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A deep-learning-based framework for
identifying and localizing multiple
abnormalities and assessing
cardiomegaly in chest X-ray

Weijie Fan 1,8, Yi Yang 2,8, Jing Qi2,8, Qichuan Zhang1, Cuiwei Liao1, Li Wen1,
Shuang Wang1, Guangxian Wang3, Yu Xia4, Qihua Wu5, Xiaotao Fan6,
Xingcai Chen2, Mi He2, JingJing Xiao7, Liu Yang1, Yun Liu1, Jia Chen1, Bing Wang1,
Lei Zhang1, Liuqing Yang1, Hui Gan1, Shushu Zhang1, Guofang Liu1, Xiaodong Ge1,
Yuanqing Cai1, Gang Zhao1, Xi Zhang1, Mingxun Xie1, Huilin Xu1, Yi Zhang1,
Jiao Chen1, Jun Li1, Shuang Han1, Ke Mu1, Shilin Xiao1, Tingwei Xiong1,
Yongjian Nian 2 & Dong Zhang 1

Accurate identification and localization of multiple abnormalities are crucial
steps in the interpretation of chest X-rays (CXRs); however, the lack of a large
CXR dataset with bounding boxes severely constrains accurate localization
research based on deep learning. We created a large CXR dataset named CXR-
AL14, containing 165,988 CXRs and 253,844 bounding boxes. On the basis of
this dataset, a deep-learning-based framework was developed to identify and
localize 14 common abnormalities and calculate the cardiothoracic ratio (CTR)
simultaneously. Themean average precision values obtained by themodel for
14 abnormalities reached 0.572-0.631 with an intersection-over-union thresh-
old of 0.5, and the intraclass correlation coefficient of the CTR algorithm
exceeded 0.95 on the held-out,multicentre and prospective test datasets. This
framework shows an excellent performance, good generalization ability and
strong clinical applicability, which is superior to senior radiologists and sui-
table for routine clinical settings.

Chest X-ray (CXR) technology has become the initial imaging exam-
ination method for chest abnormalities because of its low cost and
simple operating procedure1. The large number of CXRs generated
worldwide are interpreted individually by radiologists, which requires
considerable time and effort and increases the missed diagnosis and

misdiagnosis rates2. The accurate automatic identification and locali-
zation of abnormalities in CXRs can effectively reduce the workload of
radiologists and improve their diagnostic efficiency.

Previous studies have confirmed that deep learning can help
radiologists efficiently interpret CXRs3. A deep learning-based
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classification model was developed to screen abnormal CXRs in a
previous study;4 however, it would be more useful for radiologists if
abnormalities in CXRs could be automatically identified. A disease-
specific deep model was developed to detect certain chest diseases,
such as nodules5,6, tuberculosis7, pneumothorax8 or pneumonia9.
However, it may not ultimately be beneficial to the clinician’s inter-
pretation because several coexisting abnormalities are commonly
visible on CXR in actual clinical practice. Several studies10,11 have
developed deep classificationmodels formultiple abnormalities using
public CXR datasets, but these models only provide classification
results for each CXR without any localization information. A few
studies12,13 have tried to localize abnormalities with the heatmaps
generated by deep classification models. Nonetheless, heatmaps were
only used to showwhich parts of a given CXR led the model to its final
classification decision, so they could not strictly predict the standard
bounding box of each abnormality14. In fact, to professionally realize
the identification and localization of multiple abnormalities in CXRs, it
is necessary to employ an object detection network from the field of
computer vision based on a large CXR dataset with category and
localization labels (bounding boxes) for each abnormality. Yongwon’s
study15 developed an eDense You Only Look Once (YOLO) model for
five CXR abnormalities with only 4,634 lesion masks, but its purpose
wasonly to evaluate the reproducibility of themodel. Nguyen16 created
a small CXR dataset called VinDr-CXR, and two studies17,18 developed
models based on this dataset to localizemultiple lesions; however, it is
difficult to achieve high localization performancedue to the extremely
limited number of bounding boxes. Notably, the lack of a large dataset
with ground-truth (GT) bounding boxes significantly hampers the
ability to accurately identify and localize multiple abnormalities in
CXRs14.

