides1, Jenni A. Shearston1,3, Elena M. Krieger2,
Misbath Daouda1,3, Lucas R. F. Henneman 4, Erin E. McDuffie5, Jeff Goldsmith6,
Joan A. Casey1,7 & Marianthi-Anna Kioumourtzoglou1

Over the last decades, air pollution emissions have decreased substantially;
however, inequities in air pollution persist. We evaluate county-level racial/
ethnic and socioeconomic disparities in emissions changes from six air pol-
lution source sectors (industry [SO2], energy [SO2, NOx], agriculture [NH3],
commercial [NOx], residential [particulate organic carbon], and on-road
transportation [NOx]) in the contiguous United States during the 40 years
following theCleanAir Act (CAA) enactment (1970-2010).Wecalculate relative
emission changes and examine the differential changes given county demo-
graphics using hierarchical nested models. The results show racial/ethnic
disparities, particularly in the industry and energy generation source sectors.
We also find that median family income is a driver of variation in relative
emissions changes in all sectors—counties with median family income >$75 K
vs. less generally experience larger relative declines in industry, energy,
transportation, residential, and commercial-related emissions. Emissions from
most air pollution source sectors have, on a national level, decreased following
the United States CAA. In this work, we show that the relative reductions in
emissions varied across racial/ethnic and socioeconomic groups.

The United States (US) has seen reductions in air pollution emissions
from various source sectors since the enactment of the Clean Air Act
(CAA) in 1970, contributing to improving air quality substantially1–3.
However, studies show that racial/ethnic and socioeconomic inequi-
ties in air pollution exposure persist across the US despite the
nationwide downward trend in air pollution4–7, indicating inequities in
air pollution emissions reductions.

Environmental justice studies in air pollution have heavily relied
on modeled ambient air pollution concentrations4–6,8–10. Unlike
measured air pollutant concentrations, modeled concentrations can

more comprehensively cover geographical regions, including those
where air quality monitors are sparse11. However, pollution con-
centrations alone do not provide information about specific air
pollution sources contributing to the observed disparities. A couple
of studies have addressed this knowledge gap by modeling source-
specific air pollution concentrations7,12. The disconnect between the
studied air pollution concentrations and air pollution sources pre-
sents a barrier to developing efficient and economically feasible
regulatory strategies to address air pollution inequities. Equitable
emissions decrease, i.e., greater reductions for overburdened
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groups, can then facilitate a more just reduction of air pollution
concentrations and exposures.

Most evidence on targetable air pollution sources comes from
cross-sectional analyses. Several studies have used residential
proximity to pollution sources as a metric to evaluate inequities.
These studies have found racial/ethnic and socioeconomic dis-
parities in the spatial distribution of industrial facilities6,13, landfills,
hazardous waste sites14,15, gas16 and coal-fired power plants17,
roadways18, and other pollution sources19,20. Residential proximity
studies are generally cross-sectional and often focus on a single air
pollution source sector. Other studies have evaluated inequity in
multiple air pollution sources by leveraging data from local emis-
sions inventories, but these analyses also focused on a single time
point7. Thus, they do not provide information about temporal
inequity trends in emissions changes.

In this work, we evaluated county-level racial/ethnic and
socioeconomic disparities in air pollution emissions changes in the
contiguous US from 1970 to 2010 in the transportation (nitrogen
oxides [NOx]), agriculture (ammonia [NH3]), residential (particulate
organic carbon), commercial (NOx), industry (sulfide dioxide [SO2]),
and energy (NOx and SO2) sectors. We used county-level data on
race/ethnicity and socioeconomic status (SES) from the decennial
Census (1970–2010)—race/ethnicity group definitions were based
on the Census definition in each decennial. We leveraged air pollu-
tion emissions data from the Community Emissions Data Global
Burden of Disease Map (CEDGBD-MAP) to estimate county-level rela-
tive emissions changes for the six air pollution source sectors, using
specific pollutant tracers per source sector. CEDGBD-MAP is an air
pollution emissions inventory that uses emissions data from local
and regional inventories and activity data to calculate gridded
emissions estimates for the globe from 1970 to 201721. Using hier-
archical models, we evaluated disparities in emissions changes by
modeling the association between county-level demographics and
the decennial relative change in emissions. We focused on relative
emissions changes because, to support equity, emission decreases
should be relative to existing emissions levels in each county20. That
is, places with higher pollution levels should have higher emissions
reductions. We found racial/ethnic disparities in emissions changes,
particularly in the industry and energy sector. We also found that
median family income is a driver of emissions changes in all air

pollution source sectors—counties with median family income
>$75 K experienced larger declines in industry, energy, transporta-
tion, residential, and commercial-related emissions.

Results
Trends in demographics
From 1970 to 2000, the US grew in racial/ethnic diversity. Nationwide
county average Hispanic population percentage increased from 3.2 to
6.2%, the Asian population from 0.3 to 3.4%, and the American Indian
population from 0.9 to 1.6%, whereas the percentage Black population
decreased from 9.1 to 8.8%. During the study time, the average county
White population percentage was 87.5%. The average county percent
poverty decreased from 20.4 to 13.7%, but unemployment increased
from 4.5 to 5.8%. Average county-level median family income (2010
adjusted dollars) increased from $45,400 to $55,100 and the median
property value (2010 adjusted dollars) increased from $33,700 to
$110,200. Table 1 presents summary statistics for the demographic
variables at each decennial included in the study (1970, 1980, 1990,
and 2000) and Supplementary Fig. 1 shows the Spearman correlation
coefficients among these variables.

