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Multi-omics analysis of hospital-acquired
diarrhoeal patients reveals biomarkers of
enterococcal proliferation and Clostridioides
difficile infection

Marijana Bosnjak 1, Avinash V. Karpe2,3,4, Thi Thu Hao Van5, Despina Kotsanas4,
Grant A. Jenkin6, Samuel P. Costello7, Priscilla Johanesen 1, Robert J. Moore 5,
David J. Beale2, Yogitha N. Srikhanta1, Enzo A. Palombo 3, Sarah Larcombe1,8 &
Dena Lyras 1,8

Hospital-acquired diarrhoea (HAD) is common, and often associated with gut
microbiota and metabolome dysbiosis following antibiotic administration.
Clostridioides difficile is the most significant antibiotic-associated diarrhoeal
(AAD) pathogen, but less is known about the microbiota and metabolome
associated with AAD and C. difficile infection (CDI) with contrasting antibiotic
treatment. We characterised faecal microbiota and metabolome for 169 HAD
patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and
gain insights into metabolic strategies C. difficile might use for gut colonisa-
tion. The specimen microbial community was analysed using 16 S rRNA gene
amplicon sequencing, coupled with untargeted metabolite profiling using gas
chromatography-mass spectrometry (GC-MS), and short-chain fatty acid
(SCFA) profiling using GC-MS. AAD and CDI patients were associated with a
spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-
antibiotic treatment. Notably, extended antibiotic treatment was associated
with enterococcal proliferation (mostly vancomycin-resistant Enterococcus
faecium) coupled with putative biomarkers of enterococcal tyrosine dec-
arboxylation. We also uncovered unrecognised metabolome dynamics asso-
ciated with concomitant enterococcal proliferation and CDI, including
biomarkers of Stickland fermentation and amino acid competition that could
distinguish CDI from non–CDI patients. Here we show, candidate metabolic
biomarkers for diagnostic developmentwith possible implications for CDI and
vancomycin-resistant enterococci (VRE) treatment.

Hospital-acquired diarrhoea (HAD) is an acute diarrhoeal episode that
arises after ≥3 days of hospitalisation and is common, particularly
among elderly patients1. HAD is most often associated with non-
infective factors, notably antibiotic administration, that perturb gut

microbiota2. Antibiotic exposure is a significant risk factor for devel-
oping Clostridioides difficile infection (CDI), which accounts for up to
15-25% of HAD cases and is characterised by gastrointestinal inflam-
mation resulting in mild-to-severe diarrhoea, pseudomembranous
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colitis, toxic megacolon, and in severe cases, death3–5. Because of
shared risk factors, including combination and extended antibiotic
treatment, the microbiota of antibiotic-associated diarrhoea (AAD)
and CDI patients are also associated with the proliferation of
vancomycin-resistant enterococci (VRE) that can result in poor patient
outcomes6,7. Despite antibiotic risks, clinically, the microbiota and
metabolome profiles for AAD, CDI and concomitant VRE have been
poorly defined.

Previous studies have characterised the AAD and CDI microbiota
as heterogeneous in composition but reduced in bacterial diversity
and richness, often with concomitant Enterobacteriaceae or Enter-
ococcus proliferation8,9. Microbiota differences between CDI and non-
CDI patients have been attributed to the loss of putatively protective
genera or increases in mucin-degrading genera such as
Akkermansia10,11. Clinical studies accounting for contrasting antibiotic
treatments in their assessment of CDI are rare. However, concomitant
treatment with several antibiotic classes has been associated with
decreased bacterial richness and high proportions of Enterobacter-
iaceae (mostly Escherichia spp.) among CDI patients9–11. Animal CDI
models show that while the CDI microbiota reflects the effects of dif-
ferent antibiotic classes and exposure periods, as CDI progresses,
microbiota compositional changes have been attributed directly to C.
difficile toxin-mediated inflammation12,13. However, human studies
have not directly detected these C. difficile microbiota-associated
changes.

Enterococcal proliferation is associated with an increased risk of
CDI6,8 and has been detected in non-diarrhoeal hospitalised patients14.
VRE proliferation may be partly driven by oral administration of anti-
biotics as the standard first-line therapy for CDI15. VRE proliferation is
particularly significant in the hospital setting, which places vulnerable
patients at increased risk of bacteraemia6,16. Decolonisation of VRE is
difficult, and patients can remain colonised for prolonged periods,
serving as reservoirs for transmission and infection to others. While
concomitant CDI and VRE are associated with worse patient
outcomes7,17, little is known about how the metabolome may con-
tribute to this worsening.

The loss of key commensals after antibiotic exposure alters bac-
terial metabolism and secondary metabolite production12,13,18, with
increasing evidence that the gut metabolome is vital in driving C. dif-
ficile growth, proliferation, and toxin production12,13,17–20. CDI risk and
pathogenesis have been associated with elevated gastrointestinal pri-
mary bile acids, amino acids and SCFAdepletion20–22. Primary bile acids
have been shown to increase C. difficile spore germination and vege-
tative cell growth in vitro20. Microbiota-derived SCFAs, particularly
butyrate, the primary energy source for intestinal epithelial cells (IEC),
helped maintain intestinal barrier integrity and ameliorate toxin-
mediated inflammation in CDI mice23,24. Furthermore, microbiota
restoration through faecal microbiota transplantation (FMT) has been
shown to restore secondary bile acid and butyrate concentrations,
resolve CDI symptoms in patients, and decolonise C. difficile21,25.
However, the role of SCFAs in CDI is less clear, as a recent study found
that inoculating gnotobiotic CDI mice with butyrate-producing clos-
tridia increased the relative abundance of butyrate but worsened dis-
ease progression26, suggesting that C. difficile senses and responds to
SCFAs and modulates virulence accordingly to maintain dysbiosis24.

In vitro culture studies and in vivo mouse CDI models show that
C. difficile metabolises many substrates, including sugars, sugar
alcohols and amino acids. Elevated amino acids processed via
Stickland reactions, particularly proline, are the preferred energy
source that drives rapid bacterial growth and increases CDI
susceptibility27–29. A recent mouse infection model found Enter-
ococcus provided C. difficile with a source of amino acids that
increased C. difficile pathogenesis17. Conversely, FMT restoration of
commensal microbiota increased competition for these preferred
amino acids where species such as Clostridium sardiniense, with

similar nutritional requirements as C. difficile, deplete amino acids in
the gut to provide substantial protection against CDI26. Stickland
products coupled with a decrease in amino acid substrates have
been observed in in vivo CDI studies suggesting utilisation and
vegetative growth18. However, in clinical studies, evidence of Stick-
land amino acid fermentation by-products has been variable. A
recent clinical study found by-products of L-leucine fermentation
rather than L-proline fermentation to be a putative biomarker of
toxigenic CDI30, but these observations did not consider the con-
tributions of other clostridia competing with C. difficile.

We hypothesised that AAD and CDI associated with enterococcal
proliferation and differences in antibiotic exposure might be asso-
ciated with biomarkers that provide insights into microbiota and C.
difficile metabolic strategies during infection. We conducted a retro-
spective study of 169 hospital-acquired diarrhoeal patients (33 with
CDI) and presented detailed microbiota and metabolomics analyses
using 16 S rRNA gene amplicon sequencing, untargeted and SCFA GC-
MS-based metabolomic profiling. Univariate and multivariate model-
ling and statistical techniques were used to investigate how CDI and
non-CDI microbiota and metabolome composition differed with var-
iations in antibiotic treatment.

