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Neural representations of situations and
mental states are composed of sums of
representations of the actions they afford

Mark A. Thornton 1 & Diana I. Tamir2,3

Human behavior depends on both internal and external factors. Internally,
people’s mental states motivate and govern their behavior. Externally, one’s
situation constrains which actions are appropriate or possible. To predict
others’ behavior, one must understand the influences of mental states and
situations on actions. On this basis, we hypothesize that people represent
situations and states in terms of associated actions. To test this, we use func-
tional neuroimaging to estimate neural activity patterns associated with
situations, mental states, and actions. We compute sums of the action pat-
terns, weighted by how often each action occurs in each situation and state.
We find that these summed action patterns reconstructed the corresponding
situation and state patterns. These results suggest that neural representations
of situations and mental states are composed of sums of their action affor-
dances. Summed action representations thus offer a biological mechanism by
which people can predict actions given internal and external factors.

Humans perform an extensive variety of actions on a regular basis.
Which of these actions a person chooses to perform at any given
moment depends on both external and internal factors1–6. The exter-
nal, or exogenous, factors that shape a person’s behavior comprise a
person’s situation. Situations comprise collections of physical and
social factors that constrain the behaviors that are appropriate – or
indeed, possible – for a person to perform. The internal, or endogen-
ous, factors that shape behavior include people’s mental states. These
states include the moods, emotions, and desires which motivate
actions, and the reasoning, calculating, andplanning states that help to
select and govern actions. Anticipating which actions others are likely
to perform is critical for navigating everyday social interactions.
Making accurate predictions requires people to understand both the
internal and external influences on others’ behavior. Here we investi-
gated whether the brain represents situations and mental states in a
way that facilitates social prediction. Drawing inspiration from both
ecological psychology and the theory of predictive coding1,3,7–9, we
hypothesize that people represent situations and mental states as
weighted sums of associated actions. We test this hypothesis here

using a combination of functionalmagnetic resonance imaging (fMRI),
behavior, and text analysis.

Situations are among the most important shapers of human
behavior. Situations refer to the clusters of norms, schemas, and scripts
that help people easily navigate stereotyped interactions, such as hav-
ing dinner at a restaurant10,11. Situations also include the physical char-
acteristics of the environment, such as which objects are present, that
constrain the set of actions people could undertake1,12. Situational
schema and norms tell us when and where certain actions are appro-
priate. For example, people know to dance at (most) weddings, but not
at (most) funerals. Sometimes a situation’s affordances are binary: one
simply cannot check email without an internet connection. Other
affordances are graded: nearby jackhammering does not completely
rule out sleep, but it doesmake it considerably less likely. Scripts inform
the sequences of behaviors people execute in each situation: buy a
ticket, get popcorn, sit down, and thenwatch themovie; not the reverse
order. Strong social situations can even cause people to act in unchar-
acteristic ways, such as ignoring someone in need when one is late to a
meeting13 or harming someone on an authority figure’s orders14.

Received: 15 May 2023

Accepted: 9 January 2024

Check for updates

1Department of Psychological andBrain Sciences, DartmouthCollege, Hanover, NH03755, USA. 2Department of Psychology, Princeton University, Princeton,
NJ 08540, USA. 3Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA. e-mail: Mark.a.thornton@dartmouth.edu

Nature Communications |          (2024) 15:620 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5985-3030
http://orcid.org/0000-0001-5985-3030
http://orcid.org/0000-0001-5985-3030
http://orcid.org/0000-0001-5985-3030
http://orcid.org/0000-0001-5985-3030
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44870-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44870-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44870-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44870-7&domain=pdf
mailto:Mark.a.thornton@dartmouth.edu


Mental states are the primary endogenous shaper of human
behavior. Mental states comprise the affective states (e.g., emotions,
such as happiness or envy) and the cognitive states (such as planning,
calculation, and decision-making) that motivate and govern behavior.
Certain mental states promote certain actions. For instance, concern
often leads to helping behavior, whereas anger promotes aggression15.
Mental states can also constrain behavior. An extreme emotion – such
as panic – may limit one’s normally rich behavioral repertoire to a
rudimentary set of prepared behavior responses: fight or flight16.
Occupying cognitive states such asplanning or imaginationmay reveal
new possibilities to act on17, or help one transition between disparate
emotions, as in cognitive reappraisal18. Some mental states, such as
intentions, are closely tied to specific actions. Here we focus on more
general cognitive and affective states without specific propositional
content.

To effectively navigate social life, people must accurately predict
others’ behavior9,19–21. This is true both in cooperative contexts, in
which people must coordinate on synchronized or complementary
actions, and in competitive contexts, in which one must anticipate
another’s actions to foil their goals and achieve own’s one. Given the
pervasive influence of situations and mental states on actions, a social
agent would benefit from understanding these shapers of the social
world.Whatwould an effective understandingof situations andmental
states look like? Two distinct perspectives on the human brain – the
theory of predictive coding and ecological psychology – both point to
a similar answer: the brain may represent situations and states as
probability-weighted sums of the actions they predict.

The theory of predictive coding suggests that prediction is the
central organizing principle of the brain8,22. This theory first achieved
prominence in explaining aspects of visual processing23,24 but has since
been successfully applied to a wide range of domains, including social
cognition9,25–27. Its central tenant is that the brain does not merely
perceive its inputs, but actively predicts them. Thus, prediction errors,
rather than full input signals, ascend the cortical processing hierarchy,
and ever-adjusting predictions filter back down as feedback. This
principle implies that neural representations of the external world do
not merely reflect the world’s current state, but rather predictions
about how the world is likely to evolve in the future. For instance,
neural representations of visual objects reflect how frequently those
objects co-occur in natural scenes: objects that often tend to co-occur
elicit similar patterns of brain activity, even if they do not visually
resemble each other28. This follows from predicting code, in that
perceiving any one object results in predictions about what other
objects might also be around to see.

The brain processes others’ mental states in accordance with
predictive coding. For instance, whenever one thinks about a mental
state, the pattern of brain activity elicited systematically resembles the
patterns elicited by other states that tend to follow that state in real
life27. For example, thinking about someone feeling rage primes the
brain to ponder their likely subsequent feelings of regret. Similarly, the
waypeople conceptualize novelmental states is causally shapedby the
transition dynamics between them: states which tend to precede or
follow one another are judged as more conceptually similar than pairs
with low transition probabilities between them29. If we consistently see
people become calm after they think for a while, we are likely to come
to conceptualize thinking and calmness similarly. Finally, the way that
people represent other individuals reflects predictions about their
habitual mental states. For example, in one study, participants men-
talized about popular US media figures including Bill Nye (the Science
Guy) and Justin Bieber (the musician)30. Due to his work as a science
communicator, Bill Nye was frequently thought to experience the
mental states of “curiosity” and “excitement” and rarely experience the
mental state of “anger” and “envy.”When the patterns of brain activity
elicited by thinking about curiosity, excitement, anger, and envy (and
other states) were summed up – weighted by how frequently Nye

experiences these states – the resulting pattern resembled the brain
pattern associatedwith thinking aboutNyehimself. This summed state
reconstruction is person-specific, representing Nye more than Bieber
or other target people who are thought to experience mental states
with different frequencies. These summed states explain which people
the brain represents as similar or different to each other, over and
above trait dimensions such as extraversion or competence. This work
shows thatmental states and identitymaybe related because the brain
represents other people as bundles of predictions about their mental
states. We propose that mental states and action representations have
a similar relationship, such that the brain represents mental states as
bundles of predictions about the actions those states potentiate.