Trends in air pollution emissions
We observed variability in emission changes across counties with
variation in both the magnitude and direction of change (Fig. 1 and
Supplementary Dashboard). On average, air pollution emissions
across the US decreased substantially from 1970 to 2010 from all
source sectors we considered except for agriculture NH3 and resi-
dential particulate organic carbon (OC). We observed the most
pronounced emission decreases for SO2 from industry and energy,
which fell from amean of 5.6 to 0.6 (−89.3%) and 9.0 to 3.0 (−66.7%)
kg/km2/day, respectively, over the 40 years. Nationwide average
emissions of NOx from transportation and energy decreased more
moderately from 5.2 to 2.2 (−57.7%) and 2.5 to 1.5 (−40.0%) kg/km2/
day, respectively. NOx emissions from commercial sources
decreased from 0.3 to 0.2 (−50.0%) kg/km2/day. Nationwide average
emissions of NH3 from agriculture increased from 0.7 to 1.3 (85.7%)
kg/km2/day, and OC emissions from the residential source sector
remained constant at 0.1 kg/km2/day (Table 2 and Supplementary
Fig. 2). The average decennial relative emission changes for each of
the evaluated air pollutants are presented in Table 3.

Table 1 | Variables of interest and potential confounders

1970, N = 3105 1980, N = 3108 1990, N = 3110 2000, N = 3109

Variables of interest

% White 89.7 (86.7, 99.4) 88.4 (83.1, 98.8) 87.4 (81.0, 98.4) 84.8 (77.2, 96.7)

% Black 9.1 (0.1, 11.3) 8.7 (0.1, 10.4) 8.7 (0.2, 10.1) 8.8 (0.3, 10.1)

% Asian 0.3 (0.1, 0.3) 0.4 (0.1, 0.4) 2.4 (0.3, 1.9) 3.4 (0.6, 3.5)

% American Indian 0.9 (0.0, 0.2) 1.2 (0.1, 0.5) 1.5 (0.2, 0.6) 1.6 (0.2, 0.8)

% Hispanic 3.2 (0.0, 1.9) 3.8 (0.5, 1.8) 4.5 (0.4, 2.5) 6.2 (0.9, 5.1)

% Poverty 20.4 (12.1, 26.3) 15.4 (10.3, 19.0) 16.2 (10.9, 19.9) 13.7 (9.2, 16.8)

% Unemployment 4.5 (3.0, 5.5) 6.8 (4.5, 8.5) 6.6 (4.6, 8.1) 5.8 (4.0, 6.9)

Median Family Income (×$1000) 45.4 (38.2, 51.2) 46.9 (40.1, 52.9) 48.2 (40.5, 53.8) 55.1 (46.8, 60.9)

Median Property Value (×$1000) 33.7 (23.2, 40.8) 98.3 (72.9, 113.0) 91.3 (62.5, 101.8) 110.2 (75.7, 126.3)

Covariates

Population density (population/km2) 82.5 (5.6, 28.2) 83.7 (6.3, 33.8) 86.0 (6.2, 35.7) 93.3 (6.7, 39.8)

Urbanicity

Metropolitan 675.0 (21.7%) 788.0 (25.4%) 836.0 (26.9%) 907.0 (29.2%)

Micropolitan 1577.0 (50.8%) 1583.0 (50.9%) 1537.0 (49.4%) 1525.0 (49.1%)

Non-urban 853.0 (27.5%) 737.0 (23.7%) 737.0 (23.7%) 677.0 (21.8%)

County-level annual mean (interquartile range, IQR) for continuous variables and percent observations for the categorical variables. N = total number of counties at each decennial. Race/ethnicity
percentages do not add up to 100% because race groups include Hispanic and non-Hispanic populations.
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County-level disparities by racial/ethnic groups and
socioeconomic status
In a longitudinal analysis from 1970 to 2010, we evaluate the rela-
tionship between relative decennial emissions changes and racial/
ethnic groups (White, Black, Asian, American Indian, Hispanic) as well
as socioeconomic indicators (median family income, median property
value, percent poverty, percent unemployment) at the county level
across the United States. Figures 2 (racial/ethnic) and 3 (socio-
economic) show all the association curves and we describe our results
below. Numeric effect estimates for the linear associations are in
Supplementary Table 1. Note that for both linear and nonlinear asso-
ciations, a positive association indicates percentage point increases in
the relative emissions change—i.e., larger relative emissions increases

(e.g., from 5 to 10%) or smaller emissions decreases (e.g., from −10 to
−5%)—per increase in the demographic variable of interest. Conversely,
a negative association indicates percentage point decreases in the
relative emission change—i.e., smaller increases (e.g., from 10 to 5%) or
more prominent decreases (e.g., from −5 to −10%)—per increase in the
demographic variable of interest.

Industry: SO2 emissions
The association between each racial/ethnic group and the relative
decennial change in industrial SO2 emissions was nonlinear, except for
the Black population percentage. We found a −1.35 percentage point
(pp) (95% CI: −2.09, −0.60) decrease in the industrial SO2 relative
emissions change per a 10 pp increase in the proportion of county-
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Fig. 1 | Pollutant emissions: County-level relative decennial emissions changes
(percentages) from 1970 to 2010 for the seven air pollutants evaluated in
the study. Darker tone colors indicate larger relative emissions increases or lower

relative emissions decreases. See Supplementary Dashboard formaps of emissions
(kg/km2/day) for each pollutant and during each year. This figure used county
spatial shape files obtained from NHGIS.

Article https://doi.org/10.1038/s41467-023-43492-9

Nature Communications |          (2024) 15:268 3



level Black population; we also found an overall negative nonlinear
association between percent White population and the relative SO2

emissions change. However, the proportions of American Indian and
Hispanic populations were positively associated with the relative
change in industrial SO2 emissions in population percentages above
~35%. We found no clear association between county-level Asian
population percentage and the change in industrial SO2 emissions.

The associations between socioeconomic variables and the
change in industrial SO2 emissions were all nonlinear. Percent unem-
ployment and poverty were positively associated with the relative
decennial change in industrial SO2 emissions, with stronger associa-
tions at higher percentages. In the case of median family income, the
associationwas negative, with a stronger association below ~$50K.We
found no clear association between median property value and the
relative change in industrial SO2 emissions.