Results
Microbiota associations with extended antibiotic exposure
We first assessed HAD gut microbiota structure and diversity with
respect to antibiotic treatment using alpha and beta diversity mea-
sures and analysis of compositions of microbiomes (ANCOM) differ-
ential abundance analysis. Antibiotic-associated diarrhoeal ( + AAD)
patients comprised 82.2% (139/169) of the cohort (Table 1) and were
associated with 56 unique combinations of antibiotic classes before
specimen collection (Supplementary Table 1), rendering analysis by
antibiotic class unfeasible. For comparison, faecal samples from heal-
thy donors recruited for faecal microbiota transplant treatment of CDI
were similarly assessed (Supplementary materials). Donor samples in
the study were obtained from 12 female and 8 male individuals, a
smaller male cohort (40.0% male) compared to CDI patients (54.5%
male) and non-CDI patients (47.4% male). FMT donors were between
the ages of 18 and 65 46 with a total age of 649 years and an average of
32.45 years. While the average age of FMT donors was significantly
lower than theCDI (75 years, range 55-83) and non-CDI (68 years, range
52-78) median age, we chose FMT donors purposefully as a compar-
ison group for this study in order to assess the microbiota and meta-
bolomes of CDI and non-CDI patients against FMT donors who are
medically assessed as healthy and are actively recruited to treat
recurrent and severe CDI. To analyse AAD microbiota variation, we
generated two models that controlled for the period of antibiotic
exposure and the number of antibiotic classes. AAD patients treated
for different periods or with an increasing number of antibiotic classes
did not yield significant between-group differences in alpha diversity
(Fig. 1a, b). However, analysis of taxonomic composition showed that
in total, 35% (61/169) of samples had an elevated abundance of Enter-
ococcus, comprising 25-99% of the gut microbiota, and that the mean
abundances of Enterococcus increased with extended periods of anti-
biotic exposure ( ≥ 3 days) and an increasing number of antibiotic
classes ( ≥ 2 classes) (Fig. 1c, d). Enterococcal-dominant AAD speci-
menswere cultured (seemethods) andMALDI-TOFmass spectroscopy
determined that the predominant species present in these samples
was E. faecium. The final analysis was performed on 56 isolates with
four removed due to poor quality sequences. The majority of E. fae-
cium isolates identified (64%, 36/56) encoded vancomycin resistance
determinants vanA or vanB, with 16% (9/56) encoding vanA, approxi-
mately 52% (29/56) encoding vanB, and approximately 3.5% (2/56)
encoding both vanA and vanB (Fig. 2). Approximately 46% (26/56) of E.
faecium isolates identified belonged to the epidemic ST796 clonal
group, all of which encoded vanB, including the two isolates that
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encoded both vanA and vanB (Fig. 2). The next most prevalent
sequence types included ST18 (10.7%, 6/56), ST1421 (7.1%, 4/56), and
ST203 (5.4%, 3/56).

Enterococcal proliferation and low diversity microbiota
To determine microbiota and metabolome associations with low
diversity enterococcal-dominant AAD, we stratified HAD patients
into non-antibiotic (-AAD), non-enterococcal dominant antibiotic-
associated diarrhoea (-Ent AAD), and enterococcal-dominant anti-
biotic-associated diarrhoea ( + Ent AAD) groups (Fig. 3a). Only patients
in which the Enterococcus 16 S rRNA gene amplicon sequences con-
tributed ≥25% of the total microbiota were included in the +Ent
AAD group.

+Ent AAD patients formed a microbially distinct subset of AAD
characterised by lower diversity. Plots of alpha diversity measure-
ments showed that compared to FMT donors, all diarrhoeal groups
(-AAD, -Ent AAD and +Ent AAD) were associated with a considerable
spread of alpha diversity values and significantly lower mean Shannon
indices (all p <0.0001) (Fig. 3b). While there was no significant differ-
ence between -AAD and -Ent AAD (p > 0.05), the mean Shannon index
for +Ent AADpatients was significantly reduced compared to -AAD and

-Ent AAD patients (all p <0.0001) (Fig. 3c). Furthermore, the ordina-
tion plot visualising Bray-Curtis dissimilarities highlighted that +AAD
patients formed two distinct clusters, with -Ent AAD patients clustered
left with -AAD patients while +Ent AAD patients clustered right
(Fig. 3c). Pairwise post-hoc PERMANOVA determined that the differ-
ence in distribution of centroids for -AAD vs -Ent AADwas insignificant
(R2 = 0.010, p =0.415), but significant for -Ent AAD vs +Ent AAD
(R2 = 0.325, p < 0.0001).

Low diversity enterococcal AAD formed ametabolically distinct
subset of AAD
The heatmapof themean abundance of these 97metabolites that best
described the variation in the enterococcal-dominance PLS-DA model
revealed the +Ent AADmetabolomewas elevated across several classes
(alcohols, amines, amino acids, primary bile acids, and sugars) and
depleted in indoles, fatty acids, and phenylpropanoic acids compared
to FMT donors, -AAD and -Ent AAD patients (Supplementary Fig. 1A).

The PLS-DA scores plot in Supplementary Fig. 1B showed that
while FMT donors separated from -AAD, -Ent AAD, and +Ent AAD
patients, there was no clear separation between the diarrhoeal
groups. However, +Ent AAD patients (yellow) clustered further

Table 1 | Patient demographics and antibiotic usage

Subject characteristics Non-CDI n = 136 CDI n = 33 Non-CDI vs CDI P-value Statistical test

Gender (Male) % 64 (47.4%) 18 (54.5%) 0.563 Chi-square6

Age, median years (IQR) 68 (52-78) 75 (55-83) 0.181 Mann–Whitney U7

Days hospitalisation, median (IQR) 8 (5-13) 9 (6-14) 0.528 Mann–Whitney U

Prior hospitalisation1, n (%) 83 (60.6%) 27 (81.8%) 0.079 Chi-square

Multiple hospitalisations1, n (%) 56 (41.2%) 17 (51.5%) 0.144 Chi-square

Antibiotic and non-antibiotic medications

Any antibiotic, n (%) 2 116 (69.7%) 23 (84.7%) 0.084 Chi-square

Days antibiotic treatment, median (IQR)3 5 (3-9) 4 (2-11) 0.935 Mann–Whitney U

Number of antibiotic classes, median (IQR)4 2 (1–3) 2 (1–3) 0.835 Mann–Whitney U

Any PPI, n (%) 94 (68.6%) 26 (78.8%) 0.336 Chi-square

PPI + antibiotics, n (%) 81 (59.1%) 19 (57.6%) 0.139 Chi-square

Chemotherapy, n (%) 26 (19.0%) 7 (21.2%) 0.978 Chi-square

Chemotherapy + antibiotics, n (%) 22 (16.2%) 4 (12.1%) 0.823 Chi-square

Antibiotic classes2, n (%)

Aminoglycoside 11 (9.5%) 0 (0%) 0.297 Chi-square

Carbapenem 13 (11.2%) 0 (0%) 0.224 Chi-square

Cephalosporin 60 (51.7%) 16 (76.2%) 0.061 Chi-square

Cyclic lipopeptide 3 (2.6%) 0 (0%) 1.000 Chi-square

Fluoroquinolone 9 (7.8%) 3 (14.3%) 0.337 Chi-square

Glycopeptide 15 (12.9%) 2 (9.5%) 0.939 Chi-square

Clindamycin 1 (0.9%) 2 (9.5%) 0.092 Chi-square

Macrolide 18 (15.5%) 2 (9.5%) 0.704 Chi-square

Metronidazole 33 (28.4%) 6 (28.6%) 1.000 Chi-square

Penicillin 19 (16.4%) 2 (9.5%) 0.636 Chi-square

Penicillin β-lactamase (Oral) 16 (13.8%) 3 (14.3%) 1.000 Chi-square

Penicillin β-lactamase (IV) 42 (36.2%) 8 (38.1%) 1.000 Chi-square

Trimethoprim 4 (3.4%) 0 (0%) 0.873 Chi-square

Tetracycline 6 (5.2%) 1 (4.8%) 1.000 Chi-square

Other 5 1 (0.9%) 1 (4.8%) - -
1Hospitalisation in the 12 months preceding specimen collection
2n = 139 antibiotic-associated diarrhoeal (+AAD) patients
3n = 136 +AAD patients as antibiotic treatment data were missing for three patients
4n = 138 + AAD patients as antibiotic treatment data were missing for one patient
5Other (Rifampicin and Linezolid)
62-sided significance
72-sided significance
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away from FMT donors and pairwise PLS-DA revealed that -Ent
AAD vs +Ent AAD metabolomes were significantly different
(R2Y = 0.564, Q2 = 0.472 and p = 2.031 ×10-14) (Supplementary
Fig. 1B).