In addition, the size of the heart shadow should also be observed
by radiologists in aCXR. The cardiothoracic ratio (CTR) is oftenused to
assess the degree of cardiomegaly in clinical practice;19 however, its
manual calculation is relatively time-consuming.

In this work, we constructed a large CXRdataset namedCXR-AL14
with bounding boxes for 14 abnormalities. Based on the CXR-AL14
dataset, a deep learning-based framework was developed for the
identification and localization of 14 abnormalities and the simulta-
neous calculation of the CTR (Fig. 1). Finally, an intelligent diagnosis
system was developed according to this framework to assist radi-
ologists in more efficiently interpreting CXRs.

Results
Creation of the CXR-AL14 dataset
The creation of theCXR-AL14datasetwas a very largeproject. After the
screening process of the original CXRs (Supplementary Figure 1), the
CXR-AL14 dataset was finally constructed with the help of a human-in-
the-loop approach. To ensure the accuracy of annotation, we for-
mulated annotation principles for each abnormality, and the annota-
tion of each CXR was corrected by at least one senior radiologist and
one expert radiologist (see Methods). The general information and
detailed distribution of all abnormalities in the CXR-AL14 dataset can
be seen in Table 1. Except for the atelectasis (358 GT bounding boxes),
the number of GT bounding boxes for the other 13 abnormalities were
all larger than 2,998. The abnormality with the largest number of GT
bounding boxes was nodules, up to 45,977. To the best of our
knowledge, the CXR-AL14 dataset is the largest CXR dataset with
bounding boxes for 14 common abnormalities. Based on the dataset,
the YOLOX model was trained and tuned for the identification and
localization ofmultiple abnormalities at a ratio of 9:1, and evaluated on
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Fig. 1 | Theflowchart of the study. aDevelopment and validation of the YOLOXmodel for the identification and localization of 14 chest abnormalities.bDevelopment and
validation of an algorithm for calculating the CTR to quantitatively assess cardiomegaly. CTR: cardiothoracic ratio.
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held-out, multicentre and prospective test datasets. Manufacturer and
device information for each dataset is displayed in Supplementary
Table 1.

The interreader and intrareader variability based on six experts’
annotations were assessed in this study. It is well known that the larger
the intersection over union (IoU) value is, the higher the overlap rate
between two bounding boxes and the better their consistency20. The
assessment shows that the average intrareader IoU value of each
abnormality ranged from 0.773 to 0.992, and the average interreader
IoU value of each abnormality ranged from 0.698 to 0.968. More
detailed information can be found in Supplementary Table 2. In
addition,we found that IoU=0 for a fewabnormalities. This occurred in
two situations. One was that certain abnormalities were annotated by
one expert but not by another expert, and the other was that certain
abnormalities were annotated differently by two experts. We further
counted the number of bounding boxes with IoU=0 for each
abnormality and found that the maximal number was 14 in the inter-
reader study (<0.023 per CXR) and the maximal number was 6 in the
intrareader study (<0.01 per CXR). Detailed information can be found
in Supplementary Table 3. These results demonstrated the good
interreader and intrareader agreement of annotations.

The performance achieved by the updated deep model after
each iteration was separately evaluated on the held-out test dataset,
as shown in Fig. 2. The results demonstrated that as the number of
iterations increased, the number of annotated CXRs also increased,
and theperformance of theupdatedmodel gradually improved. Note
that the model with 0 iterations corresponds to the preliminary
model. After seven iterations, the construction of the CXR-AL14
dataset was completed, and the updated model after the seventh
iteration was the YOLOX model in the proposed framework, which
achieved the highest performance. The results also demonstrated
that the human-in-the-loop approach was effective for the annota-
tion of the training dataset.

Result of the 5-fold cross-validation
Five-fold cross-validationwas performedon theCXR-AL14 dataset, and
five models were generated. The performance results of the five
models in the 5-fold cross-validation with an IoU-T of 0.5 are given in
Supplementary Fig. 2, and themean average precision (mAP) values of
thefivemodelswere0.591, 0.620, 0.626, 0.616 and0.610, respectively.
Moreover, the five models were further tested on the held-out test
dataset, the corresponding resultswith an IoU-Tof0.5 are illustrated in
Supplementary Fig. 3, and the correspondingmAPs were 0.599, 0.612,
0.619, 0.608 and 0.605, respectively. From these results, it was clear
that all five models trained on the CXR-AL14 dataset had similar per-
formance, suggesting that the performance of the model trained on
the CXR-AL14 dataset would possess good stability and repeatability.