Ecological psychology likewise points to the hypothesis that
action predictions shape situation representations, albeit from a very
different perspective. James Gibson’s formative work on affordances
was the first to propose that situations are defined by the actions they
afford7. Gibsonwas a founder of ecological psychology, a subfield that
takes a direct, embodied approach to studying perception and
action31. Environmental affordances play a key role in explaining action
within this paradigm. However, ecological psychology differs from the
current mainstream in cognitive neuroscience in that it is anti-
representational – i.e., it maintains that the brain does not represent
the outside world. Here we restate this hypothesis from a repre-
sentational perspective: just as neural representations ofmental states
might reflect action predictions based on internal factors, neural
representations of situationsmight reflect action predictions based on
external factors.

These disparate perspectives thus converge on the same central
hypothesis: action affordances are the building blocks of situation and
mental state representations. Specifically, since both situations and
mental states entail specific action affordances, we hypothesize that
the brain’s representations of situations and states are composed of
weighted sums of representations of the actions they afford. To test
this hypothesis, in the present study, participants judged the like-
lihood of co-occurrences between situations, mental states, and
actions while undergoing fMRI scanning (Fig. 1). For example, partici-
pants judged how likely it was that someone in the situation of being
“in an elevator”might engage in the action “waiting” (judged to be very
likely) or “bathing” (judged to be very unlikely). Within brain regions
that contained reliable situation-, mental state-, and action-specific
patterns of brain activity, we summed up the action patterns,weighted
by their co-occurrence with each situation and each state. We found
that these summed action representations specifically reconstructed
the corresponding situation/state patterns. This result indicates that
the brain does represent situations and mental states as sums of their
action affordances.

Results
Ourmain hypothesis – that actions sum to states and to situations –
is predicated on neural overlap between these three types of
representation. Action patterns can only sum up (voxelwise) to
situation or state patterns if these patterns are found in overlapping
regions. Thus, we first identified brain regions that contained reli-
able neural representations of situations, mental states, and
actions, respectively (Fig. 2). We used reliability-based feature
selection32 to identify these respective sets of brain regions. This
data-driven method identifies regions that maximize both uni-
variate voxelwise reliability, as well asmultivariate pattern similarity
reliability. With optimal voxelwise reliability thresholds for mental
states (r = 0.37), situations (r = 0.53), and actions (r = 0.43), we
identified regions of maximal pattern-wise reliability for mental
states (r = 0.76), situations (r = 0.71), and actions (r = 0.43). These
reliabilities were similar inmagnitude to the reliabilities observed in
a previous application of reliability-based feature selection to a
condition rich paradigm using social stimuli33.
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The feature selection procedure yielded disjoint sets of 5788
voxels representing situations, 10294 voxels representing mental
states, and 2536 voxels representing actions (Fig. 2D). These voxels
were located across multiple regions of association cortex, including
the superior temporal sulcus (STS) extending from the temporopar-
ietal junction (TPJ) to the anterior temporal lobe (ATL); medial parietal
cortex, including parts of precuneus, posterior cingulate, and retro-
splenial cortex; and lateral frontal cortex, including portions of pre-
motor, ventrolateral, and dorsolateral cortex; and dorsal medial
prefrontal cortex (dMPFC). In all three cases, the overall sets of regions

strongly resembled the canonical social brain network, an interpreta-
tion supported by the NeuroSynth34 Decoder tool, which listed
“default [mode]” and/or “theory [of] mind” as the closest matching
nonspatial terms for all three unthresholded reliability maps.

We observed regions of pairwise overlap between the voxels
selected for all three classes of stimuli. A set of 570 voxels were shared
between the situation and action maps, 668 voxels were shared
between the mental state and action maps, and 1545 voxels were
shared between the situation andmental state maps (Fig. S4). Regions
of overlap across domains included the TPJ, STS, ATL, and MPFC. The

Fig. 2 | Reliabilty-based feature selection. Voxels involved in representing (A)
actions (green), (B) mental states (blue), and (C) situations (pink) were identified
using reliability-based feature selection (D). Panel (D) portrays the reliability of
neural pattern similarity matrices for each class of stimuli, as a function of the

voxelwise reliability threshold used to select voxels for inclusion in the patterns.
The colored vertical lines indicate the selected thresholds, which produced the
orange regions in panels (A–C). Brighter orange colors reflect higher reliability.
Source data are provided as a Source Data file.
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Fig. 1 | Stimulus selection and task schematic. ATwophases of stimulus selection
were conducted to choose situations (pink), mental states (blue), and actions
(green) withmaximum variation in their co-occurrences, andminimal redundancy.
The plot above displays all stimuli from each of the three classes. The proximity
between stimuli (points) represents the similarity of their fastText embedding
vectors, projected into a 2-D space via Uniform Manifold Approximation69. The

style of the circles indicates whether stimuli were excluded during the first phase of
selection, 2nd phase of selection, or retained for use in the fMRI study. Selected
examples are labeled. Source data are provided as a Source Data file. B The sche-
matic illustrates the structure, appearance, and timing of the task presented to
participants in the fMRI scanner. Situation-action, situation-state, and state-action
trials were randomly interleaved throughout each run.
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existence of this spatial overlap provides an initial indication that
neural representations of situations, states, and actions may be
related.

With these regions identified, we next tested our primary
hypothesis that affordances shape social representations (Fig. 3). We
did so by adding up patterns of one type (e.g., actions) to reconstruct
patterns of another type (e.g., situations). Each sum was weighted by
how often each stimulus in the former class was thought to co-occur
with a given stimulus in the latter class (Fig. S1–S3). So, for example, in
the situation “with an elderly relative,” the action “talking” would
receive a height weight in the summation, whereas the action “skiing”
would receive a low weight. These pattern summation analyses cor-
roborated two of our three preregistered confirmatory hypotheses

(Fig. 4). Specifically, we found that frequency-weighted sums of action
patterns reconstructed situation-specific patterns (mean Z(r)
difference matched-mismatched = 0.0017, d =0.49, pcorrected = 0.043) and
that that frequency-weighted sums of action patterns reconstructed
mental state-specific patterns (mean Z(r) difference matched-

mismatched = 0.0016, d = 0.50, pcorrected = 0.039). However, we did not
find statistically significant evidence that summed mental state pat-
terns could reconstruct situation patterns (mean Z(r) difference

matched-mismatched = 0.00016, d =0.078, pcorrected = 0.97). These results
indicate that both situations and mental state representations may be
composed, at least in part, by sums of the actions they afford. In
contrast,mental state affordances donot seem toplay a role in theway
the brain represents situations.

In addition to these preregistered confirmatory analyses, we also
preregistered a matching set of pattern summation analyses reversing
the direction of the summation (Fig. S5). These exploratory analyses
examine whether action representations can be thought of as sums of
the situations and mental states in which they occur, or whether
mental states representations can be thought of as sums of the situa-
tions in which they occur. In these analyses, we found that summed
situation patterns do not reconstruct action-specific patterns (mean
Z(r) difference matched-mismatched = 0.0011, d = 0.29, pcorrected = 0.37) nor
mental state-specific patterns (mean Z(r) difference matched-

mismatched = −0.00011, d = −0.081, pcorrected = 1.00). However, summed
mental state patterns did significantly reconstruct action-specific
patterns (mean Z(r) difference matched-mismatched = 0.0018, d =0.50,
pcorrected = 0.033). This suggests that the way the brain represents
actions can be explained, at least in part, in terms of the mental states
that potentiate those actions.

The preregistered pattern summation analyses indicate that
affordance-weighted sums of action representations can reconstruct
situation and mental state representations. However, they do not
indicate what proportion of actions contribute to each situation or
state. In principle, it is possible that only a single action (e.g., the most
likely one) systematically resembles each situation/state, with the
other actions contributing only noise. To rule out this possibility, we
conducted three additional exploratory analyses.