Energy: SO2 and NOx emissions
We found no associations between the race/ethnicity groups and the
change in energy SO2 emissions.

The association between each of the racial/ethnic groups and the
change in energy NOx emissions were all linear except for the Hispanic
population percentage. A 10 pp increase in the White or Black popu-
lation percentagewas associatedwith a−9.25 pp (95%CI: −15.01,−3.48)
and −17.43 pp (95% CI: −23.88, −10.98) decrease in energy NOx relative
emissions change, respectively. However, a 10pp increase in the Asian
population percentage was associated with an 18.52 pp (95% CI: 7.41,
29.63) increase in energy NOx relative emissions change, and a 10 pp
increase in the American Indian population percentage with an 11.78
pp (95% CI: 4.20, 19.38) increase. The Hispanic population was also
positively associated with the change in energy NOx relative emissions
change, with a slightly stronger association at high Hispanic popula-
tion percentages.

The associations between socioeconomic variables and the
change in energy SO2 emissions were all nonlinear. Percent unem-
ployment was positively associated with the relative decennial change
in energy emissions below ~5% and null at higher unemployment per-
centages. Percent poverty was positively associated with the outcome,

and this association became stronger with increasing percent poverty
levels. Median family income was negatively associated with the rela-
tive change in energy SO2 emissions but the association plateaued
above ~$50K. The median property value was also negatively asso-
ciatedwith the relative change in energy SO2 emissions but only below
~$100K; above that, there was no association.

The associations between socioeconomic variables and the
change in energy NOx emissions were also all nonlinear. Percent pov-
erty was positively associated with the relative change in energy NOx

emissions below 20% poverty and negative above this value. Median
family income was negatively associated with the relative change in
NOx emissions above ~$50K but null for lower income values. We
found no association between percent unemployment or median
property value with the relative emissions change in energy NOx.

Agriculture: NH3 emissions
We found no associations between county-level White or Asian per-
centage population and the relative decennial change in agricultural
NH3 emissions. However, a 10 pp increase in the American Indian
percentage population was linearly associated with a 0.33 pp (95% CI:
−0.02, 0.67) increase in the relative change of agriculture NH3 emis-
sions. We also found a positive nonlinear association between the
Hispanic population percentage and the relative change in agricultural
NH3 emissions, with steeper slopes in high county-level Hispanic
population percentages. The Black population percentage was non-
linearly positively associated with the relative change in agricultural
NH3 emissions in population percentages below 50%. Above that
percentage, the association was null.

The associations between socioeconomic variables and the
change in agricultural NH3 emissions were all nonlinear. We found a
positive association between percent unemployment and the relative
change in agricultural NH3 emissions in unemployment levels below
~7% but a negative association at higher unemployment percentages.
We found a negative association between percent poverty and the
relative decennial change in NH3 emissions. Conversely, median family
income was positively associated with the relative change in NH3

emissions, but the association plateaued andwas null above $50K.We
also found a positive association between median property value and
the relative decennial change in agriculture NH3 emissions above
~$750K.

On-road transportation: NOx emissions
We found a negative nonlinear association between county-level Asian
population percentage and the relative decennial change in transpor-
tation NOx emissions, but after ~25%, the association plateaued. We
found no associations between the White, Black, American Indian, or
Hispanic percentage population and the relative change in transpor-
tation NOx emissions.

The associations between each socioeconomic variable and the
relative change in transportation NOx emissions were all nonlinear.We
found that percent unemployment and population in poverty were

Table 2 | Air pollution emissions

Air pollution source sector (kg/km2/day) 1970, N = 3101 1980, N = 3103 1990, N = 3105 2000, N = 3104 2010, N = 3103

Industry: SO2 5.6 (0.0, 3.2) 3.2 (0.0, 1.7) 2.6 (0.0, 1.3) 1.4 (0.0, 0.8) 0.6 (0.0, 0.4)

Energy: SO2 9.0 (0.0, 5.9) 9.1 (0.0, 5.9) 8.5 (0.0, 5.0) 6.2 (0.0, 3.8) 3.0 (0.0, 1.6)

Energy: NOx 2.5 (0.0, 2.0) 3.5 (0.0, 2.5) 3.5 (0.0, 2.6) 2.8 (0.0, 2.3) 1.5 (0.0, 1.3)

Agriculture: NH3 0.7 (0.3, 1.0) 0.9 (0.4, 1.2) 1.0 (0.4, 1.2) 1.1 (0.4, 1.5) 1.3 (0.5, 1.7)

Transportation: NOx 5.2 (3.4, 5.8) 4.8 (3.0, 5.4) 4.3 (2.7, 4.9) 3.9 (2.2, 4.5) 2.2 (1.2, 2.5)

Residential: OC 0.1 (0.0, 0.1) 0.2 (0.0, 0.1) 0.1 (0.0, 0.1) 0.1 (0.0, 0.1) 0.1 (0.0, 0.1)

Commercial: NOx 0.3 (0.0, 0.2) 0.2 (0.0, 0.1) 0.4 (0.0, 0.2) 0.3 (0.0, 0.1) 0.2 (0.0, 0.1)

County-level annual mean (interquartile range, IQR) emissions. N = total number of counties included at the analyses for each time point.