Performance of the YOLOX model on the held-out test dataset
The preliminary validation of the performance of the YOLOX model
was performed on the held-out test dataset, which was independent of
the CXR-AL14 dataset (general information shown in Supplementary
Table 4).When the IoU threshold (IoU-T) was set to 0.5, 0.3 and0.1, the
mAP values of 14 abnormalities achieved by the YOLOXmodel reached
0.629, 0.734 and 0.769, respectively. Except for that of atelectasis, the
AP values of the other 13 abnormalities were all greater than0.348with
three IoU-Ts. Note that the AP value of venipuncture was the highest
andwas higher than0.9with three IoU-Ts (Fig. 3). The PR curve of each
abnormality obtained by the YOLOX model with different IoU-Ts can
be found in Supplementary Fig. 4. Three examples interpreted by the
YOLOX model for the identification and localization of multiple
abnormalities and their corresponding GT bounding boxes are shown
in Fig. 4.

In addition, when the IoU-Twas set to 0.5, 0.3 and0.1, themAPs of
the Faster R-CNN model were 0.271, 0.423, and 0.508, respectively,
while the mAPs of the RetinaNet model were 0.506, 0.632, and 0.678,
respectively. More details about the AP of each abnormality deter-
mined by the two models are shown in Supplementary Table 5. The
performance of the YOLOXmodel was also compared with that of the
Faster R-CNN model and the RetinaNet model, as shown in Supple-
mentary Fig. 5. We can easily find that the performance of the YOLOX
model was superior to that of the other two models.

Table 1 | The general information and distribution of all
abnormalities in the CXR-AL14 dataset

Training dataset Tuning dataset CXR-AL14 dataset

CXR images 149,425 16,563 165,988

Abnormal CXRs 92,620(61.984%) 10,284(62.090%) 102,904(61.995%)

No finding CXRs 56,805(38.016%) 6,279(37.910%) 63,084(38.005%)

Patients 130,478 14,490 144,968

Age (mean ± sd) 53.44 ± 15.20 53.43 ± 15.25 53.44 ± 15.20

Gender (males, %) 83,584(55.937%) 9370(56.572%) 92,954(56.000%)

Atelectasis 317(0.139%) 41(0.162%) 358(0.141%)

Calcification 30,020(13.140%) 3334(13.134%) 33,354(13.140%)

Consolidation 19,103(8.362%) 2163(8.521%) 21,266(8.378%)

Effusion 39,781(17.413%) 4330(17.057%) 44,111(17.377%)

Emphysema 21,240(9.297%) 2350(9.257%) 23,590(9.293%)

Fibrosis 15,043(6.585%) 1644(6.476%) 16,687(6.574%)

Fracture 11,422(5.000%) 1210(4.767%) 12,632(4.976%)

Mass 2701(1.182%) 297(1.170%) 2998(1.181%)

Nodule 41,438(18.138%) 4539(17.881%) 45,977(18.112%)

Pleural thickening 6570(2.876%) 823(3.242%) 7393(2.912%)

Pneumatosis 6229(2.727%) 724(2.852%) 6953(2.739%)

Pneumothorax 6350(2.779%) 714(2.813%) 7064(2.783%)

Postoperative
Metal

17,845(7.811%) 2084(8.210%) 19,929(7.851%)

Venipuncture 10,400(4.552%) 1132(4.459%) 11,532(4.543%)