First, wedirectly comparedhowwell affordanceweighted sumsof
action patterns, versus the single most likely action, reconstructed
situation and mental state patterns. Reconstruction accuracy was
measured using root mean square error (RMSE). For both situations
(mean RMSE difference = 0.38, d = 7.45, p = 2.09 × 10−25) and mental
states (mean RMSE difference = 0.38, d = 11.00, p = 6.38 × 10−30) we
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Fig. 3 | The schematic illustrates the pattern summation analysis process. (1)
Wholebrain images associated with actions and situations were masked by the
conjunction of the feature-selected masks for these two stimulus types. (2) Action
patterns were weighted based on how often they were judged to co-occur with
specific situations. (3) The weighted actions patterns were summed to reconstruct
the corresponding situations. (4) To test the specificity of the reconstruction, we
measured the correlation between summed action patterns and both thematching
situation patterns and mismatched situation patterns. The difference between the
two served as our accuracy metric and our primary inferential criteria (Fig. 4). This
process was repeated with every pairing of situations, mental states, and actions.
Colors in the brain maps reflect degree of activity in different voxels, with brighter
colors indicating more activity.
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observed significantly higher RMSEs for the single most likely action
than for the weighted sum of actions. This result shows that the
affordance-weighted sums of action representations do indeed
resemble situation andmental state representationsmore closely than
do the single most likely action for each situation or state.

Second, we compared the summed affordance and single most
likely action models by regressing situation and mental state patterns
onto one or both of these possible reconstructions. Model perfor-
mance wasmeasured using the Akaike information criterion (AIC). For
both situations (meanAIC = 1482) andmental states (meanAIC = 1700)
the singlemost likely actionmodel achieved the highest AIC (i.e., worst
performance). The affordance-weighted sum of actions achieved bet-
ter performance for both situations (mean AIC = 1480) and states
(mean AIC= 1697), and the difference was statistically significant for
mental states (meanAIC difference = 2.77, d = 0.59, p = 0.0041) but not
situations (mean AIC difference = 1.92, d =0.36, p = 0.066). The model
including the weighted sum and singlemost likely action achieved the
best performance for both situations (mean AIC = 1470) and mental
states (mean AIC = 1683). This model significantly outperformed both
the weighted sum model for situations (mean AIC difference = 10.40,
d = 1.55, p = 8.5 × 10−9) and states (mean AIC difference = 14.18,
d = 2.53, p = 2.0 × 10−13), and the single action model for both situa-
tions (mean AIC difference = 12.32, d = 2.72, p = 3.5 × 10−14) and states
(mean AIC difference = 16.95, d = 2.80, p = 1.8 × 10−14). These results
further indicate that neural representations of situations and mental
states are indeed comprised of sums of representations of the actions
they afford. However, the superior performance of the model featur-
ing both the summed affordance and singlemost likely actionpatterns
also suggests that the highly likely actions receive disproportional
weight in the summed representations.

Following up on this last finding, we used representational simi-
larity analysis to non-parametrically estimate the shape of the optimal
function for weighting actions by their co-occurrence rates when
reconstructing situations and mental states. The results suggest a
nonlinear weighting function, such that themost likely actions receive
particularly high weights, and the least likely actions receive negative
weights (see Supplementary Materials).

The third and final approach we used to rule out the possibility
that the single most likely action (or indeed, any single action) could
explain neural representations of situations and mental states con-
sisted of a regression-based variant of the pattern summation analyses
using cross-validated model selection (see Supplementary Materials).
This procedure allowed us to estimate how many actions contributed
to each situation and mental state representations. Results indicated

that approximately 44% of actions contribute to optimally recon-
structing each situation pattern, and 40% of actions contribute to
optimally reconstructing each mental state pattern. Moreover, the
regression weights of these optimal decompositions of each situation/
state were significantly correlated with the corresponding action
affordances. Together, these results thus further reinforce the con-
clusion that the brain represents situations and mental states as
weighted sums of the actions they afford.

To complement the pattern summation analyses, we conducted a
set of exploratory representational similarity analyses. Compared with
the pattern summation analyses, these representational similarity
analyses offer a more general test of our hypothesis that social sti-
mulus representations are shaped by affordances, without the strict
requirement that representations of stimuli of one type sum up to
representations of another type. In the first set of these analyses, we
created three neural pattern similarity matrices by correlating all
action patterns with all situation patterns, actions with mental states,
and situations with mental states, within the areas of overlap between
each pair of stimulus types. Note that, unlike most similarity matrices
used in representational similarity analyses, these matrices were
asymmetric, because the rows and columns corresponded to stimuli
from different domains (e.g., situations and actions). We then corre-
lated these similarity matrices with corresponding ratings of the like-
lihood of co-occurrence between these stimuli. The resulting
participant-level correlations were then entered into one-sample t-
tests across participants for inferential purposes. We found that co-
occurrence ratings predicted neural pattern similarity in all three cases
(Fig. 5), including between actions and situations (mean Z(r) = 0.054,
d = 1.03, pcorrected = 0.00020), between actions and mental states
(mean Z(r) = 0.059, d = 1.79, pcorrected = 0.00010), and between situa-
tions and mental states (mean Z(r) = 0.025, d =0.62,
pcorrected = 0.0099). Performing the same analyses using Kendall’s τ
yielded qualitatively identical results (see Supplementary Materials).
The results of the representational similarity analyses further corro-
borate the hypothesis that co-occurrences between social stimuli
shape how the brain represents them.

We also conducted another representational similarity analysis to
test whether action affordances shape situation and mental state
representations across the full set of voxels implicated in these two
respective domains of social stimuli, rather than just the voxels which
overlap with action representation. We found that the similarity
between situation representations, but not between mental state
representations, was significantly predicted byhow similar their action
affordances were (see Supplementary Materials).
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Fig. 5 | Unregistered representational similarity analyses provided a more
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shown in grey. Source data are provided as a Source Data file.
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Discussion
What are the building blocks of the social mind? This investigation
suggests that the brain represents the exogenous and endogenous
movers of the social world – situations andmental states, respectively
– as sums of the observable actions they afford. That is, the building
blocks of one’s understanding of a situation comprise – at least in part
–the actions that a person is likely to perform in that situation. Like-
wise, the building blocks of one’s understanding of another’s mental
state comprise the actions that states tend to potentiate. These find-
ings shed light on questions in social, affective, personality, and eco-
logical psychology.

Rich psychological traditions have investigated both the external
and internal drivers of behavior. Social psychology has historically
focused more on how the external environment – a person’s situation
– influences their behavior6,13,14. Personality psychology and affective
science have investigated the internal, endogenous that determine a
person’s behavior – their enduring personality andmomentarymental
states, respectively2,5. The present findings reveal a link between these
related traditions, thereby bridging the gap between external and
internal influences on behavior. Specifically, the results suggest that
people’s understanding of both the internal and external influences is
constructed from the same building material: an understanding of
other people’s actions. People build up useful predictive representa-
tions of situations by attending to which actions occur in which
external circumstances. Likewise, by attending towhich actionspeople
tend to performwhen they are engaged in particularmodes of thought
or feeling, people can formuseful predictive representations of others’
mental states. Thus, representations of both situations and mental
states are constructed, at least in part, from representations of the
actions they afford.

Here we observed that action representations form the building
blocks of mental state representations. However, mental state repre-
sentations may, in turn, form the building blocks of even more com-
plex social constructs. Prior research using a similar approach to the
one we used here suggests thatmental states form the basis of person
perception. Specifically, using pattern summation analyses, we pre-
viously found that mental state representations can be summed up to
reconstruct the neural representations of specific people30. That is, the
brain represents people as sums of the mental states they habitually
experience, just as it represents mental states as sums of the actions
those states afford. Considering these results together suggests a
hierarchical structure to social knowledge, in which representations of
actions are used to construct representations of mental states, which
are, in turn, used to construct representations of people. This
approach may allow the social mind to efficiently build up useful
predictive representations of multiple layers of social knowledge9.