Plots of mean SCFA concentrations (acetate, propionate and
butyrate) revealed that compared to FMT donors, the -Ent AAD
and +Ent AAD faecal metabolomes were significantly depleted in
all SCFAs (Supplementary Fig. 1C, E). While there was no
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Fig. 1 | Extended antibiotic exposure and combination antibiotic therapy was
associated with microbiota dominated by Enterococcaceae. Violin plots of
Shannon diversity indices assessed species richness and evenness among a FMT
donors (n = 20), non-antibiotic AAD (-AAD) (n = 29), 1–2 days (n = 29), 3–4 days
(n = 36), 5–7 days (n = 28) and ≥ 8 days (n = 37) antibiotic treatment groups, and,
b FMT donors (n = 20), non-antibiotic AAD (-AAD) (n = 29), 1 class (n = 49), 2 classes
(n = 44), 3 classes (n = 29) and ≥ 4 antibiotic classes (n = 14) treatment groups.Mean
abundance of major genera colour coded and presented as stacked bar graphs

present in c FMT donors, non-antibiotic AAD (-AAD), 1–2 days, 3–4 days, 5–7 days
and ≥ 8 days antibiotic treatment groups, and, d FMT donors, non-antibiotic AAD
(-AAD), 1 class, 2 classes, 3 classes and ≥ 4 antibiotic classes treatment groups. In
panels a and b, data are presented as mean ± SD. Statistical significance was
determined at p <0.05 and comparisons used Kruskal–Wallis tests with FDR
adjusted for multiple comparisons using the Benjamini and Hochberg method.
Source data for panels are provided as a Source Data file.
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Fig. 2 | Core phylogenetic analysis, multi-locus sequencing typing (MLST), and
vancomycin resistance gene profiling of E. faecium isolates. Core genome
phylogeny, sequence types, and the presenceof vancomycin resistance genes vanA
and vanB were determined using Nullabor v2.0 pipeline (https://github.com/

tseemann/nullarbor). Analysis was performed against the reference strain, E. fae-
cium Ef_aus00233. In the MLST column, each colour presents a visual representa-
tion of sequence type diversity. In the vanA and vanB columns, green denotes gene
presence, and – symbol denotes gene absence.
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significant difference in faecal acetate between -Ent AAD and +Ent
AAD patients, the +Ent AAD metabolome was significantly
reduced in propionate (p = 0.037) and butyrate (p < 0.0001)
concentrations (Supplementary Fig. 1C, E).

Elevated tyramine/tyrosine ratios as biomarkers of low diversity
enterococcal-dominant AAD
Individual metabolites were further assessed for their capacity to dis-
tinguish between diarrhoeal groups using the receiver operating
characteristics area under the curve (ROC-AUC). Based on the AUC ≥
0.70 cut-off, several metabolites, including the amino acid L-tyrosine
and its derivative desaminotyrosine, differentiated between -Ent AAD
and +Ent AAD (Supplementary Table 2).

We noted that while the +Ent AAD metabolome was elevated in
several amino acids compared to -Ent AAD, L-tyrosine was the only
amino acid significantly depleted in the +Ent AAD metabolome
(p < 0.0001), with a mean abundance similar to FMT donors (Fig. 4a).
Univariate AUC biomarker analysis revealed that reduced L-tyrosine
was a possible biomarker of +Ent AAD (AUC=0.79) (Fig. 4b).

Several bacterial by-products of L-tyrosine metabolism were fur-
ther analysed, with tyramine of particular interest. Decarboxylation of
L-tyrosine into tyramine in the gut is associatedwith several genera but
mainly Enterococcus, particularly E. faecium and E. faecalis31. While
tyramine was significantly elevated in the +Ent AAD metabolome
compared to FMT donors (p =0.003), there was no significant differ-
ence between -Ent AAD and +Ent AAD patients (Fig. 4c). Furthermore,
univariate AUC biomarker analysis revealed that with an AUC<0.60,
tyramine was a poor biomarker differentiating +Ent AAD from -Ent
AAD (Fig. 4d).

The ratio of tyramine to L-tyrosine was calculated for each sample
to investigate whether depleted L-tyrosine and elevated tyramine
might signify enterococcal utilisation. The tyramine/tyrosine ratio was

significantly higher for +Ent AAD patients compared to -Ent AAD
patients (p <0.0001) (Fig. 4e), and tyramine/tyrosine ratios performed
substantially better in differentiating +Ent AAD with an AUC>0.80
than tyrosine or tyramine alone (Fig. 4f).

Metabolite biomarkers of concomitant enterococcal prolifera-
tion and CDI
Toxigenic C. difficile was detected in -AAD, -Ent AAD and +Ent AAD
patients (Supplementary Fig. 2A), however, our analyses showed a lack
of genus-levelmicrobiota difference between CDI and non-CDI patients
(Supplementary Fig. 2b, d). Despite this, we hypothesised that their
metabolomes might present CDI specific-biomarkers. A heatmap of 88
metabolites that best described the variation between CDI and non-CDI
patients revealed that -AAD+CDI and -Ent+CDI metabolomes were
associated with reduced sugars, sugar alcohols and amino acids com-
pared to their non-CDI counterparts (Fig. 5a). Conversely, the +Ent+CDI
and +Ent-CDImetabolomeswere similarly enriched in a greater number
of metabolites across several compound classes, including alcohols,
amines, amino acids, bile acids, and sugars, and reduced in indoles, fatty
acids, and phenylpropanoic acids (Fig. 5a).

While the principal component scores plot could not distinguish
between CDI and non-CDI groups, multivariate ROC-AUC analysis
determined that the PLS-DA classification model showed moderate to
high specificity and sensitivity in differentiating each non-CDI and CDI
group (AUC>0.70) (Supplementary Table 3). Furthermore, between-
groupdifferences assessedbypairwise PLS-DAanalysis found thatwhile
+Ent-CDI and +Ent+CDI metabolomes were not significantly different
(p = 1.000), thedifferencebetween -AAD-CDI vs -AAD+CDI approached
statistical significance (p =0.060) and was statistically significant
between -Ent-CDI and -Ent+CDI (p =0.005) (Supplementary Table 3).