Total 228,459 25,385 253,844

(Source data are provided as a Source Data file.).
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Fig. 2 | Performance of the updated model after each iteration with different
IoU-Ts. mAP: mean average precision, IoU-T: intersection over union threshold.
(Source data are provided as a Source Data file.).
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Multicentre validation
To test the generalizability and robustness of the YOLOX model,
another four completely independent external validation datasets
were collected from primary hospitals in districts or counties (general
information shown in Supplementary Table 4).When the IoU-Twas set
to 0.5, the YOLOX model achieved excellent performance in terms of
the identification and localization of 14 abnormalities on four multi-
centre test datasets, and the mAP values were 0.586, 0.580, 0.605 and
0.572 (Supplementary Fig. 6). When the IoU-T was set to 0.3 or 0.1, the
mAP of each external dataset also increased (Supplementary Figs. 7
and 8). The highestmAP of 0.747 was obtained with an IoU-T of 0.1 on
external dataset A whose CXRs form People’s Hospital of Banan, and
this value was slightly lower than that obtained by the YOLOX model
(0.769). The average precision for each external dataset was 0.659,
0.651, 0.651 and 0.588, while the average recall values were 0.624,
0.621, 0.651 and 0.643, respectively. Encouragingly, the average F1-
scores achieved by the model were all over 0.60. The precision, recall
and F1-scores obtained for each abnormality with different IoU-Ts on
themulticentre test datasets can be found in Supplementary Tables 6-
8. For different abnormalities, the AP values on different multicentre
validation datasets had a certain fluctuation, which is caused by the
different data distributions, but the overall generalization ability of the
YOLOX model is eximious.

Furthermore, todemonstrate the accuracyof theYOLOXmodel in
terms of localizing abnormalities, we calculated the average IoU value
for each abnormality (in comparison with the GT bounding boxes
annotated by the expert radiologists) on the external test dataset (a
total of 10,945 CXRs from four multicentres). The average IoU values
ranged from 0.458 to 0.917; more details can be found in Supple-
mentary Table 9. It is easy to see that the YOLOX model achieved
excellent performance with respect to the identification and localiza-
tion of multiple abnormalities.

Performance comparison between the YOLOX model and
radiologists
The performance comparison between the YOLOX model and radi-
ologists was carried out on the held-out test dataset and the recom-
bination test dataset. Three junior radiologists and three senior
radiologists were asked to independently annotate all CXRs in the
above two test datasets. On the held-out test dataset, when the IoU-T
was set from 0.1 to 0.5 with a step of 0.1, it was clear that the F1-scores
of the 14 chest abnormalities achievedby the YOLOXmodelweremore
stable than those of the six radiologists (Fig. 5). We can see the PR
curves of the 14 abnormalities and the results obtained by the six
radiologists with an IoU-T of 0.5 in Fig. 6. The mean precision, recall
and F1-score obtained by the YOLOX model were 0.693, 0.651 and
0.665, respectively, which were higher than those of the best senior
radiologist, whose values were 0.626, 0.547 and 0.577, respectively
(Supplementary Table 10). More details regarding the performance of

each radiologist are shown in Supplementary Table 11. The results
obtained with the other IoU-Ts are shown in Supplementary Figs. 9-10
and Tables 12-15. Overall, the YOLOX model was superior to the six
radiologists in identifying and locating most abnormalities. However,
the YOLOX model performed worse than all six radiologists in the
identification of atelectasis and emphysema. From Supplementary
Figs. 11 and 12, we can see that the YOLOX model outperforms the six
radiologists in reducing missed diagnoses. We performed one-way
analysis of variance (ANOVA) for the F1-scores achieved by the YOLOX
model, junior radiologists, and senior radiologists, and used the least
significant difference (LSD)method for pairwise comparisons between
groups (with an IoU-Tof 0.5). The results (Supplementary Tables 16-17)
showed that the performance of the YOLOX model was significantly
better than that of the junior radiologists (P = 0.034).

Similarly, on the recombination test dataset, the YOLOX model
also showed good performance, which was superior to that of the
senior radiologists.With an IoU-Tof 0.5, themeanprecision, recall and
F1-score obtained by the YOLOX model were 0.640, 0.639 and 0.632,
respectively, which were higher than those of the best senior radi-
ologist, whose values were 0.632, 0.555 and 0.586, respectively (Sup-
plementary Tables 18-19). From Supplementary Fig. 13, we found that
the performance of the YOLOX model was better than that of the
radiologists for most abnormalities. However, the performance of the
YOLOXmodel for atelectasis and emphysemawas also lower than that
of six radiologists. The performance achieved on the recombination
test dataset was similar to the results obtained on the held-out test
dataset. ANOVA and the LSD method for pairwise comparisons
between groups were further performed and showed that the differ-
ences between the groups were not statistically significant (Supple-
mentary Tables 20-21). However, the mean F1-score achieved by the
YOLOX model was higher than those of the six radiologists.