It is likely that other social dynamics beyond action affordances
also contribute to shaping representations of social stimuli. For
example, recent research suggests that transition probabilities
between mental states causally influence mental state
representation29. Increasing the likelihood that one mental state fol-
lows another causes a corresponding increase in conceptual similarity
between these states, and leads people to judge them as closer toge-
ther on dimensions such as valence. Summed action affordances and
inter-state dynamics may thus both contribute to the formation of
mental state representations. It is possible that considering all such
social dynamics together may provide a full accounting of the struc-
ture of social knowledge.

In future work, it will also be important to consider how different
types of informationmaywork together to refine people’s predictions.
For example, knowing someone’s mental state alone may help one
make broad predictions about what actions they are likely to engage
in, but is rarely enough to specify exactly which action they will per-
form. However, if one has additional knowledge – such as what situa-
tion they are in – this could allow one to make much more specific

predictions, over and above what the mental state and situation pre-
dict cumulatively. The interaction between predictors of behavior
could even reverse the direction of certain predictions. For example, if
you know someone was at a party, you might make opposite predic-
tions about their mental state based on a second piece of information,
such as whether they are more introverted or extraverted. Under-
standing the general principles behind such interactive predictions is
an important challenge for social cognition research.

Recent years have witnessed the introduction of new, well-
validated taxonomies of both situations and mental states35–37. The
present finding may provide a unified raison d’etre for the dimensions
of situational and mental state taxonomies – that is, why researchers
have discovered that certain dimensions describe these domains, and
others do not. Specifically, our results suggest that the dimensions of
these taxonomies may describe patterns of action affordances. For
example, the existence of a valencedimension inboth situation36,37 and
mental state taxonomies35,38 likely reflects the fact that positive situa-
tions/states afford very different actions than negative situations/
states. Certain actions, such as laughing or dancing, may occur much
more often in some situations/states (i.e., positive) than other situa-
tions/states (i.e., negative), leading to the emergence of a valence
dimension at the situation/state level when such actions are summed
to create situation and state representations.

The present results also shed light on important questions in
affective science. Constructionist accounts of emotion have become
more influential in recent years39, but the precise computational
mechanism by which emotion concepts are constructed is still being
established40. The present findings lend more weight to accounts that
argue that integrating information over time is an essential component
of emotion construction41. Observable actions are noisy indicators of
underlyingmental states: one does not always get into a fightwhen one
feels angry, even if anger makes this behavior more likely. However, by
observingmany actions and other indicators ofmental states over time,
people can build up an understanding of the regularities connecting
actions and emotions. This, in turn, can allow them to more effectively
use actions to infer emotions, or, conversely, use knowledge of another
person’s mental state to predict their behavior. Similarly, by observing
which actions tend to systematically occur in the presence of which
environmental features, people can learn about the types of situations
they are likely to experience in their culture, judge the similarity
between situations to support better generalization, and predict the
behaviors which others are likely to perform in the future.

In exploratory analyses (see Supplementary materials), we
examined precisely how, and how many, action representations sum
up to situation and mental state representations. Following previous
work, the assumption of our preregistered hypotheses was that
situation/state representationswould reflect aweighted average of the
actions they afford30. Under this account, unlikely actions would
receive weights near zero, and more likely actions would receive
increasing weights in linear proportion to their co-occurrence prob-
abilities. However, this is not the only weighting function whichmight
make sense. Indeed, results of our supplementary analyses hint at two
ways in which the optimal weights might differ (Fig. S6). First, the
weighting function is not linear: highly likely actions contribute dis-
proportionately more to situation and state representations. Second,
weights can be negative. This suggests that situations and states are
defined not only by the presence of actions they do afford, but also by
the absence of actions they don’t afford. Additionally, cross-validated
model selection results provide further evidence that multiple actions
– 40–44% in this sample – contribute to optimally reconstruct each
situation/mental state, and that themagnitudes of those contributions
are correlated with affordance ratings, further corroborating the
general hypotheses of this investigation.

The observation thatmental states are defined, at least in part, by
the distribution of actions they potentiate suggests a connection with
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the class of statistical models known as Hidden Markov Models
(HMMs). These models consist of a set of unobservable latent states,
characterized by two features: (i) a set of transition probabilities
between states, and (ii) a set of probabilities specifying howoften each
state “emits” various observable indicators. In the social-affective case,
mental states/emotions would play the role of latent states, and peo-
ple’s actions would play the role of emissions. We have previously
shown that there are highly reliable transition probabilities between
different emotions, and that people have accurate knowledge of these
probabilities42. Combining this result with the present findings sug-
gests that HMMs may provide highly effective computational models
for how the brain conceptualizes others’ actions, affect, and the rela-
tions between them.

This investigation also provides support for a longstanding
hypothesis in ecological psychology: that situations are composed of
the actions they afford3,7. Despite the representational perspective we
have adopted here, our findings nonetheless bolster prior arguments
that action affordances play a key role in perceiving, predicting, and
reacting to the world around us1,12,19,43. They also support prior findings
indicating that affordances are not only relevant to understanding
actions and situations, but also to understanding other people’s
emotions and dispositions19,44.

More generally, our findings are also consistent with theories of
predictive coding, which suggest that neural representations of the
external world consist primarily of active predictions about the future
state of the world, rather than passive perceptions of the world as it
currently is8,22. Specifically, our findings suggest that people’s under-
standing of situations and mental states resemble bundles of predic-
tions about the actions likely to occur in those situations/states. In
Bayesian terminology, situations and mental states represent prior
probability distributions on actions, conditioned upon either external
or internal variables. One key prediction this perspective makes is that
the real-world co-occurrence rates between situations/states and
actions should be correlated with the perceived co-occurrence rates
we examined here. Future research could test this hypothesis using
methods such as experience sampling. Based on prior work, we expect
that people’s perceptions of action affordances will be largely accu-
rate, butmay feature certain well-documented distortions in statistical
thinking, such as base-rate neglect42,45.

Although the results of this study generally corroborated our
primary hypotheses, one exception bears further discussion. Specifi-
cally, the data indicated thatmental state affordances donot sumup to
situation representations. We initially hypothesized this relation
because certain mental states do seem more or less appropriate in
different situations. For example, it would be distasteful, or downright
suspicious, to express glee at a funeral. Our participants agreed
(Fig. S3), assigning considerably different ratings to different state-
situation co-occurrences. However, unlike in the cases of situation-
action and state-actionco-occurrences,wedidnot observe thatmental
states summed to the situations with which they frequently co-occur.
Despite this, we did observe a significant correlation between neural
pattern similarity and situation-state co-occurrences in our explora-
tory representational similarity analyses. Together, these results sug-
gest that situation andmental state representations are indeed related
within the same brain regions, but not via a process of summation of
one into the other. Future research should investigate alternative
explanations of this relationship.