In addition, plots of mean SCFA concentrations (acetate, propio-
nate and butyrate) derived from SCFA profiling revealed that -AAD +
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Fig. 3 | Lowdiversity AADwith enterococcal proliferation formed amicrobially
distinct subset of AAD. a Summary of the HAD and antibiotic-associated diar-
rhoeal ( + AAD) patient cohorts stratified by enterococcal proliferation. Non-
antibiotic AAD (-AAD),AADwithout enterococcal proliferation (-Ent+AAD) andAAD
with enterococcal proliferation ( + Ent AAD) whose microbiota comprised 25-99%
of Enterococcus OTUs. b Violin plot of Shannon diversity indices assessed species
richness and evenness among FMTdonors (n = 20), -AAD (n = 30), -Ent AAD (n = 76)
and +Ent AAD (n = 61) patients. Alpha diversity was estimated from Shannon
diversity index (OTUabundances rarefied to 1107 reads). Statistical significancewas

determined at p <0.05 and comparisons used Kruskal-Wallis tests with FDR
adjusted for multiple comparisons using the Benjamini and Hochberg method.
Source data provided as a Source Data file. c PCoA plot based on the Bray-Curtis
dissimilarity assessedmicrobiota differences of FMTdonors (n = 20), -AAD (n = 30),
-Ent AAD (n = 76) and +Ent AAD (n = 61) patients (R2 = 0.328, p <0.001). Statistical
significance was determined at p <0.05 by PERMANOVA. The F statistic two-tailed
p-value depicts the significance of the host factor in affecting the community
structure, while the PERMANOVA statistic R2 depicts the fraction of variance
explained by each factor.
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CDI and -Ent+CDI patients were elevated in acetate and butyrate, with
mean concentrations similar to FMT donors (Fig. 5c, d). In contrast,
-Ent-CDI and +Ent-CDI patients were significantly reduced in acetate
compared to FMT donors, but the only significant between-group
difference observed was between -Ent+CDI and +Ent-CDI patients
(p = 0.016) (Fig. 5d). -AAD-CDI, -Ent-CDI, +Ent-CDI and +Ent+CDI
patients were significantly depleted in butyrate. Similarly, the only
significant between-group difference observed was between -Ent+CDI
and +Ent-CDI patients (p = 0.013) (Fig. 5d). Univariate AUC biomarker
analysis determined that acetate and butyrate, with AUC values > 0.70,
were important biomarkers that could differentiate -Ent+CDI patients
from -Ent-CDI patients (Supplementary Fig. 3a, b).

Proline Stickland fermentation by-products as biomarkers of
concomitant enterococcal proliferation and CDI
Using ROC-AUC, individualmetabolites were further assessed for their
capacity to distinguish between CDI and non-CDI groups. Supple-
mentary Tables 4-6 detail the metabolites that distinguished between
-AAD-CDI and -AAD +CDI, -Ent-CDI and -Ent+CDI, and +Ent-CDI and

+Ent+CDI. We detected several Stickland by-products, including
5-aminovaleric acid (from L-proline), 4-methylvaleric acid (4-MPA)
(from L-leucine), isovalerate (from L-leucine), isobutyrate (from L-
valine) and desaminotyrosine (from L-tyrosine) (Supplementary
Tables 4–6). Non-enterococcal CDI patients were also associated with
elevated indole/tryptophan ratios (Supplementary materials and
Supplementary Fig. 4).

5-aminovaleric acid was elevated in -Ent+CDI and +Ent+CDI
patients compared to FMT donors and their non-CDI counterparts, but
between-group differences were not significant (Fig. 6a). However,
univariate AUC biomarker analysis determined that 5-aminovaleric acid
was a potential biomarker differentiating +Ent+CDI from +Ent-CDI
patients (AUC=0.735) (Fig. 6b). We calculated the ratio of
5-aminovaleric acid toproline for each individual to investigatewhether
together, depleted proline and elevated 5-aminovaleric acid might sig-
nify C. difficile utilisation. Mean 5-aminovaleric acid/proline ratios were
reduced in non-CDI patients compared to their CDI counterparts but
the differences in 5-aminovaleric acid/proline ratios between CDI
groups and their non-CDI counterparts were not statistically significant
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Fig. 4 | Low diversity enterococcal-dominant AAD is associated with elevated
ratios of tyramine to L-tyrosine. a Dot plot of L-tyrosine abundance. b L-tyrosine
AUC plot differentiating between -Ent AAD (n = 59) from +Ent AAD (n = 51) patients.
c Dot plot of tyramine abundance. d Tyramine AUC plot differentiating between
–Ent AAD (n = 59) from +Ent AAD (n = 51) patients. e Dot plot of tyramine/tyrosine
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(n = 59) from +Ent AAD (n = 51) patients. Data presented as mean± SD in panels a,
c and e for FMT donors (n = 20), -AAD (n = 23), -Ent AAD (n = 59) and +Ent AAD
(n = 51) patients. Statistical significance was determined at p <0.05 and compar-
isons used Kruskal-Wallis tests with FDR adjusted for multiple comparisons using
the Benjamini and Hochbergmethod. Source data is provided as a Source Data file.
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(Fig. 6c). However, univariate AUC biomarker analysis determined that
5-aminovaleric acid/proline ratios performed similarly as a biomarker of
-Ent+CDI (AUC=0.718) (Fig. 6d) as 5-aminovaleric acid alone.

L-leucine and L-valine Stickland fermentation by-products as
biomarkers of CDI without enterococcal proliferation
Compared to FMT donors, 4-MPA was elevated with antibiotic usage
and enterococcal dominance and significantly elevated in -AAD-CDI
(p =0.040) and -Ent+CDI patients (p = 0.040) but between-group dif-
ferences for -AAD-CDI vs -AAD +CDI and -Ent-CDI vs -Ent+CDI patients
were not significant (Fig. 7a). However, univariate ROC-AUC deter-
mined that 4-MPA approached significance as a biomarker differ-
entiating -Ent+CDI from -Ent-CDI patients (AUC=0.682) (Fig. 7b). We
calculated the ratio of L-leucine and 4-MPA for each individual to
investigate whether together, depleted L-leucine and elevated 4-MPA
might signify C. difficile utilisation. Compared to FMT donors, 4-MPA/

L-leucine ratios were elevated in all groups, except -Ent+CDI patients
who shared similarly reduced mean 4-MPA/L-leucine ratios as FMT
donors (Fig. 7c). The mean 4-MPA/L-leucine ratio was significantly
elevated in -Ent+CDI compared to FMTdonors (p = 0.012) and -Ent-CDI
patients (p = 0.036) (Fig. 7c). Univariate AUC analysis determined that
4-MPA/L-leucine ratios performed substantially better in differentiat-
ing -Ent+CDI from -Ent-CDI (AUC>0.800) (Fig. 7d), than 4-MPA alone.

In a separate analysis, SCFAprofiling viaGC-MSdetected L-leucine
and L-valine Stickland fermentation products, isovalerate and iso-
butyrate. Compared to FMT donors, the isovalerate and isobutyrate
mean concentration decreased among non-CDI patients with anti-
biotic treatment and enterococcal dominance but were elevated in
-AAD+CDI and -Ent+CDI patients, similar to FMT donors (Fig. 7e, f).
However, analysis of CDI and non-CDI between-group differences
determined only -Ent-CDI compared to -Ent+CDI patients were sig-
nificantly reduced in isovalerate and isobutyrate (p =0.002 and
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For detailed VIP and p(corr) values, see Source Data file. Each cell corresponded to
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See Source Data file for all model details. c Dot plot of acetate concentrations (µg
per mg of fresh weight specimen (FW). d Dot plot of butyrate concentrations (µg
permgof freshweight specimen (FW). SCFAsGC-MSprofiling data arepresented as
mean ± SD in panels c and d for FMT donors (n = 20), -AAD-CDI (n = 21), -AAD+CDI
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using the Benjamini and Hochberg method. Source data provided as a Source
Data file.
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p =0.0004, respectively) (Fig. 7e, f). Univariate ROC-AUC analysis
determined isovalerate (AUC=0.830) and isobutyrate (AUC =0.886)
as significant biomarkers differentiating -Ent+CDI patients from -Ent-
CDI patients (Fig. 7g, h).