Prospective validation
To further validate the clinical applicability of the YOLOX model, a
prospective test dataset was constructed. ThemAP values obtained by
the YOLOXmodel reached 0.631, 0.731 and 0.753with IoU-T of 0.5, 0.3
and 0.1, respectively. (Supplementary Fig. 14). It is not difficult to find
that the model still obtains high performance, and its mAP value with
IoU-T of 0.5 even was the highest in all test datasets. However,
regardless of how the IoU-T changed, the AP value of atelectasis was
always lowest (0.222). The precision, recall and F1-score values
obtained for eachabnormalitywith different IoU-Ts on theprospective
test dataset can be found in Supplementary Tables 6-8.

False-positive (FP) findings by the YOLOX model on each test
dataset
The number of FP findings in each CXR is an important index that
reflects how much additional attention and effort would be needed in
the CXR interpretation workflows. We calculated the number of FP

a b c

Fig. 3 | Performance of the YOLOX model on the held-out test dataset with
different IoU-Ts. aAPvalues of 14 abnormalitieswith an IoU-Tof0.5,bAPvaluesof
14 abnormalities with an IoU-T of 0.3, c AP values of 14 abnormalities with an IoU-T

of 0.1. AP: average precision, IoU-T: intersection over union threshold. (Source data
are provided as a Source Data file.).
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findings for each abnormality in eachCXR contained in all test datasets
with different IoU-T values, and the results are shown in Supplemen-
tary Table 22. Note that nodules accounted for the largest proportion
of FP findings among all abnormalities (e.g., 53.23% in external test
dataset B with an IoU-T of 0.3). However, the average number of FP
findings of all abnormalities in each CXR did not exceed one with an
IoU-T of 0.5. Thus, we believe that the YOLOX model has good

performance in controlling FP findings and will not increase the
workload of radiologists.

Stress test of the YOLOX model
Figure 7 shows the performance change curves of the YOLOX model
under different brightness or contrast. Notably, small changes in
brightness or contrast had little effect on the performance of the

a

b

c

Original CXR Bounding boxes (GT) Bounding boxes (YOLOX)

Fig. 4 | Three examples of the YOLOX model for the identification and locali-
zation of multiple abnormalities in CXRs. a In the case A, the category and
localization of bounding boxes predicted by the YOLOX model were highly coin-
cided with the GT bounding boxes; b In the case B, the YOLOX model missed
atelectasis in the right lung hilar region and merged two separate calcifications on

the aortic arch into a single calcification; c In the case C, The YOLOXmodel missed
microcalcifications on the aortic arch and additionally diagnosed consolidation
around the right lung mass. However, the other bounding boxes predicted by
YOLOX model in case B and C were also highly coincided with the GT bounding
boxes. GT: ground-truth.
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YOLOXmodel; in contrast, large changes in brightness or contrast had
marked impacts on it. However, in routine clinical practice, there are
few CXRs with particularly poor brightness and contrast. In addition,
the brightness and contrast levels of the CXRs in each test datasetmay
be different because the CXRs were generated by various X-ray
equipment. However, the YOLOX model achieved good performance
on each test dataset. All the above suggest that the model had good
generalizability.

Validation of the CTR calculation process
A certain number of CXRs were randomly selected from different test
datasets to validate the CTR calculation algorithm (Supplementary
Tables 23 and 24). The reference standards of each CTR were mea-
sured collaboratively by two junior radiologists and one senior radi-
ologist (seeMethods). Themean values of the differences between the
values calculated by the proposed CTR calculation algorithm and the

reference standards were 0.011 on the held-out test dataset and 0.005,
0.002, 0.012 and 0.009 on each external dataset, respectively
(Fig. 8a-e). In the prospective validation, the mean value of the dif-
ference was 0.002 (Fig. 8f). Note that the intraclass correlation coef-
ficient (ICC) values between the calculated values and the reference
standards were all over 0.95 on all test datasets (Fig. 8).