Table 3 | Air pollution relative emissions change

Mean relative change IQR

Transportation: NOx −19.2 −32.3, −8.9

Agriculture: NH3 13.8 8.8, 18.3

Residential: OC 9.8 −31.6, 37.3

Commercial: NOx −14.3 −33.6, 29.3

Energy: NOx 41.2 −44.3, 41.1

Energy: SO2 68.1 −49.4, 7.0

Industry: SO2 −38.1 −51.9, −19.3

County-level mean and interquartile range (IRQ) for the relative change (%) in emissions
(2000–2010).
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Fig. 2 | Association curves for the racial/ethnic groups. All models are adjusted
for population density, urbanicity, EPA geographic region, and year. The x-axis was
scaled to improve the visibility of the curve in the low/high x values (squared root
for the percent White population and squared for the other demographics). The
curves represent the relationship between the demographic variables and change
in the relative emissions (percentage point difference) relative to the mean of the

demographic variable (e.g., from the national Hispanic population average of 4.5%
[during the study period] to 75%, energy NOx relative emissions increase 50 per-
centage points). The shaded area on the curve is the 95% confidence interval. Linear
associations are indicated by the “Linear” label. Density plots for the independent
variables are shown at the top of each column.
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negatively associated with the relative change in transportation NOx

emissions. For unemployment, the association was null above ~20%
unemployment. The association between median family income and
the relative decennial change in transportation NOx emissions was
positive below ~$75 K and negative above this value. Median property
value had a positive association with the relative change in transpor-
tation NOx emissions below ~$100K.

Residential: OC emissions
We found that a 10 pp increase in the county-level Black population
percentage was linearly associated with a −0.37 pp (95% CI: −0.54,
−0.19) decrease in the relative decennial change in residential OC
emissions. White, Asian, American Indian, and Hispanic population
percentages were nonlinearly associated with the relative change in
residential OC emissions. The percentage of White population was
negatively associated with the relative change in residential OC emis-
sions in percentages above ~85% White population. Below that, the
associationwas null. In theAsian andHispanic populationpercentages,
the association was positive below ~5% andmostly negative above. The
American Indian population percentage was positively associated with
the relative change in residential OC emissions but the association
plateaued above 50%.

The associations between socioeconomic variables and the rela-
tive decennial change in residential OC emissions were all nonlinear.
Percent unemployment was positively associated with the relative
change in residential OC emissions below 5% and null in higher per-
centages of unemployment. The association is positive below ~10% and
negative at higher values for the percent below poverty. Median family
income was overall negatively associated with the relative change in
residentialOC emissions but the associationwasmore robust at values
above $75 K. Themedian property value was positively associatedwith
the relative change in OC emissions below ~$125 K and negative at
higher median property values.

Commercial: NOx emissions
The associations between racial/ethnic groups and the relative
decennial change in commercial NOx emissions were nonlinear. We
found a positive association in county-level White population per-
centages below 80% and a negative association above that. In the case
of the Black population percentage, the association was overall posi-
tive. For the Asian percentage population, the association was positive
below ~5% and null above that percentage. We found no association
with the American Indian percentage population. The Hispanic popu-
lation percentage was positively associated with the relative change in
commercial NOx emissions in population percentages below ~5% and
null after that.

The associations between socioeconomic variables and the
change in NOx emissions were all nonlinear. Unemployment was
positively associated with the relative decennial change in commercial
NOx emissions below 5%andnegative at higher values. Percent poverty
andmedian property value were overall negatively associated with the
relative change in commercial NOx emissions. In the case of percent
poverty, the association plateaued after ~20% and for property value,
the association was stronger after ~$500K. The association between
median family income and the relative change in commercial NOx

emissions was positive below ~$75 K and negative above that.
We have summarized all results described above in Fig. 4.

Confounding by socioeconomic status
We also evaluated the robustness of our results for the racial/ethnic
groups topotential confoundingbiasby SES. In this sensitivity analysis,
wemodeled the associations for each racial/ethnicgroup, adjusting for
socioeconomic variables (median family income, property value, per-
cent poverty, and percent unemployment). The results from the sen-
sitivity analysis, for themost part, support the primary analysis results,

butwedid observe somedifferences, particularly in the residential and
commercial sectors. In the sensitivity analysis, the association between
the percent White population and the change in residential OC and
commercial NOx emissions was null. In contrast, these associations
were negative in the main analysis. We also did not find an association
between the Black and Asian population percentages with the change
in emissions from these two air pollution source sectors. Furthermore,
we did not find positive associations in the lower population percen-
tages for the Hispanic population as in the main analysis. The results
from this sensitivity analysis are presented in Supplementary Fig. 3.

Regional analyses
To evaluate the relevance of national results to sub-national areas, we
constructed regional models for industry SO2 and transportation NOx

by EPA regions. The regional models evaluated the association
betweenmedian family income, percent Black population, andpercent
White population with the relative decennial change in emissions in
each of these two air pollution source sectors. For the most part, the
regional results agreed with the national-level results, but there were
some differences, particularly for the racial/ethnic groups. In the
national analysis, we found no association between the White and
Black population percentages and the relative change in transporta-
tion NOx emissions; however, in regions 1–3 (Northeast area), 5 (por-
tions of upper Midwest and Ohio Valley), and 6 (southern Texas), we
found a clear positive association between the Black population per-
centage and the relative change in transportation NOx emissions
(Supplementary Fig. 4). We also found a positive association between
the White population percentage and the relative change in trans-
portation NOx emissions in Region 1–3 (Northeast area). In the case of
SO2 emissions from industry, for theWhite population percentage, we
found a negative association in Region 8 (Northern Rockies and Plains
area), which reflected the results from the main analysis; however, in
regions 1–3 (Northeast area) the association was positive and null in
the rest of the regions. For the Black population percentage, we found
a positive association with the relative change in industry SO2 emis-
sions in Regions 1–3—opposite to the national analysis results, which
showed a negative association—and no association in other EPA
regions (Supplementary Fig. 5). It is important to note that splitting the
data into regions decreased statistical power, likely influencing our
ability to detect associations in some of the regions.

Discussion
Our researchprovides a national investigation of air pollutionemission
changes in the 40 years following the CAA enactment. We examined
racial/ethnic and socioeconomic disparities in the relative decennial
emissions change for six air pollution source sectors: industry, energy,
agriculture, on-road transportation, commercial, and residential. In
our study, we found that socio-demographic characteristics of coun-
ties were associated with the county-level relative changes in air pol-
lution emissions from 1970 to 2010. Our results suggest many, albeit
not universally, racial/ethnic and socioeconomic inequalities in redu-
cing air pollution emissions following the CAA.