The present investigationmarshals evidence for its conclusions by
adopting several important practices. First, the study was preregistered
in detail, including an a priori power analysis, the behavioral task spe-
cifications, and the analytic approaches. Despite some deviations
described herein, and the addition of several exploratory analyses, the
investigation generally hewed closely to registeredplans. This improves
transparency and constrains analytic flexibility, important considera-
tions in an investigation of this complexity. Second, we optimized our

stimuli via a two-step process using both computational text analysis
and human judgements. Moreover, the partially-crossed design used in
the imaging studies maximized the variability in the combinations of
these stimuli that participants judged in the scanner. These choices
improved both our statistical power and our ability to generalize from
the specific stimuli we selected to thebroader psychological domains of
actions, mental states, and situations from which we sampled46. Third,
we adopted a combination of data-driven methods to identify brain
regions representing situations, mental states, and actions, and theory-
driven hypotheses, to guide our confirmatory analyses. This combina-
tion of data-driven and theory-driven approaches offers the benefits of
both approaches by allowing the data to speak for itself, yet con-
straining it to say somethingmeaningful. Finally, the statistical analyses
we applied were highly conservative in multiple respects, including our
approach to controlling for multiple comparisons, and our use of data
from separate trials for each domain in the pattern summation analyses
(e.g., we summed up action patterns measured when participants were
not making judgements about situations to reconstruct situation pat-
terns which were measured when participants were not making judge-
ments about actions). These choices set a highbar for corroborating the
hypotheses we tested.

Nonetheless, this investigation does have important limitations
whichweought tohighlight. First, our sampleswerenot representative
of the US or global population, having been convenience-sampled
from US college students and Mechanical Turk workers. Moreover,
due to the Covid-19 pandemic, our imaging sample was smaller than
we planned, albeit still offering a high level of statistical power
according to our a priori power analyses. These limitations on our
samples constrain the generalizability of the present results. Second,
we used only one task to assess participants’ neural representations of
situations, mental states, and actions, and that task was not natur-
alistic. Corroborating our findings using a broader array of more nat-
uralistic tasks would improve the convergent validity and external
validity of the conclusions. Finally, although we report statistically
significant resultswithmoderate-to-large standardized effect sizes, the
raw effect sizes indicate that summed action affordances are far from
perfect reconstructions of situation or mental state affordances.
Moreover, situation, mental state, and action representations only
partially overlap in the brain. This means that, even if we had observed
very high reconstruction accuracies, the summed affordances could
not be a complete account of the formation of these social repre-
sentations (although supplementary analyses suggest that action
affordances describe situation representations beyond regions of
action representing voxels). Thus, while the results indicate that action
affordances play a role in constructing situation and mental state
representations, other factors must also contribute.

This investigation sought to understand how people understand
the external situations and internal mental states that predict others’
actions. The results suggest that representations of situations and
mental states are composed – at least in part – of probability-weighted
sums of representations of the action those situations and states
afford. This outcome indicates that people’s understanding of the
social world’s exogenous and endogenous forces may be constructed
from the same set of building blocks: actions. The results also lend
weight to the hypothesis that prediction is the fundamental goal
around which social cognition is organized26. Taken together with
other recent studies which have adopted a similar perspective30, this
work corroborates the model of the social mind that encompasses
multiple layers of social knowledge, all mutually predicting each other
and themselves9.

Methods
This research complies with all relevant ethical guidelines, and was
approved by the Princeton University Institutional Review Board
(protocol #0000007271).We report howwedetermined sample sizes,
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all data exclusions, all manipulations, all measures, and all deviations
from our registered plans. All statistical tests were two-sided. Data and
code from this study and all others in this paper are freely available on
the Open Science Framework (OSF; https://osf.io/qwd2k/). Neuroi-
maging data are available on OpenNeuro.org (https://openneuro.org/
datasets/ds004226/). This studywaspreregisteredonOSF (https://osf.
io/whsx8).

Participants
A parametric power analysis was conducted to determine an appro-
priate sample size for the imaging portion of this investigation. To this
end, we drew on a previous paper30 where we tested a similar
hypothesis (i.e., whether neural representations of people could be
reconstructed by summing the representations of mental states they
frequently experienced). That paper featured two studies with similar
designs and analyses those here. To be conservative, we targeted the
smaller of the two resulting effect sizes: Cohen’s d = 0.81. A one-sample
t-test power analysis was conducted using the ‘pwr’package in R47. This
indicated that a sample size of 34 would be necessary to achieve 95%
power, correcting for the effect of multiple comparisons (i.e., across
our threeprimary hypothesis tests describedbelow) onboth type I and
type II error rates.

Our preregistered inclusion criteria required participants to be
right-handed (or ambidextrous), 18–35 years of age, fluent in English,
have normal or corrected-to-normal vision, have no neurological
abnormalities, and have no safety contraindications for the MRI
environment. These criteria were adhered to, except for one partici-
pant who was 36 at the time of scanning. Imaging participants were
paid $20 per hour. Using SONA systems for recruitment, we had
completed data collection from 29 participants when the outbreak of
the COVID-19 pandemic led to a shutdown of our imaging center.
During the period that the imaging center was shut down, key study
personnel dispersed to different institutions, creating a barrier to
further scanning. As a result, we did not complete collection of our
original targeted sample size. To maximize the amount of data that
could be used, we relaxed our preregistered exclusion criteria. The
revised exclusion criteria were a subset of the original criteria. Speci-
fically, we excluded participants if, for five or more runs, any of the
following applied: they responded to fewer than 70% of trials, moved
more than 2mm, and/ormovedmore than 0.5mm 5 times. This led to
the exclusion of one participant, due to head motion. The remaining
sample comprised 28 participants (16 female, 12 male; mean age =
20.61; age range = 18–36; 13 Asian, 9 White, 2 Black, 3 multiracial, 1
other). Sex was self-reported, and was not a component of study
design. Sex and gender analyses were not conducted as we did not
have hypotheses regarding these variables, and we did not collect a
sufficient sample size to analyze sex and gender categories separately
or compare them. Results cannot be disaggregated by sex or gender
due to the use of multi-individual composites in stimulus selection,
feature selection, and independent variable construction. Despite not
achieving our intended sample size, our sample still offered statistical
power in excess of the typical gold standard (80%), with a family-wise
power of 86%, and 98%power for each individual hypothesis, based on
our original a priori power calculation.

In addition to our primary sample of imaging participants, we
collected two additional online samples. One of these samples rated
situations on the dimensions of the DIAMONDS taxonomy (total
N = 400; 7 excluded for reporting less than fluent knowledge of Eng-
lish; 177 female, 209 male, 4 other, 3 prefer not to state; mean age =
37.01; age range = 19–81). These ratings were used to facilitate stimu-
lus selection, as described in the next section. The other online sample
rated the probability of co-occurrences between situations, mental
states, and actions (N = 900; 290 female, 580 male, 30 declined to
state; mean age = 25.99; age range = 18–66). These ratings were com-
bined with the neuroimaging data to perform our primary hypothesis

tests. Both samples were recruited from Amazon Mechanical Turk via
CloudResearch48 and paid $6.50/hr. The sample sizes for these studies
were based on our prior experience norming stimuli in studies of
similar design, with the aim of generating reliable composite averages
across participants. All imaging and online participants provided
informed consent in a manner approved by the Princeton University
Institutional Review Board.

In addition to thesedata, we used publicly available data from two
prior investigations of mental states and actions, respectively49,50.
These data consisted of ratings of mental states and actions on the
dimensions of the 3d Mind Model and ACT-FAST taxonomy. These
ratings were used to facilitate stimulus selection, as described in the
next section.

Stimuli
This investigation presented participants with three classes of stimuli:
situations, mental states, and actions. All three classes were presented
verbally by individual words representingmental states (e.g., “relief”or
“jealousy”) and actions (e.g., “eating” or “dancing”) or by short phrases
representing situations (e.g., “at the gym” or “with an annoying
acquaintance”). An initial set of 472 actions was generated based on
verbs studied in previous research50. This set was manually reduced to
224 by eliminating actions we judged too polysemous when presented
as a singleword. An initial set of 166mental stateswas generatedbased
on a prior study49. An initial set of 166 situations was generated
manually by the research team. These descriptions were designed to
be similar in length, and to avoid explicitly describing the specific
mental state or action of the person in the situation. Instead, they
focused on physical context (e.g., time and place) and/or social con-
text (e.g., other people present).