L-tyrosine Stickland fermentation by-product as biomarkers of
CDI without enterococcal proliferation
Desaminotyrosine was reduced in all diarrhoeal groups compared to
FMT donors except for -Ent+CDI patients with a mean abundance that
exceeded thatof FMTdonors (p =0.014) and their non-CDI counterparts
(p =0.129) (Fig. 8a). Univariate AUC biomarker analysis determined that
desaminotyrosine was a significant biomarker differentiating -Ent+CDI
patients from -Ent-CDI patients (AUC=0.720) (Fig. 8b). We calculated
the ratio of L-tyrosine and desaminotyrosine for each individual to
investigate whether together, depleted L-tyrosine and elevated desa-
minotyrosine might signify C. difficile utilisation. Compared to FMT
donors, desaminotyrosine/L-tyrosine ratios were reduced in all diar-
rhoeal groups, except in -AAD+CDI and -Ent+CDI groups who shared a
similarly elevated mean desaminotyrosine/L-tyrosine ratio as FMT
donors (Fig. 8c). The difference in 5- desaminotyrosine/L-tyrosine ratios
between CDI groups and their non-CDI counterparts was statistically
significant between -Ent-CDI and -Ent+CDI groups (p =0.025) (Fig. 8c).
Univariate AUC biomarker analysis found desaminotyrosine/tyrosine
ratios performed better in differentiating Ent+CDI patients (AUC=
0.807) than desaminotyrosine on its own (Fig. 8d).

Discussion
This study characterised the faecal microbiota and metabolomes of
HAD patients with respect to antibiotic treatment before specimen
collection and CDI status. 16 S rRNA gene sequencing combined with

untargeted and SCFAGC-MS-based profiling approaches revealed that
HAD, AAD and CDI patients were associated with diverse faecal
microbiota andmetabolome compositions. The study found that AAD
patients with high proportions of Enterococcus (predominantly
vancomycin-resistant E. faecium) were associated with extended anti-
biotic exposure and combination antibiotic treatment and could be
differentiated by elevated biomarkers of tyrosine decarboxylation.
Furthermore, controlling for antibiotic usage, CDI microbiota did not
differ significantly from non-CDI but could be metabolomically dis-
tinguished from non-CDI by biomarkers of Stickland fermentation and
colonisation resistance shared with FMT donors.

As a common healthcare-associated pathogen, dense gastro-
intestinal colonisation of VRE can lead to systemic infection and
transmission, putting vulnerable patients at risk. In this study, the
prevalence and high abundance of Enterococcus detected in the AAD
and CDI microbiota strongly correlated with extended antibiotic
treatment and combination antibiotic therapy. By sampling HAD
patients hospital-wide rather than in a single hospital ward, we found
that enterococcal-dominant AAD formed a distinct subset of AAD.
Enterococcus culturing revealed that the dominant species in these
specimens was E. faecium; over half of these isolates encoded vanco-
mycin resistance determinants vanA or vanB, and approximately 46%
belonged to the epidemic vanB ST796 clonal group. The ST796 clonal
group, first identified in 2012 in a Melbourne hospital32, was respon-
sible for 53% of all E. faecium bacteraemia cases inMelbourne hospitals
by 201533. It is unknown whether patients in this study were carrying
ST796 E. faecium before hospital admission or were colonised fol-
lowing healthcare-associated transmission, as faecal samples were
only collected after developing diarrhoea following two or more days
in hospital.
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Fig. 6 | Enterococcal CDI was associated by-products of L-proline Stickland
fermentation. a Dot plot of 5-aminovaleric acid abundance as detected by untar-
geted GC-MS profiling. b 5-aminovaleric acid AUC plot differentiating +Ent-CDI
(n = 42) from +Ent+CDI (n = 9) patients. c Dot plot of 5-aminovaleric/L-proline
ratios. d 5-aminovaleric acid/L-proline ratios AUC plot differentiating +Ent-CDI
(n = 42) from +Ent+CDI (n = 9) patients. Data presented as mean ± SD in panels

a and c for FMT donors (n = 18), -AAD-CDI (n = 15), -AAD +CDI (n = 7), -Ent-CDI
(n = 48), -Ent+CDI (n = 11), +Ent-CDI (n = 42) and +Ent+CDI (n = 9) patients. In panels
a and c, statistical significance was determined at p <0.05 and comparisons used
Kruskal-Wallis tests with FDR adjusted for multiple comparisons using the Benja-
mini and Hochberg method. Source data provided as a Source Data file.
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Enterococcus, particularly E. faecium and E. faecalis, have been
shown to produce large amounts of tyramine in vitro31. In this study,
biomarker assessment revealed that elevated ratios of tyramine to
tyrosine were a potential indicator of enterococcal proliferation.
However, depleted tyrosine and elevated tyramine correlating with
elevated Enterococcus have only been observed in vivo in mice with
graft-versus-host-disease34 and clinically in Parkinson’s disease
patients treated with L-DOPA (dopamine)35. Enterococcus has been
shown to decarboxylate tyrosine and dopamine into tyramine at a
similar rate in vitro35, however, in the current study it is unknown
whether unaccounted L-DOPA treatment was a factor in enterococcal
proliferation and elevated tyramine but warrants further investigation.

CDI has been associated with significantly perturbed microbiota
among critically ill patients with high antibiotic usage. We found that
CDI was associated with a spectrum of microbiota dysbiosis that
reflected contrasting antibiotic treatment rather than CDI status.
Stratification of CDI patients with respect to antibiotic treatment and
enterococcal dominance also determined that microbiota differences
between CDI and non-CDI patients were insignificant, supporting
in vivomouseCDI susceptibility studies thathave shown thatC.difficile
could colonise and cause disease in a spectrumof antibiotic perturbed
gut environments13,18,19.

While the CDI and non-CDI microbiota did not differ significantly,
non-antibiotic and non-enterococcal dominant CDI patients were
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Fig. 7 | Non-enterococcal CDI was associatedwith by-products of L-leucine and
L-valine Stickland fermentation. a Dot plot of 4-MPA abundance as detected by
untargeted GC-MS profiling. b AUC plot of 4-MPA differentiating +Ent-CDI (n = 42)
from +Ent+CDI (n = 9) patients. c Dot plot of 4-MPA/L-leucine ratios. d AUC plot of
4-MPA/L-leucine ratios differentiating +Ent-CDI (n = 42) from +Ent+CDI (n = 9)
patients. e Dot plot of isovalerate concentrations as detected by SCFA GC-MS
profiling. f Isovalerate AUC plot differentiating +Ent-CDI (n = 49) from +Ent+CDI
(n = 7). g Dot plot of isobutyrate concentrations as detected by SCFA GC-MS pro-
filing. h Isobutyrate AUC plot differentiating +Ent-CDI (n = 49) from +Ent+CDI

(n = 7). Untargeted GC-MS profiling data is presented as mean± SD in panels a and
c for FMT donors (n = 18), -AAD-CDI (n = 15), -AAD+CDI (n = 7), -Ent-CDI (n = 48),
-Ent+CDI (n = 11), +Ent-CDI (n = 42) and +Ent+CDI (n = 9) patients. SCFA GC-MS
profiling data is presented as mean ± SD in panels e and g for FMT donors (n = 20),
-AAD-CDI (n = 21), -AAD +CDI (n = 6), -Ent-CDI (n = 56), -Ent+CDI (n = 10), +Ent-CDI
(n = 49) and +Ent+CDI (n = 7). In panels a, c, e and g, statistical significance was
determined at p <0.05 and comparisons used Kruskal-Wallis tests with FDR
adjusted for multiple comparisons using the Benjamini and Hochberg method.
Source data provided as a Source Data file.
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found to have markedly different metabolome profiles to their non-
CDI counterparts. Importantly, they shared metabolite features with
FMT donors with reduced amino acids, sugars and elevated SCFAs.
Thesedifferenceswereunexpected, given that therewasnodetectable
microbiota variation between CDI patients and their non-CDI coun-
terparts. Metabolite similarities with FMT donors suggested that the
non-antibiotic and non-enterococcal CDImetabolomeswere healthier,
possibly due to unaccounted commensal bacteria present at levels
below the detection limit of the 16 S rRNA-based microbiota analysis
(i.e., less than 0.01% of microbiota). This may, in part, reflect diversity
in antibiotic treatment, as CDI patients were weakly associated with
higher cephalosporin usage. Cephalosporin usage has been associated
with proteobacteria blooms; these were not detected in the current
study. While CDI and non-CDI patients were clinically similar, the CDI
cohort may reflect individuals whose starting microbiota was less
perturbed at hospital admission.