Emissions from energy generation had some of the largest emis-
sions reductions among the air pollution source sectors we analyzed.
However, we found that energy SO2 relative emissions changes had
prominent socioeconomic disparities. We also found racial/ethnic
inequities in energy NOx relative emissions changes. The 1990 CAA
amendment introduced the Acid Rain Program (ARP), setting a cap on
total SO2 levels to 50% of 1980 levels by 2010 and a two million ton
reduction in NOx emissions by 2000 (no cap for NOx)

22. The ARP
introduced the allowance trading system that uses market-based
incentives to reduce air pollution. For each ton reduced below the
applicable emissions limit, owners of a generating unit received an
emissions allowance they could use at another unit, keep for future
use, or sell22. CAA market-based policy strategies have helped achieve
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Fig. 3 | Association curves for the socioeconomic variables. All models are
adjusted for population density, urbanicity, EPA geographic region, and year. The
curves represent the relationship between the demographic variables and change
in the relative emissions (percentage point difference) relative to the mean of the
demographic variable (e.g., from the national poverty average of 16.5% [during the

study period] to 40%, energy SO2 relative emissions increase 100 percentage
points). The shaded area on the curve is the 95% confidence interval. All associa-
tions were nonlinear. Density plots for the independent variables are shown at the
top of each column.
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emission reductions in energy generation at the lowest financial cost23.
Despite its unarguable success in reducing net air pollutant
emissions24,25, there are equity concerns over using market-based
strategies26. Previous studies have found that energy facilities are dis-
proportionally located in low-income and communities of color27–29.
Our study shows that from 1970 to 2010, an increase in the percentage
of American Indian, Asian, or Hispanic population resulted in an
increase in the energy NOx relative emissions change, whereas the
opposite occurred with White and Black population percentages. For
instance, an increase in the Hispanic population percentage from the
national average of 4.4% to 75% resulted in a 50 pp increase in the
relative change of energy NOx emissions; and a decrease in county
White percentage from the national average of 87% to 25% led to 12.5
pp increase in the relative emissions change. Our results also show that
an increase in median family income resulted in a decrease in both
energy NOx and SO2 relative emissions (e.g., an increase in median
family income from the national average of $49K to $100K resulted in
nearly 100ppdecrease in the energy SO2 relative emissions change). In
addition to other factors, such as historical racism in land
distribution30–32, our results suggest inequities in emissions reductions
could contribute to persistent air pollution inequities. Thus, it is
important to evaluate the effects of air quality policy on mitigating or
aggravating racial/ethnic and socioeconomic disparities in air pollu-
tion exposure in addition to setting net emissions reduction targets33.

Unlike most other pollutants we analyzed, agricultural NH3

emissions increased on average from 1970 to 2010, and our findings
suggest racial/ethnic disparities in the emissions changes. We found
that an increase in county-level percent Hispanic and American Indian
populations led to an increase in the relative change of NH3 emissions.
For instance, an increase in county Hispanic population percentage
from the national average of 4.4% to 75% resulted in a 2.5 pp increase in
theNH3 relative emissions change. These findings remained consistent
after accounting for county-level SES. However, we found the opposite
association between percent poverty and unemployment with the
relative change in agricultural NH3 emissions, potentially indicating
the importance of agriculture as a job source. Although the pp change
in relative emissions as a result of an increase in county percent His-
panic or American Indian population was small compared to the effect
we observed in the energy source sector, as emissions from other air
pollutants are reduced, NH3 becomes a critical contributor to the
formation of harmful fine particulate matter (PM2.5)

34,35. Agriculture is
the leading sector in the Eastern US in driving anthropogenic PM2.5

pollution34,36. Although the CAA permits federal authorities to regulate

NH3, no federal regulations or incentive programs require reductions
in NH3 emissions37,38.

County average emissions of OC from the residential sector were
low relative to other pollutants we analyzed. On average, the OC
emissions changes wereminor but with a slight upward trend, and our
results suggest potential differences by socioeconomic status and
race/ethnicity. For instance, an increase in county-level median family
income from the national average of $50K to $100K led to a 5 pp
decrease in the relative changeofOCemissions,whereas an increase in
the percent American Indian population from the national average of
1.3% to 50% resulted in 3 pp increase in the relative change of OC
emissions. In North America, OC emissions from the residential sector
are mainly from solid biofuel use for space heating21; however, only a
tiny fraction of American households rely on solid biofuel—primarily
wood39. Solid biofuel for space heating is more prevalent in counties
that are predominantly American Indian40, which aligns with our
findings. Also, in 2014, the Energy Information Administration repor-
ted that from 2005 to 2012, Northeastern states saw at least a 50%
increase in households that rely onwood as the primary heating fuel as
heating oil prices rose41. Biofuels are often considered a renewable
energy source and may be considered a better climate alternative to
fossil fuels; however, biofuel combustion emits health-damaging air
pollutants, including PM2.5, affecting indoor air quality42,43—mainly
when used in old heating appliances with limited emissions controls42.
The CAA sets performance standards for residential wood heaters
under the New Source Performance Standards. These standards help
ensure new customers have access to cleaner burning models but do
not apply to existing wood heaters in people’s homes44. As we transi-
tion to clean renewable energy sources, it is crucial to incorporate
energy equity programs and regulations that increase clean energy
accessibility and minimize the number of households turning to less
clean or safe heating options to limit financial stress45. Although the
percentage of households using solid biofuels is low, our findings
suggest it might encompass vulnerable communities.