After generating the initial stimulus sets, we performed two
rounds of stimulus optimization to create the final sets for use in the
fMRI experiment (Fig. 1). The first round of stimulus optimization
relied on computational text analysis. For eachmental state and action
word, and for eachwordwithin each situation vignette, we extracted a
corresponding word vector from the fastText embedding51. These
300d vectors represent themeaning of words, measured via statistical
regularities in large bodies of text. Vectors for the situations were
averaged across words. Several stimuli did not produce unique vec-
tors, leaving us with 220 actions, 163mental states, and 166 situations.
We assessed the similarity in meaning between stimuli in different
classes by correlating their vectors (i.e., correlating situation vectors
with state vectors, state vectors with action vectors, and action vectors
with situation vectors). These correlation matrices became the basis
for this round of stimulus selection.

This optimization procedure aimed to select subsets of 100 sti-
muli from each class, which maximized the variance in their similarity
to stimuli in the other classes. We set this goal based on the principle
that word vectors are heavily influenced by word co-occurrences, and
that word co-occurrences serve as a proxy, albeit imperfect, for real-
world co-occurrence52. By selecting stimuli that varied in their word
vector similarity to each other, we hoped to thereby select situations,
mental states, and actions thatmaximally varied in their real-world co-
occurrences. To achieve this high-level goal, we simulated 10,000
random draws of 60 stimuli from each class (60 being our final target
number of stimuli from each class). We then computed the standard
deviation of the similarities between each stimulus and the stimuli
from the other classes. For example, if “applauding” was one of the
actions in the current set of 60, we would compute the standard
deviationof the similarities (i.e., correlations) between applauding and
each of the mental state words, and between applauding and each of
the situations. We recorded these standard deviations for all stimuli
across all 10,000 random draws, and then averaged them across
draws. After z-scoring, we also averaged across the two different
classes that each class was paired with (i.e., for actions, the mean SD
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across mental states and situations). This produced an index for each
stimulus that represented how well it satisfied our variance-
maximizing goal. We selected the 100 stimuli in each class that
achieved the highest scores on this index.

The second round of stimulus optimization was based on human
ratings of the stimuli. From prior investigations49,50, we already had
access to ratings of the actions on the dimensions of the ACT-
FASTaxonomy (abstraction, creation, tradition, food, animacy, and
spiritualism) and ratings of mental states on the dimensions of the 3d
Mind Model (valence, social impact, and rationality). Since the situa-
tion stimuli were newly created for this study, we collected ratings of
the situations on the dimensions of the DIAMONDS taxonomy (duty,
intellect, adversity, mating, positivity, negativity, deception, and
sociality) from a new online sample37. Participants in this sample rated
all 100 situation stimuli on just one of the DIAMONDS dimensions,
using a 7-point Likert-type scale. These ratings were averaged across
participants to create composites for use in stimulus selection.

The first round of stimulus optimization aimed to maximize var-
iance in stimulus co-occurrences. The goal of this second round was
instead to minimize redundancy. This included minimizing redun-
dancy between the stimuli themselves and minimizing redundancy
between the psychological dimensions thatdescribed these stimuli. To
achieve these goals, we used a greedy search procedure. This proce-
dure began by randomly selecting 60/100 stimuli within a given class
(situations, states, and actions were optimized independently in this
round). Then, on each of 10,000 iterations, a potential substitution of
one of the 60 stimuli for one of the left-out 40 was considered. This
substation was evaluated on two criteria. First, we estimated the
redundancy between stimuli by computing the Euclidean distances
between them within the respective psychological rating space (e.g.,
ACT-FAST for actions). To do so, we computed the distance between
each stimulus and each other stimulus within the set of 60 that would
be generated if the substitution took place. We then averaged these
minima across the 60 stimuli. Second, we computed the correlations
between the rated psychological dimensions across the stimuli. We
computed summed the (negative) maximum and mean absolute cor-
relations between these dimensions as a measure of redundancy (i.e.,
maximizing orthogonality). We then summed these two criteria to
produce a final measure of how well the substitution under con-
sideration would achieve our goal of redundancy minimization. If the
substitution met that goal better than the current set of 60, then that
substitutionwouldbeperformed. If not, the current set of 60would be
retained. In either case, another random substitution would be con-
sidered on the next iteration.

In sum, these stimulus selection procedures allowed us to gen-
erate sets of 60 situations,mental states, and actionswhichmaximized
variance in co-occurrence rates between these classes and minimized
redundancy of stimuli and psychological dimensions within these
classes. These final sets of stimuli were rated by a separate sample of
online participants, who judged the likelihood of co-occurrences
between them (e.g., how likely is it that a certain action would occur in
a certain situation?). Participantsmade these judgements on 100-point
line scales. We averaged across participants (an average of 10 ratings
per stimulus pair) to generate composites that would be used in our
primary imaging hypothesis tests. These same sets of stimuli were also
viewed and judged by participants in the fMRI scanner, as
described below.

FMRI paradigm
Participants undergoing fMRI scanning made judgements about the
likelihood of co-occurrences between situations, mental states, and
actions. On each trial, they would be presented with two stimuli from
different classes (i.e., a situation and a state, a situation and action, or a
state and an action). For example, on a situation-action trial, they
might be asked to judge “How likely is it that a person in this situation:

at a funeral, is engaging in this action: dancing?” Participants respon-
dedon a 1–4 scale anchored at “not at all likely” and “very likely”using a
button box in their left hand. Each trial lasted 4250ms and was fol-
lowed by a minimum fixation period of 250ms, plus an additional
jittered fixation period. The jitter was Poisson distributed in 1.5 s
increments,with amean of 1.5 s. This taskwasprogrammed in Python53

using PsychoPy54.
Participants completed 10 runs of this task over the course of the

experiment. Each run consisted of 90 trials, including 30 situation-
state pairs, 30 situation-action pairs, and 30 state-action pairs. Within
each run, participants would see only 30 situations, 30 states, and 30
actions (twice each). This meant that the same situations, states, and
actions were used evenly for each type of pairing (i.e., the 30 states
pairedwith situations on a given runwould also be the 30 states paired
with actions on that run). This allowed us to strictly control how often
each stimulus co-occurred with the two other classes (i.e., so that a
certain action didn’t occur more with situations than with mental
states). Across pairs of runs (e.g., runs 1 and 2), the full set of 60 stimuli
of each class would be presented. The sets of 60 were randomly divi-
ded in half independently for each pair of runs (e.g., the run 1–2 split
would be different from the run 3–4 split) and across participants and
stimulus classes. Thus, over the course of the 10 runs, each stimulus
was guaranteed to be presented exactly 10 times. However, the parti-
cular pairings between stimuli of different classes were randomized
within each run, subject to the constraint that noparticular pairingwas
repeated within-subject. This produces a partially-crossed design at
the level of pairings (i.e., there are 60 × 60 × 3 = 10,800unique pairings
between stimuli, but each imaging participant saw only 900 of them).
This design helped to maximize the variety of stimulus pairing across
participants, and thereby the generalizability of our findings. A short
practice version of the task was presented to participants before fMRI
data collection to familiarize them with the procedure. This practice
version used stimuli that were not used in the main task.

In addition to the fMRI task, participants completed a series of
post-scan measures, including a 2-item extraversion measure, the
Interpersonal Reactivity Index55, the Narcissistic Personality
Inventory56, AutismQuotient57, and the revisedReading theMind in the
Eyes task58. Participants also rated the transition probabilities between
a set of mental states and provided their demographic information.
These measures were collected to facilitate potential individual dif-
ference analyses in combination with other imaging datasets collected
by the lab and will not be discussed further in this paper.