In the current study, several C. difficile-specific biomarkers
derived from Stickland fermentation of branched-chain amino acids
could differentiate CDI patients from non-CDI patients. These results
suggest that in human CDI, C. difficile may preferentially catabolise
amino acids over sugars during infection, which is consistent with the
hypothesis that the availability of faecal amino acids enhances CDI
susceptibility27,36. Specifically, 4-MPA, isobutyrate, isovalerate,
5-aminovaleric acid and desaminotyrosine formed putative CDI bio-
markers. However, the contributions of these Stickland products may
be due to unaccounted-for taxa as the presence of other Stickland
fermenting clostridia, including Clostridium bifermentans, Clostridium

botulinum, Clostridium sporogenes, Paraclostridium sordellii and Pep-
tostreptococcus anaerobius, were not detected in the current study37.
Similarly, while C. difficile can produce small amounts of desamino-
tyrosine during its growth phase, desaminotyrosine has not been
previously associated with CDI27. Instead, elevated desaminotyrosine
has been associated with microbiota response to infection and
inflammation by commensal Stickland fermenting bacteria such as C.
orbiscindens, which were not detected in the current study38,39. How-
ever, the detection of desaminotyrosine and other Stickland products
may also reflect C. difficile metabolic diversity in response to micro-
biota competition for the amino acids.

Due to the elevated abundance of isovalerate and 4-MPA,
L-leucine may be a more energetically favourable C. difficile Stickland
substrate in microbially competitive environments27. The reduction in
amino acids in vivo signals toxin production over vegetative cell
growth and, therefore, elevated 4-MPA in the amino acid-depleted
non-enterococcal dominant CDI metabolomes might be consistent
with toxin production30. While we did not directly detect C. difficile
toxins as part of the study, the correlation between 4-MPA and toxin
production needs to be explored further to determine whether ele-
vated 4-MPA is due to C. difficile or other clostridia that compete with
C. difficile.

CDI in vivo mouse studies have shown that C. difficile metabolism
changes during CDI progression, while other in vivo CDI mouse studies
have shown that C. difficile can induce microbiota response. The meta-
bolite differences observed in non-antibiotic and non-enterococcal
dominant CDI patients compared to their non-CDI counterparts may
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Fig. 8 | Non-enterococcal CDI was associated with by-products of tyrosine
Stickland fermentation. a Dot plot of desaminotyrosine abundance.
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(n = 9) patients. c Dot plot of desaminotyrosine/L-tyrosine ratios.
d Desaminotyrosine/L-tyrosine ratios AUC plot differentiating +Ent-CDI (n = 42)
from +Ent+CDI (n = 9) patients. Data presented as mean± SD in panels a and c for

FMT donors (n = 18), -AAD-CDI (n = 15), -AAD +CDI (n = 7), -Ent-CDI (n = 48), -Ent
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Source data provided as a Source Data file.
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also reflect a concomitant microbiota and C. difficile response during
early disease, toxin production and inflammation. Non-enterococcal
dominant CDI patients were associated with elevated ratios of indole to
tryptophan, similar to FMT donors, but indole is not produced by C.
difficile. Instead, indole is one of several bacterial metabolites produced
from the fermentation of dietary tryptophan with putative anti-
inflammatory and interkingdom signalling roles40,41. While elevated
indole may suggest the presence of undetected indole producers,
in vitro studies have shown that C. difficile can induce other bacteria to
overexpress indole to remove other indole-sensitive commensals42.

The role of SCFAs in CDI is unclear. Elevated butyrate and acetate
detected in non-antibiotic and non-enterococcal dominant CDI meta-
bolomes might indicate contributions by undetected commensal
SCFA-producing bacteria. At the same time, elevated butyrate and
acetate may also be an upregulated response by commensals in
response to infection as butyrate can down-regulate and attenuate
intestinal inflammation, and high concentrations of SCFAs are inhibi-
tory to bacteria23. However, butyrate accumulation may also indicate
impaired uptake by IECs across the apical membrane due to toxin-
mediated damage and inflammation43. Lastly, elevated acetate and
butyrate might also reflect C. difficile contributions in response to
amino acid competition. In vitro studies have shown that not only can
C. difficile produce butyrate in the absence of amino acid Stickland
substrates, but butyrate export coincided with toxin secretion during
the late phases of C. difficile growth36.

While little is known about the relationships between con-
comitant CDI and VRE proliferation, epidemiologically, these patients
are associated with poorer outcomes7,8. A recent in vitro tran-
scriptomic study found that E. faecalis could reshape the metabolome
by depleting ornithine and introducing fermentable amino acids
(notably arginine), during which C. difficile altered its metabolism in
favour of Stickland fermentation with predicted end-products of iso-
leucine and proline metabolism17. In the current study, while E. fae-
cium-dominant CDI and non-CDI metabolomes were characterised by
elevated amino acids, L-tyrosine was depleted among enterococcal-
dominant patients. Only the proline Stickland by-product,
5-aminovaleric acid, differentiated between the two, supporting pre-
vious observations that proline is the preferred C. difficile energy
source18,27,36. At the same time, biomarkers of tyrosine decarboxylation
in enterococcal-dominant AAD were significant, suggesting con-
comitant enterococcal proliferation and CDI might capitalise on two
different amino acid pathways to colonise, persist and possibly inhibit
other commensals. Together, these biomarkers of enterococcal dom-
inance and CDI provide an insight into the nutritionally segregated
nature of Enterococcus and C. difficile colonisation.

Detecting C. difficile biomarkers in clinical CDI for diagnostic
purposes is difficult due to C. difficile metabolic flexibility and the
heterogeneous nature of nutrient availability in the gut environ-
ment. While microbiota and metabolomic studies are not feasible as
part of routine microbiological diagnostics, established screening
practices for the detection of toxigenic C. difficile, coupled with
putative C. difficile and enterococcal biomarkers, may better predict
CDI susceptibility and guide treatment. With metabolite features
similar to FMT donors, CDI patients associated with low antibiotic
usage might retain sufficient microbiota to compete for amino acids
and decolonise C. difficile upon cessation of antibiotic treatment (if
appropriate). Conversely, patients with enterococcal-dominant CDI
microbiota might benefit from alternative supportive care, includ-
ing FMT or microbiota drugs that have been efficacious in treating
recurrent CDI and decolonising concomitant VRE and C. difficile44.
Furthermore, the metabolome profiles presented in this study
suggest that the amino acids proline and tyrosine are significant
substrates in CDI and VRE proliferation. Therefore, their modifica-
tion via dietary interventions might also be of some therapeutic
benefit.

The current study had several limitations that could be addressed
with longitudinal and prospective studies with a larger cohort of CDI
patients. CDI patients formed a smaller cohort that may have reduced
the statistical significance of biomarker assessment. Pre-admission
antibiotic treatment, unaccounted medications, comorbidities and
dietary interventions were potential contributors to the microbiota
and metabolome heterogeneity. Non-diarrhoeal hospitalised controls
are also required to assess the large-scale shifts in microbiota and
metabolite composition associated with diarrhoea and medical inter-
ventions such as bowel washouts45. Lastly, butyrate producers and
other Stickland bacteriawith overlapping nichesmay bemissed due to
the limitations associated with amplicon sequencing compared to
metagenome sequencing, and potentially over-aggressive filtering of
OTUs may result in the loss of rarer taxa.