Most of the associations between the demographic variables we
analyzed and pollutant relative emissions changes were nonlinear,
reflecting the complexity of these relationships. The nonlinear rela-
tionships between county-level socioeconomic characteristics and the
relative NOx emissions changes from transportation particularly stood
out. For instance, below a county-levelmedian family incomeof $70K,
an increase in income was associated with an increase in the relative
emissions change. However, formedian family income above $70K, an
increase in income was associated with a decrease in the relative

Positive Association Negative Association No association Positive/Negative

RRACE/ETHNICITY VARIABLES
Industry: SO2 Energy: SO2 Energy: NOx Agriculture: NH3 Transport: NOx Residential: OC Commercial: NOx

% White
% Black
% Asian
% American Indian
% Hispanic

SOCIOECONOMIC VARIABLES
% Unemployment
% Poverty
Median Family Income
Median Property Value

Fig. 4 | Summary of results categorizing the associations into four groups. (1)
Positive association (orange): a unit increase in the demographic variable is asso-
ciated with a percentage point increase in the relative emissions change (e.g., a
larger relative emissions increase or a smaller relative reduction); (2) Negative
associations (green): a unit increase in the demographic variable is associated with
a percentagepoint decrease in the relative emissions change (e.g., a smaller relative

emissions increase or larger relative reduction); (3) No association (blue) indicates
no association between the demographic variable and the decennial relative
emission change; and (4) Positive/Negative association (bi-color orange and green):
a positive association in the lower values of the demographic variable and a
negative in the higher values. This is an oversimplification of results. For detailed
results, see Figs. 2 and 3.
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emissions change. Other studies have found similarly shaped rela-
tionships between income measurements and air pollution emissions
in the US and abroad46,47. These findings suggest that from 1970 to
2010, relative NOx emissions decreases have been more substantial in
high-income counties. The overall reduction in NOx emissions from
transportation has resulted from the many emissions regulations,
standards, and routine vehicle inspection and maintenance programs
established through the CAA. These regulations have pushed the
development and implementation of newer technologies to make
vehicles more fuel-efficient and their emissions cleaner48. However,
despite the success at the national level, several studies have shown
that the current distribution of traffic-related pollution dis-
proportionally impacts vulnerable communities49–51. Addressing
inequities in traffic-related air pollution exposure, thus, may require
targeted strategies. Mitigating traffic-related pollution in the most
affected areas will be vital to mitigating current disparities and pre-
venting their worsening from unequal adoption of electric vehicles52.

Importantly, not all air pollutant emissions reductions dis-
proportionally affected all vulnerable populations. In our analysis,
socioeconomic disparities were more prevalent than racial/ethnic but
the results varied by air pollutant, source, and demographic variable.
In some air pollution source sectors, the reductions benefited some
vulnerable populations. For example, an increase in county-level per-
cent Black population was associated with a decrease in the relative
emissions change in the industrial, energy, and residential air pollution
source sectors. We also found a similar beneficial association for the
Asian population in the transportation sector. In contrast, percent
American Indian and Hispanic populations were primarily associated
with an increase in the relative emissions change. And across all air
pollution source sectors, except agriculture, an increase in median
family incomewas linked with a decrease in relative emissions change.

Like all studies, this analysis comes with caveats. First and fore-
most, studies suggest that micro-scale (e.g., neighborhood-level)
inequities in air pollution are common49. However, the air pollution
emission estimates were only available in 0.5o × 0.5o grid resolution
(~55 × 55 km), precluding a subcounty-level analysis. As a result, our
analysis provides limited insight into the factors that drive emissions
injustice at the local level. Importantly, emissions are different fromair
pollution concentrations in geospatial variation. The density of pol-
lution sources spatially might not have as much variation in a hyper-
local spatial resolution (e.g., census tracts or blocks) compared to
county-level. This also means that spatial variations in air pollution
emissions do not perfectly capture population air pollution exposure
variations. In this study, we provide information about potential
country-wide inequalities in the distribution of air pollution sources by
leveraging emission data that can inform federal, state, and county-
level regulations and supplement local-level analysis. The air pollution
emissions are estimates and come with uncertainties, which vary
across source sectors, time, and geography. In addition, we present
aggregated results for the contiguous United States, and associations
mayhave important sub-national variability thatwemaynot have been
able to capture. We ran regional models, but statistical power was
limited for those analyses, particularly for racial/ethnic groups with
low population counts, such as American Indian and Asian popula-
tions, which we could not analyze in the regional models. Also, the
census racial/ethnic definitions changed throughout the study period.
As a result, population growth or stagnation of a group may partially
result from a broadening or narrowing of the census racial/ethnic
definitions. This may be partly why, in our analyses, associations
between racial/ethnic variables and air pollutant emissions changes
were not as common. Furthermore, Hispanic breakdowns for the racial
groupswereunavailable for 1970; thus, the racial groups includedboth
Hispanic and non-Hispanic populations. In this study, we evaluated
one pollutant associated with each source sector (two in the case of
energy), but a single source sector emits multiple pollutants and each

may have different trends. Also, it is important to note that people are
exposed to ambient air pollution concentrations, and various factors
influence individual-level exposures (e.g., meteorology, human activ-
ity, housing quality etc.) which we did not consider in this study. Our
analyses also encompassed a large number of models, and issues
related to multiple comparisons are of relevance. Lastly, although we
evaluated six major air pollution source sectors, they do not account
for all pollution sources in the US. Despite these limitations, we pro-
vide a look at longitudinal trends in air pollution emissions from six
major sources following the 1970CAA. The large number of results and
identified non-linearities meant that we were unable to discuss each
finding in detail.

Methods
We conducted a longitudinal analysis to investigate the association
between county-level demographics and subsequent changes in air
pollution emissions across the contiguous US from 1970 to 2010. In
1970, the continental US had 3106 counties, which increased to 3109
by 2010. From the analysis, we excluded Yellowstone National Park
County (average population = 130 individuals), which had a negative
property value in the 1970 census data. We removed three counties
(Broomfield, CO; Washabaugh, SD; and Nansemond, VA) that existed
for only one year during the study period; thus, we could not estimate
a change in emissions. We also removed five small islands and coastal
counties for which we could not estimate emissions (Nantucket, MA;
Mathews, VA; San Juan, WA; Door, WI; Poquoson, VA). In 1970, the
Census did not collect race/ethnicity and ethnicity data for DC or
property value for Adam’s County, WI; thus, these two counties only
contributed to the analysis from 1980 to 2010.