Imaging procedure
All imaging data were collected on Siemens Skyra 3 Tesla scanner
(Siemens, Erlangen, Germany) with a 64-channel head coil. Functional
echo-planar BOLD images were collected with TR of 1500ms; TE of
32ms; flip angle of 70°, and spatial resolution of 2.5mm isotropic
voxels. The preregistration called for 2mm voxels, but after piloting,
we decided that a larger voxel size produced better signal. Slices (52)
were acquired in an interleaved, axial fashion with a simultaneously
multislice acquisition factor of four. In addition to BOLD EPIs, we
acquired a high-resolution anatomical image from each participant for
the purposes of intersubject alignment. These images were generated
by a T1-weighted scan with 1mm isotropic voxels, a TR of 2300ms, TE
of 2.98ms, flip angle of 9°, and 176 slices. We also collected two spin
echo field maps (phase encoding A » P and P » A) to correct for inho-
mogeneities in the magnetic field via unwarping. These scans featured
2.5mm isotropic voxels at a TR of 8000ms and TE of 66ms, with 52
transversal slices. A localizer and AA scout were used to determine the
position of participants’ brains and align scans accordingly.

After data collection, imaging data were subjected to preproces-
sing and general linear modeling (GLM) using the multipackage Data
Analysis Modules for Neuroimaging pipeline (https://github.com/
PrincetonUniversity/prsonpipe). Using this pipeline, we applied
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SPM12 for slice time correction59, DARTEL for headmotion correction,
unwarping, and normalization60, and FSL for high pass filtering61.

After primary preprocessing, a GLM was applied to generate
patterns of brain activity associated with each situation, mental state,
and action. The preregistration called for a single GLM to perform this
estimation, but this was based on a separate set of hypotheses distinct
from the investigation reported here. That set of hypotheses specified
the use of Bayesian representational similarity analysis. Bayesian
models are less restricted than ordinary least squares versions of the
same analysis, in that they can estimate posteriors over linearly
dependent effects. However, that is not the case for the GLM we
intended to use here, creating a collinearity issue. Specifically, each of
the trials would have been modeled twice. For example, a situation-
action trial would have been modeled once as a situation, and once as
an action. This would have made the regressor matrix rank deficient:
any of the regressors could have been predicted from a linear com-
bination of the others, making the regression parameters impossible
to estimate. To address this issue, we instead estimated activity pat-
terns using two separate GLMs. One GLM modeled situations in the
context of situation-action trials, situations in the context of situation-
state trials, and states in the context of state-action trials. The other
GLM modeled states in the context of situation-state trials, actions in
the context of situation-action trials, and actions in the context of
situation-state trials. GLMs were implemented in MATLAB (https://
www.mathworks.com/products/matlab.html) using SPM1259 and
SPM12w (https://github.com/wagner-lab/spm12w).

Thus, across the two GLMs, there were 360 conditions of interest:
60 situations x 2 (pairedwith states vs. pairedwith actions), 60 states x 2
(pairedwith situations or pairedwith actions), and60 actions x 2 (paired
with situations or paired with states). Boxcar regressors were created
based on the onsets and durations of trials in each condition. Durations
were set to reaction times, or the full presentation time if no response
was made. The boxcars were then convolved with a canonical hemo-
dynamic response function before being entered into the designmatrix.
The GLMs also include nuisance regressors for run means and linear
trends, and 6 degree of freedomheadmotion estimates. Each condition
was contrasted against baseline, to yield 360 wholebrain activity maps.
These maps were then subjected to statistical analysis, as
described below.

Statistical analyses
Feature selection. To determine whether neural representations of
situations, mental states, or actions sum up to one another, it is first
necessary to determine where such representations are located,
and more specifically, where they overlap. An absence of overlap
would indicate that these different domains of social representation
cannot possibly sum up to one another. Although the representa-
tions could be related in other ways, a lack of overlapping patterns
would make our primary registered hypotheses non-starters. To
identify voxels contributing to the representation of situations,
mental states, and actions, we used reliability-based feature selec-
tion. This procedure allows for the identification of the voxelwise
reliability threshold that maximizes pattern-wise reliability, thereby
selecting for both highly reliable response properties within voxels
and across voxels.

Our preregistration specified no spatial smoothing, but this spe-
cification neglected the need to perform smoothing to facilitate the
reliability-based feature selection. Since this feature selection entailed
averaging patterns of brain activity across participants (unlike our other
analyses, which were conducted entirely within subject), spatial
smoothing was called for to improve the alignment between partici-
pants. Thus, for feature selection only, SPM 12 was used to apply 6mm
Full-Width at Half-Maximum Gaussian spatial smoothing59. This was
applied to GLM regression coefficients, not the preprocessed
BOLD data.

We performed reliability-based feature selection separately for
each class of stimuli using custom MATLAB code. Reliability-based
feature selection is typically done across the full set of stimuli/condi-
tions in a condition-rich design. However, in most condition-rich
designs, all stimuli/conditions are presumed to belong to the same
psychological domain and be represented by the same neural sub-
strates. This assumption is not justified in the present case, since we
are explicitly investigating three different classes of stimuli: situation,
mental states, and actions. Although we hypothesize that they will
overlap, it would be inappropriate to assume it without putting this
assumption to the test. If we performed reliability-based feature
selection across all conditions, we would inevitably detect some set of
voxels due to the logic of the procedure. That set of selected voxels
would reflect regions that reliably represent situations ormental states
or actions, but there would be no guarantee that any of them repre-
sents all three (or even two) of these types of stimuli. Thus, by per-
forming feature selection separately for each class, we put ourselves in
a better position to critically test an underlying assumption of our
main hypotheses. Bymaking it possible to find that there is no overlap
between situation, mental state, and action representations, we make
our overall hypotheses that much more falsifiable.

In the interests of clarity, wewill describe it here only in the caseof
situations, with the understanding that the same procedure was car-
ried out with respect to mental states and actions. For each voxel in
each participant’s brain, the GLMs yielded 120 values which indicate
how active that voxel was in response to the 60 situations: 60 values
corresponding to situations coming from situation-action trials, and
60 values corresponding to situations coming from situation-state
trials. We averaged these respective sets of values across participants.
We then correlated the two independent sets of 60 values with each
other. This produced a wholebrain voxelwise reliability map for
situation-related activity.

We set thresholds for this voxelwise reliabilitymap ranging from0
to the maximum observed voxelwise reliability for each map, in
increments of 0.01. At each threshold,we extracted the activity pattern
corresponding to each situation. Again, there were 120 such patterns
for each participant, corresponding to 60 situation patterns from
situation-state trials and the same 60 situations patterns from
situation-action trials. These patterns were averaged across partici-
pants. We then compute the similarity between patterns within each
set of 60 by correlating them with each other. The lower triangular
elements of these pattern similaritymatriceswere then correlatedwith
each other. The resulting value provides an estimate of the pattern
similarity reliability at a given voxelwise reliability threshold.

As the voxelwise reliability threshold increases, pattern similarity
reliability tends to first increase – as irrelevant voxels are discarded –

and then decrease – as important voxels are discarded. We selected an
optimal voxelwise threshold using the rise-and-fall dynamic. Specifi-
cally, we selected the last voxelwise threshold for which the pattern
similarity reliability continued to increase consistently (i.e., the last
voxelwise threshold before the first observed decrease in pattern
similarity reliability). Voxels with reliabilities above this threshold were
included in the subsequent pattern summation and pattern similarity
analyses.