In summary, this study showed that CDI was associated with dif-
ferent metabolite biomarkers that correlated with increasing antibiotic-
associated dysbiosis and proliferation of opportunistic bacteria such as
Enterococcus. CDI microbiota reflected the effects of contrasting anti-
biotic exposure rather than C. difficile toxin-mediated clearance of com-
mensal microbes. Metabolite biomarkers suggest a dynamic relationship
between C. difficile and the resident microbiota, with C. difficile adopting
different strategies in response to changing gastrointestinal conditions
and microbiota resistance to infection. The particular makeup of meta-
bolite biomarkers suggests increased colonisation resistance by resident
microbiota in response to earlyC. difficile establishment. Taken together,
this study provides a unique insight into the structure of the CDI gut
microbiota and metabolome with increasing dysbiosis that provides the
basis for further study into C. difficilemetabolism and pathogenesis.

Methods
Study approval
Approval for the use of FMT specimens was obtained from Bellberry
Human Research Ethics Committee (HREC 2020-03-288). Monash
University Human Research Ethics Committee (HREC 29548) also
approved the use of these specimens. Approval for the use of HAD
specimens was obtained from Monash Health Human Research Ethics
Committee (HREC 49004) and Monash University Human Research
Ethics Committee (HREC 28455). Donor, patient and specimen eva-
luations for these cohorts are found in Supplementary Materials. All
participants consented to this study.

Specimen collection
Diarrhoeal specimens fulfilling the inclusion criteria (See Supplemen-
taryMaterials) were selected fromdiarrhoeal specimens submitted for
C. difficile testing at Monash Health, a 640-bed teaching and research
hospital in Victoria, Australia. C. difficile was the only gastrointestinal
pathogen recorded as part of the study. Monash Health Microbiology
Laboratory testing protocols included detecting the C. difficile gluta-
mate dehydrogenase (GDH) enzyme (LIAISON XL, DiaSorin, Sallugia,
Italy). GDH-positive samples were subsequently tested for toxin B
(tcdB) and binary toxin (cdtA) genes (GeneXpert, Cepheid, Sunnyvale,
California, USA). A positive PCR result represented clinically significant
CDI. Twenty faecal microbiota transplant (FMT) donor specimens
donated to the BiomeBank, an FMT clinic in Thebarton, South Aus-
tralia, were examined alongside HAD patients. The health status and
eligibility of all donors were screened following BiomeBank’s screen-
ing protocols that included an interview, medical assessment, blood,
and stool screening (See Supplementary Methods). All specimens
following collection were separated into triplicate samples and stored
at −80 °C until DNA isolation and metabolite extractions were
performed.

16 S rRNA amplicon sequencing and microbiota analysis
Total DNA was isolated from 150mg of faecal specimens using
the Bioline ISOLATE II Fecal DNA Kit (Bioline, Eveleigh, Australia).
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PCR amplification of the V3 and V4 variable regions of the
16 S rRNA gene was performed using the forward primer 338 F
5’-ACTCCTACGGGAGGCAGCAG-3’ and the reverse primer 806R 5’-
GGACTACHVGGGTWTCTAAT-3’. As previously described, the primers
also contained barcodes, spacers, and Illumina sequencing linkers46.
Sequencing was performed on the Illumina MiSeq platform using 2
×300 bp paired-end sequencing. The 16 S rRNA sequence data are
available from the NIH Sequence Read Archive (SRA) under BioProject
PRJNA986597, accession numbers SRR24999020, SRR24999021,
SRR24999022 and SRR249990213.

Paired-end Illumina sequenceswere compiled using the Fastq-Join
algorithm and taxonomic assignments performed in QIIME v.1.9.1
against the GreenGenes database and QIIME default parameters47.
Bacterial sequences were clustered into operational taxonomic units
(OTUs) at a 99% identity threshold using the Uclust algorithm48. OTUs
that comprised less than 0.01% of the total microbiota were removed,
leaving 5925 OTUs.

Using OTU abundances, alpha diversity was determined by cal-
culating the Shannon diversity index and statistical significance was
determined using the non-parametric Mann-Whitney U and Kruskal-
Wallis H tests. Beta diversity calculations from OTU abundances were
determined by generating a genus-level Bray-Curtis dissimilarity
matrix and visualised using principal component analysis plots (PCoA).
Microbial community differences were investigated using permuta-
tional multivariate analysis of variances (PERMANOVA) and statistical
significance was determined at p <0.05. Alpha and beta diversity was
calculated and visualised in Calypso49. Other than alpha diversity
measures that used rarefied data, all statistical analysis was carried out
using the OTU table that was square root transformed and Total Sum
Scaling (TSS) normalised.

The taxonomic composition of HAD and FMT microbiota was
assessed by determining the mean abundance of OTUs at a phylum,
family, and genus level. Differential abundance analysis was conducted
using Analysis of Compositions of Microbiomes (ANCOM)50. Putative
taxonomic biomarkers were assessed using the taxa with AUC values
greater than 0.70 were retained. Taxonomic comparisons were cal-
culated and visualised in Calypso49.

Culturing of enterococcal dominant specimens
All clinical samples determined to be enterococcal-dominant via 16 S
rRNA sequencingwereplated ontoHorse blood agar (HBA; BloodAgar
Base (Oxoid) with 5% horse blood) and Slanetz and Bartley agar
(Oxoid), followed by incubation at 37 °C for 24-48 hours. Colonies
were sub-cultured onto HBA to yield pure cultures, identification
confirmed using MALDI-TOF mass spectroscopy51, and DNA purified
using the DNeasy Blood and Tissue kit, with DNA sequencing per-
formed using IlluminaMiSeq v2 to achieve paired end 150bp reads. De
novo genome assemblies were prepared using SPAdes genome
assembler and annotated using Prokka. Core genome phylogeny,
sequence types, and the presence of vancomycin resistance genes
vanA and vanBwere determined using Nullabor v2.0 pipeline (https://
github.com/tseemann/nullarbor), with analysis performed in com-
parison to the reference strain, E. faecium Ef_aus0023333. The core
phylogenetic tree was visualised using Interactive Tree Of Life (iTOL)
v552. The E. faecium sequence data is available from the NCBI
database under BioProject ID PRJNA1015000, accession numbers
SAMN37345311- SAMN37345366).

Untargeted metabolomic profiling (gas chromatography-mass
spectrometry)
Faecal metabolites were extracted and derivatised, followed by ana-
lysis on Agilent 7890BGCoven coupled to a 5977Bmass spectrometer
detector (Agilent Technologies, Santa Clara, USA) fitted with an MPS
autosampler (Gerstel GmbH & Co. KG, Mülheim an der Ruhr, Ger-
many), as before53 (Supplementary Materials for a detailed protocol).

Short chained-fatty acid (SCFA) analysis
Metabolites were prepared and derivatized following the protocol
developed by Furuhashi et al.7, with some modifications followed by
analysis on anAgilent 6890Bgas chromatograph (GC) oven coupled to
a 5977B mass spectrometer (MS) detector (Agilent Technologies,
Mulgrave, VIC, Australia) fitted with an multipurpose (MPS) auto-
sampler (Gerstel GmbH and Co.KG, Mülheim an der Ruhr, Germany)
(Supplementary Materials for a detailed protocol).