Predictor variables
We used county-level data from the American Decennial Census for
1970, 1980, 1990, and 2000 to characterize race/ethnicity and
socioeconomic conditions (NHGIS database53) in the contiguous US
(excluding AK, HI, and Puerto Rico). We estimated counties’ percent
population for five race/ethnicity categories (as defined by the
Census Bureau): White, Black, American Indian, Asian, and Hispanic.
The racial/ethnic categories included Hispanic and non-Hispanic
populations because ethnicity breakdowns for racial groups were
unavailable for 1970. Therefore, the racial/ethnic percentages by
county could sum tomore than 100%.We characterized county-level
SES using median family income (in dollars), median property value
(in dollars), percent population living under the poverty threshold
as defined by the Census Bureau, and unemployment (the propor-
tion of over 15-year-olds unemployed out of the civilian workforce).
The Census did not collectmedian family income and property value
in 1970. Thus, for 1970, we estimated the mean county income by
dividing the aggregated family income by the total number of
families and the mean property value by dividing the aggregated
property value by the total household number (the aggregated
variables were available in the 1970 decennial census). We used the
estimated 1970 mean family income and property value as proxies
for the 1970 medians. We converted monetary variables to 2010
dollars to adjust for inflation using the Consumer Price Index
Research Series (cpi-u-rs)54, (e.g., to adjust 2000 dollars to 2010:
2000 dollars × (2010 cpi-u-rs/2000 cpi-u-rs).

Outcomes of Interest
We examined six emission source sectors: industry, energy, agri-
culture, commercial, residential, and on-road transportation. Each
source sector emits multiple air pollutants; we focused on chemical
pollutants associated with each sector that have been previously
linked to wide-scale air pollution: sulfur dioxide (SO2) for industry;
ammonia (NH3) for agriculture; nitrogen oxides (NOx) for commercial
and transportation sectors; organic carbon (OC) for the residential
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sector; and NOx and SO2 for the energy sector. Table 4 lists specific air
pollution sources and fuels associated with each sector.

We obtained the emissions data from the Community Emissions
Data Global Burden of Disease Map (CEDGBD-MAP) emissions
inventory21. This is a gridded (0.5o × 0.5o or ~55 × 55 km) global bottom-
up emission inventory from 1970 to 2017. In summary, CEDGBD-MAP

uses data from various emissions inventories (GAINS, SPEW, US NEI,
EDGAR, etc.) and activity data (energy consumption, population, etc.)
to calculate global emissions estimates for each chemical compound.
For years without available emissions, default estimates are calculated
from a linear interpolation and available activity data. Then, local and
regional inventories are used to scale sectoral emissions to thenational
level21. We focused on the decennial years 1970, 1980, 1990, 2000, and
2010. We processed the emissions data for each pollutant to estimate
county-level emission in kg/km2/day. We first created a dataset con-
taining the geographical boundaries of US counties for each decade
from 1970 to 201053 and applied an area-weighted interpolation
technique55 to obtain area-weighted county emission fluxes for each
decennial year, pollutant, and pollution source sector of interest.
Counties falling within emissions grid cells but whose centroids were
outside the contiguous US (0.16% of counties in the dataset) were not
included to avoid data issues on the emissions dataset’s geographical
boundaries (e.g., emissions grid cells partially over sea and land).

For each county, we calculated the relative change in emission
fluxes from one decennial to the following expressed as a percentage
(e.g., relative change = [(emissions in 1980 – emissions in 1970) /
emissions in 1970] × 100). A negative relative change reflects a
decrease in emissions over the ten years, whereas a positive relative
change represents an increase. For analysis, we temporally matched
the decennial demographic/socioeconomic data with the relative
change in emissions in the following ten years, i.e., we matched 1990
demographic data to the relative decennial emissions change between
1990 and 2000. Estimating relative changes in energy and industrial
emissions resulted in observations with high (i.e., emissions changed
from a value close to zero to a large value) and infinite values (i.e.,
emissions changed fromnonzero to zero), respectively. Theseextreme
values affect the proper modeling of associations. Thus, we removed
five counties with infinite values in the industry sector (N = 15/12,437)
and excluded observations in the top 5 percentile in the energy sector
(N = 621/12,437).

Covariate information
We included in the analysis population density (number of people per
km2), categorical variables for the Environment Protection Agency
(EPA) geographic regions (Supplementary Fig. 6), and urbanicity
(Supplementary Fig. 7) to adjust for potential confounding bias. The
ten EPA regional offices are responsible for executing programswithin
the assigned states and territories, and these programs might differ

across regions56. We combined regions 1–3, which cover the northeast
from VA toME, into a single group for a total of 8 regions.We used the
2013 National Center for Health Statistics Urban-Rural Classification
Scheme for Counties57 to categorize counties into three urbanicity
groups: metropolitan (population ≥ 50,000), micropolitan (50,000 >
population ≥ 10,000), and non-urban (population <10,000). We
allowed the urbanicity status of counties to change throughout the
study period depending on their population size.