It is important note that, like other feature selection techniques,
reliability-based feature selection has the potential to produce circu-
larity, if it is inappropriately applied32,62. In particular, if the units of
analysis over which one calculates reliability are also the only inde-
pendent or dependent variable in one’s analysis, then this carries the
risk for circularity. For example, if we were to try to perform a 60-way
classification on the situations (i.e., where the situations are the labels),
based on the corresponding patterns of brain activity, using reliability-
based feature selection would positively bias performance. In that
case, it would be necessary to perform feature selection using separate
fMRI data from the classification. However, in the present case, the
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results hinge on a third variable – co-occurrence ratings – which were
not involved in the feature selection process. As a result, feature
selection and subsequent analyses can be perform on the same data
without bias63.

Pattern summation analysis. Inferential statistics were performed
using R 4.0.364 including the glmnet65, DescTools66, and pracma67

packages. As predicted, we observed regions of overlap between
regions identified by reliability-based feature selection for situations,
mental states, and actions.We thus aimed to test whether summing up
patterns representing stimuli of one type (e.g., actions) could recon-
struct patterns representing another type of stimuli (e.g., situations).
To this end, we extracted patterns of brain activity from the GLM
results from these overlapping regions. So, for example, from the
voxels shared by situations and mental states, we extracted patterns
corresponding to each situation, and each mental state. Importantly,
these patterns were not based on all of the trials featuring a given
situation, state, or action. Rather, for a given set of overlapping voxels,
we extracted patterns from different sets of trials. For instance, from
within the situation-state overlap, we extracted situation patterns
derived from trials on which participants judged situation-action co-
occurrences, and mental state patterns derived from trials on which
participants judgedmental state-action co-occurrences.We did this to
avoid biasing the results in favor of our hypotheses. For example, it
would be less remarkable if situation patterns were related to action
patterns on trials when participants explicitly judged how often
situations and actions co-occur, compared to trials on which they
judged situation-state or state-action co-occurrences. Thus, we took
the latter approach to be more conservative – if anything, biasing the
results against the hypotheses we planned to test.

Using all of the stimuli of one type (e.g., actions), we aimed to
reconstruct each stimulus of another type (e.g., situations) with a dif-
ferent weighted average (Fig. 3). The 60 action patterns, for instance,
would be weighted based on how often our online participants rated
each to co-occurwith a specific situation. Thusweighted,wewould take
the voxelwise average of the action patterns. This process was repeated
to reconstruct all 60 situation patterns using the action patterns. We
repeated this process using actions to reconstruct states, and states to
reconstruct situations. In preregistered exploratory analyses, we also
reversed the directions of each of these summations (e.g., recon-
structing action patterns using averaged situation patterns).

We compared the reconstructed patterns with the real patterns
via Pearson correlation. Each reconstructed patternwas correlated not
only with the one matching real pattern, but also with other 59 real
patterns within the targeted domain.We subtracted the average of the
mis-matched correlations from thematched correlation to ensure that
the resulting values reflect specific reconstructions of the targeted real
patterns, rather than a generic reconstruction of all patterns within a
domain. All of these differences were then averaged within participant
to produce scalar estimates of how well patterns from one domain
could reconstruct patterns from another domain. We tested whether
the values were statistically significant by entering them into a one-
sample t-test across participants. A significant outcomewould indicate
that patterns from one domain could indeed reconstruct patterns
from another. We corrected for multiple comparisons across each
family of tests (i.e., within the three confirmatory pairings of domains
and separately within the three exploratory pairings) by applying
maximal statistic permutation testing to the t-tests.

In addition to this primary set of pattern summation analyses, we
conducted three additional exploratory pattern summation analyses
to test whether multiple actions were indeed required to construct
situation/state patterns. First, we directly compared how well affor-
dance weighted sums of action patterns, versus the single most likely
action, reconstructed situation and mental state patterns. To this end,
we z-scored all situation, mental state, and action patterns (separately

for each of these three sets) voxelwise within each subject. The
resulting standardized patterns reflect what is unique about each sti-
mulus condition, rather than any global task positive pattern. Next, we
computed the RMSE between each situation and state pattern, and the
respective affordance weighted sum of action patterns. We also com-
puted the RMSE between the situation/state patterns and the pattern
for the single most likely action to occur in the corresponding situa-
tion/state. We averaged the RMSEs across the 60 situations/states
within participant, and then compared the affordance weighted sum
RMSEs to the single most likely action RMSEs via paired t-tests.

Second, with each situation/state pattern as the dependent vari-
able, we fit three linear regressions: one featuring just the affordance
weighted sum of action patterns, one featuring just the pattern of the
single most likely action’s pattern, and one featuring both of these
predictors. For each of these models, we computed AIC as a
parsimony-adjusted model performance metric. We averaged these
AICs across all situations, or all mental states, within a participant. We
then compared the average AICs for the three regressions to each
other via paired t-tests across participants.

Finally, we conducted a cross-validated model selection proce-
dure using L1 regularized regression (see Supplementary Materials).
This procedure allowed us to estimate how many actions were con-
tributing to optimal reconstructions of situations and mental states.

Representational similarity analysis. To complement the pattern
summation analyses, we also conducted a set of exploratory repre-
sentational similarity analyses68. These analyses represent a more gen-
eral version of our primary hypothesis. They test whether the neural
similarity between stimuli in different domains is related to co-
occurrence rate, but do not require that patterns from one domain
sum up to patterns in another. These analyses were based on the same
sets of situation, state, and action patterns used in the pattern sum-
mation analyses. However, instead of adding one set up to reconstruct
the others, we Pearson correlated all patterns from one domain with all
patterns from another domain. For example, all situation patterns were
correlated with all action patterns to produce a 60× 60 neural pattern
similarity matrix comparing these two domains. We then tested whe-
ther the similarity between these patterns correlated with ratings of the
co-occurrence of the corresponding stimuli. For example, whether the
similarities between actions and situations were correlated with how
often those actions and situations were thought to co-occur. To this
end, we vectorized both the pattern similarity matrices, and the corre-
sponding co-occurrence ratingmatrices (visualized in Figs. S1, S2, & S3)
and Pearson correlated them with one another. This process yielded
one correlation value for each participant. We Fisher transformed these
correlations, and then entered them into one-sample t-tests across
participants to determine whether they were statistically significantly
different from change (r =0). We controlled for multiple comparisons
via maximal statistic permutation testing.

In addition to this primary set of representational similarity ana-
lyses, we conducted three additional variants (see Supplementary
Materials). First, we repeated the analyses described above using
Kendall’s τ instead of Pearson correlation coefficients to estimate the
relationship between affordance ratings and neural pattern similarity.
Second, we conducted a version of the analyses described above using
optimized LASSO regression coefficients, instead of zero-order cor-
relations, to estimate the contributions of action patterns to situation
and mental state patterns. Third, we conducted within-domain repre-
sentational similarity analyses (e.g., comparing situation representa-
tion to other situation representations, rather than directly to action
representations) using the full set of voxels involved in situation and
mental state representation, respectively, rather than just regions of
overlap with action representation. Finally, we used representational
similarity analysis to nonparametrically estimate the optimal shape of
the action co-occurrence weighting functions for situations and
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mental states (i.e., the curvilinear relationship between affordance
ratings and how much each action contributes to a situation or state
representation).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw MRI data generated in this study have been deposited in
OpenNeuro database (https://openneuro.org/datasets/ds004226/)
and are freely available. The behavioral data and derivate neuroima-
ging data generated in this study have been deposited on the Open
Science Framework (https://osf.io/qwd2k/) and are freely avail-
able. Source data are provided with this paper.

Code availability
Computer code used to present the experiments and analyze the data
in this investigation has been deposited on the Open Science Frame-
work (https://osf.io/qwd2k/) and is freely available.
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