Statistical analysis of metabolomics data
Normalised data were analysed using multivariate data analysis soft-
ware SIMCA 16 (version 16, Sartorius Stedim Biotech, Umeå, Sweden).
The data matrices were log-transformed to generate more symmetric
distributions, and Pareto scaled for comparability acrossmetabolites54.
PLS-DA classification models were generated to reduce the data
dimensionality and resolve the metabolite differences between HAD
groups. Principal scores plots assessed how well clinical groupings
could differentiate the HAD metabolome. PLS-DA is prone to over-
fitting the data, andmodel reliability requires cross-validation54. Cross-
validation was performed in SIMCA using R2X, R2Y and Q2 values along
with cross-validation analysis of variance (CV-ANOVA) that determined
PLS-DAmodel significance55. Models with p-values <0.05were deemed
statistically significant. R2 values greater than 0.67 was considered to
have a high predictive accuracy, a range of 0.33-0.67 indicated a
moderated effect, R2 between 0.19 and 0.33 indicated a low effect,
while R2 values below 0.19 were considered unacceptable54. Highly
disparate R2 and Q2 values indicated possible model over-fitting in
supervised analyses54.Multivariate ROC-AUCanalysis was performed in
SIMCA to assess theperformanceof eachPLS-DAclassifier inmodelling
each clinical sub-group. Metabolites with variable importance in pro-
jection (VIP) scores greater than 1.0 and predictive loading values
(p(corr)) greater than0.5 and less than -0.5 were retained. Heatmaps of
significantmetabolites visualising the abundance ofmetabolites across
clinical sub-groups were generated using ClustVis56.

Statistically significant metabolites were assessed in GraphPad
Prism version 8.2.1 for Windows (GraphPad Software, San Diego, Cali-
fornia, USA) using the non-parametric Mann-Whitney U test and
Kruskal-Wallis H test, FDR adjusted for multiple comparisons using the
Benjamini and Hochberg method. Univariate ROC-AUC assessed the
performance of putative biomarkers. An AUC cut-off of 70% was set in
the current study, and biomarkers were assessed according to the
following criteria: 90–100%= excellent; 80–90%= good; 70–80%= fair;
60–70% =poor57. Biomarkers were further assessed using the meta-
bolite ratios to assess the relationships between metabolite elevation
and depletions between biologically significant metabolite pairs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw 16 S rRNA sequence data generated in this study have been
deposited in the NCBI database under BioProject PRJNA986597,
accession numbers SRR249990219, SRR24999020, SRR24999021, and
SRR24999022. Sequences can be accessed at. The raw E. faecium
sequence data generated in this study have been deposited in the NCBI
database under BioProject ID PRJNA1015000, accession numbers
SAMN37345311-SAMN37345366). Sequences canbeaccessed at: https://
www.ncbi.nlm.nih.gov/biosample/37345312 https://www.ncbi.nlm.nih.
gov/biosample/37345313; https://www.ncbi.nlm.nih.gov/biosample/
37345314 https://www.ncbi.nlm.nih.gov/biosample/37345315; https://
www.ncbi.nlm.nih.gov/biosample/37345316 https://www.ncbi.nlm.nih.
gov/biosample/37345317; https://www.ncbi.nlm.nih.gov/biosample/
37345318 https://www.ncbi.nlm.nih.gov/biosample/37345319; https://
www.ncbi.nlm.nih.gov/biosample/37345320 https://www.ncbi.nlm.nih.

Article https://doi.org/10.1038/s41467-023-43671-8

Nature Communications |         (2023) 14:7737 13

https://github.com/tseemann/nullarbor
https://github.com/tseemann/nullarbor
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24999019
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24999020
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24999021
https://www.ncbi.nlm.nih.gov/sra/?term=SRR24999022
https://www.ncbi.nlm.nih.gov/biosample/37345311
https://www.ncbi.nlm.nih.gov/biosample/37345366
https://www.ncbi.nlm.nih.gov/biosample/37345312
https://www.ncbi.nlm.nih.gov/biosample/37345312
https://www.ncbi.nlm.nih.gov/biosample/37345313
https://www.ncbi.nlm.nih.gov/biosample/37345313
https://www.ncbi.nlm.nih.gov/biosample/37345314
https://www.ncbi.nlm.nih.gov/biosample/37345314
https://www.ncbi.nlm.nih.gov/biosample/37345315
https://www.ncbi.nlm.nih.gov/biosample/37345316
https://www.ncbi.nlm.nih.gov/biosample/37345316
https://www.ncbi.nlm.nih.gov/biosample/37345317
https://www.ncbi.nlm.nih.gov/biosample/37345317
https://www.ncbi.nlm.nih.gov/biosample/37345318
https://www.ncbi.nlm.nih.gov/biosample/37345318
https://www.ncbi.nlm.nih.gov/biosample/37345319
https://www.ncbi.nlm.nih.gov/biosample/37345320
https://www.ncbi.nlm.nih.gov/biosample/37345320
https://www.ncbi.nlm.nih.gov/biosample/37345321


gov/biosample/37345321; https://www.ncbi.nlm.nih.gov/biosample/
37345322 https://www.ncbi.nlm.nih.gov/biosample/37345323; https://
www.ncbi.nlm.nih.gov/biosample/37345324 https://www.ncbi.nlm.nih.
gov/biosample/37345325; https://www.ncbi.nlm.nih.gov/biosample/
37345326 https://www.ncbi.nlm.nih.gov/biosample/37345327; https://
www.ncbi.nlm.nih.gov/biosample/37345328 https://www.ncbi.nlm.nih.
gov/biosample/37345329; https://www.ncbi.nlm.nih.gov/biosample/
37345330 https://www.ncbi.nlm.nih.gov/biosample/37345331; https://
www.ncbi.nlm.nih.gov/biosample/37345332 https://www.ncbi.nlm.nih.
gov/biosample/37345333; https://www.ncbi.nlm.nih.gov/biosample/
37345334 https://www.ncbi.nlm.nih.gov/biosample/37345335; https://
www.ncbi.nlm.nih.gov/biosample/37345336 https://www.ncbi.nlm.nih.
gov/biosample/37345337; https://www.ncbi.nlm.nih.gov/biosample/
37345338 https://www.ncbi.nlm.nih.gov/biosample/37345339; https://
www.ncbi.nlm.nih.gov/biosample/37345340 https://www.ncbi.nlm.nih.
gov/biosample/37345341; https://www.ncbi.nlm.nih.gov/biosample/
37345342 https://www.ncbi.nlm.nih.gov/biosample/37345343; https://
www.ncbi.nlm.nih.gov/biosample/37345344 https://www.ncbi.nlm.nih.
gov/biosample/37345345; https://www.ncbi.nlm.nih.gov/biosample/
37345346 https://www.ncbi.nlm.nih.gov/biosample/37345347; https://
www.ncbi.nlm.nih.gov/biosample/37345348 https://www.ncbi.nlm.nih.
gov/biosample/37345349; https://www.ncbi.nlm.nih.gov/biosample/
37345350 https://www.ncbi.nlm.nih.gov/biosample/37345351; https://
www.ncbi.nlm.nih.gov/biosample/37345352 https://www.ncbi.nlm.nih.
gov/biosample/37345353; https://www.ncbi.nlm.nih.gov/biosample/
37345354 https://www.ncbi.nlm.nih.gov/biosample/37345355; https://
www.ncbi.nlm.nih.gov/biosample/37345356 https://www.ncbi.nlm.nih.
gov/biosample/37345357; https://www.ncbi.nlm.nih.gov/biosample/
37345358 https://www.ncbi.nlm.nih.gov/biosample/37345359; https://
www.ncbi.nlm.nih.gov/biosample/37345360 https://www.ncbi.nlm.nih.
gov/biosample/37345361; https://www.ncbi.nlm.nih.gov/biosample/
37345362 https://www.ncbi.nlm.nih.gov/biosample/37345363; https://
www.ncbi.nlm.nih.gov/biosample/37345364 https://www.ncbi.nlm.nih.
gov/biosample/37345365 The metabolomics data generated in this
study are provided in Supplementary Data file 1 and the Source Data
file. Source data are provided with this paper.
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