Main analysis
We evaluated the association between each predictor of interest
(county-level percent populationWhite, Black, American Indian, Asian,
and Hispanic, percent poverty and unemployment, median family
income andproperty value) anddecennial relative change inemissions
from agriculture NH3, commercial and transportation NOx, residential
OC, energy NOx and SO2, and industry SO2. We built separate models
for each predictor variable (race/ethnicity and socioeconomic vari-
ables) and air pollution source sector for a total of 48 models. All
models were adjusted for population density, urbanicity, EPA region,
and time using year as a categorical variable (1970, 1980, 1990, and
2000). The models with the predictor variables percent Black, Asian,
and American Indian population were also adjusted for percent White
population because the percent White population in a county may co-
vary both with the Black, American Indian, or Asian population per-
centages and the emission changes (see Supplementary Table 2 for a
summary of the models). We extracted the association estimates for
the White population percentage from the models that included the
variables percent Black and percent White. Other studies have used a
similar approach58,59. We used the following hierarchical model for-
mulation:

Y tc = β0 + b0,cjs
� �

+ βxXtc + βzZ tc + εtc ð1Þ

In the model (1), c represents a county in state s. Ytc is the relative
change in emissions for a specific air pollution source sector (e.g., the
relative change inNH3 emissions from the agriculture) in county c from
year t to t + 10. We included random intercepts for counties nested
within states (b0,c|s), to account for within-county correlation in emis-
sions changes over time. X is the predictor of interest (demographic
and socioeconomic factors) and the covariates are summarized in
vector Z. In essence, with this model, we estimated the association
between county-level demographics and the decennial relative emis-
sions change. That is, per one unit increase in the demographic vari-
able, what is the percentage point change in the decennial relative
emissions? Please note that we used racial/ethnic and socioeconomic
characteristics of counties in year t to estimate the relative emissions
change from year t to t + 10. Because we did not have emissions data
for the year 2020, the last year of demographic dataweused is 2000 to

Table 4 | Air pollutant fuel and related activities

Emission Source Sector Air pollutant Primary contribut-
ing fuel(s)

Example activities

Industry SO2 Coal and oil Industrial boilers in the production of iron-steel, cement, metals, etc.

Energy generation SO2 Coal Electricity production, fuel production and transportation, oil and gas fugitive/flaring, etc.

Energy generation NOx Coal, oil, and gas

Agriculture NH3 N/A Manure management, soil emissions, enteric fermentation, etc.

Transportation NOx Oil and gas On-road transportation

Residential energy
combustion

OC Solid biofuel Cooking, space heating, residential waste burning

Commercial combustion NOx Oil and gas Combustion in service-providing facilities (e.g., religious facilities, local, state, and federal
government, institutional living quarters, sewage treatment facilities, restaurants,
and more)

Primary fuel type contribution to emissions of each air pollutant per source sector and sample activities. For more see McDuffie et al.21.
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evaluate the relative decennial emissions change that occurred from
2000 to 2010. Thus, the data included four time points (1970, 1980,
1990, and 2000) and 12,437 observations total (~3000 counties per
time point).

We evaluated nonlinearities in the predictors of interest and the
continuous covariate (population density) to avoid potential model
misspecification and comprehensively characterize the associations
with the outcome variable60. We used penalized splines to flexibly
model the associations and the generalized cross-validation (GCV)
criterion to determine whether an association deviated from linearity
(estimated degrees of freedom [edf] > 1). If relationships were non-
linear, we included the independent variable of interest (racial/ethnic
and socioeconomic variables) with a natural spline (4 degrees of
freedom, using the predictor’s distribution mean as the reference) in
the model. In the final models, we used natural splines rather than
penalized splines for the independent variables of interest, as pena-
lized splines can be too flexible and sensitive to influential observa-
tions. If we found no evidence of nonlinearity (edf = 1), we included the
independent variable as a continuous measure and modeled its linear
association with the dependent variable.

Sensitivity analyses
It is often the case that racial/ethnic variables are correlated with
socioeconomic variables. Thus, we also evaluated the robustness of
our results for the racial/ethnic variables of interest to confounding by
SES. We modeled the association between race/ethnicity and the
outcome adjusting for socioeconomic variables (family income, pov-
erty, unemployment, property value) in addition to population den-
sity, urbanicity, EPA region, and the categorical variable year (see
models summary Supplementary Table 3). This analysis followed the
structure of Model 1 but with the additional socioeconomic variables
included as covariates. We modeled all nonlinear associations with
penalized splines.

Secondary analyses
The associations between demographic and socioeconomic factors
and the relative decennial change in emissions may vary across
regions. However, regional sub-analyses for all emissions source
sectors and sociodemographic variables would substantially
increase the number of models and the chance of detecting false
positive associations. We, therefore, a priori decided on a subset of
regional sub-analyses. Specifically, we modeled the associations
between median family income and percent population Black and
White with industry SO2 and transportation NOx, separately in each
EPA region. We excluded the rest of the variables to make the
regional analysis computationally feasible and also because the
percentage for the other racial/ethnic groups (American Indian,
Asian, and Hispanic) were very low in some regions of the US; thus,
we lack the power to model their associations regionally accurately.
We performed the regional analysis using Model 1 and penalized
splines for all models. The regional analyses included 32 separate
models (Supplementary Table 4).

We report association curves with 95% confidence intervals (CI)
for all relationships and effect estimates with 95% CI only for the linear
associations. Linear effect estimates are expressed as the percentage
point (pp) increase/decrease in the relative emission change per 10 pp
increase in the demographic variable of interest.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw emissions data used in this study can be accessed at https://
zenodo.org/record/3754964#.Y-bEE-zMLOS and the raw demographic

data via https://data.census.gov/ or NHGIS.org. The processed emis-
sions and demographic data have been deposited in a publicly avail-
able GitHub repository [https://github.com/yanellinunez/USA_
emissions_code].

Code availability
All analyses were performed using R version 4.1.2 running under
macOS Monterey 12.3. Primarily, the package tidyverse version 2.0.0
wasused for the cleaning andwrangling of demographic data; package
RNetCDF version 2.8-1 and PCICt version 0.5-4.4 for the procession of
emissions data; functiongamm4 from thepackagegamm4version0.2-
6 was used for all modeling analyses; and ggplot2 version 3.4.2 was
used for data visualizations. For a complete list of the packages and
code used in the analysis, see https://github.com/yanellinunez/USA_
emissions_code61.
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