Discussion
In our study, a tremendous CXR-AL14 dataset containing 165,988CXRs
(102,904 abnormal CXRs and 63,084 “No finding” CXRs) with 253,844
GTbounding boxes for 14 chest abnormalities was created. To the best
of our knowledge, this CXRdataset possesses the largest number ofGT
bounding boxes in the world. Then, we developed a deep learning-
based framework that could identify and localize 14 chest abnormal-
ities and simultaneously calculate theCTR. The diagnostic efficiency of
the proposed framework was superior to that of senior radiologists.

YOLOX 

Junior 1

Junior 2

Junior 3
Senior 1

Senior 2

Senior 3

Atelectasis Calcification Consolidation Effusion

Emphysema

Nodule Pleural thickening Pneumatosis

Fibrosis Fracture Mass

Pneumothorax

Postoperative metal Venipuncture

Fig. 5 | The F1-scores for 14 chest abnormalities produced by the YOLOXmodel and six radiologists with different IoU-Ts. IoU-T: intersection over union threshold.
(Source data are provided as a Source Data file.).
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Multicentre and prospective validations demonstrated that the fra-
mework has good generalization performance and clinical
applicability.

Accurate identification and localization based on deep learning
rely heavily on a large number of CXRs with GT bounding boxes for
multiple abnormalities. At present, some popular public CXRdatasets,
such as ChestX-ray1421, MINIC-CXR22, PadChest23 and CheXpert24, can
be utilized in deep learning research. Nonetheless, the above CXR
databases are imperfect and contain only category labels extracted
from CXR reports via natural language processing (NLP). It is well
known that there are errors in the labels obtained by NLP, and the
inaccuracy rate may reach 14%25. Moreover, these public datasets lack
localization information for each abnormality, which poses a barrier
with respect to the exploration of accurate localization approaches.

Note that the well-known ChestX-ray14 dataset contains only 984
bounding boxes, and the limited training data are not sufficient for
developing a deep localizationmodel. Nguyen16 created a CXR dataset
called the VinDr-CXR dataset, which contains 18,000 CXRs (5,343
abnormal images) with 17,367 bounding boxes. However, the numbers
of bounding boxes for most abnormalities are less than 1000, and
someof themare even less than 100. Sucha small number of bounding
boxesmakes it difficult to develop high-performancedeep localization
models, and the mAP was only 0.365 with an IoU-T of 0.4. It is notor-
iously expensive and difficult to annotate a large-scale CXR dataset
with GT bounding boxes26. In our study, with the help of the human-in-
the-loop approach, which can decrease the annotation burden for
radiologists, the CXR-AL14 dataset containing a tremendous number
of GT bounding boxes for 14 abnormalities was created, and the

YOLOX (operating point)

Junior 1
Junior 2

Junior 3
Senior 1

Senior 2

Senior 3

Atelectasis Calcification Consolidation Effusion

Emphysema

Nodule Pleural thickening Pneumatosis

Fibrosis Fracture Mass

Pneumothorax

Postoperative metal Venipuncture

Fig. 6 | Performance comparison between the YOLOX model and radiologists
on the held-out test dataset with an IoU-T of 0.5. The triangles represent the
junior radiologists, the pentacles represent the senior radiologists, and the

pentagon represents the model operation point. AP: average precision. IoU-T:
intersection over union threshold. (Source data are provided as a Source Data file.).
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numbers of bounding boxes formost abnormalities exceeded 10,000,
enabling deep learning research on CXRs to move forward. The CXR-
AL14 dataset can provide considerable data support for deep learning-
based localization tasks, making the concept of simultaneous locali-
zation of multiple abnormalities on CXRs a reality. Most previous
studies only used classification networks based onpublic CXRdatasets
to find abnormalities without accurate localization information. For
the AI imaging diagnosis tool, the interpretation of our framework is
completely consistent with the workflow of radiologists and more
suitable for routine clinical practice than that of previous models
trained by classification networks.Moreover, our framework had good
performance, and the mAP achieved by the YOLOX model reached
0.629 with an IoU-T of 0.5. The performance of the YOLOX model is
obviously superior to that of the models trained on a small CXR
dataset, such as the VinDr-CXR dataset16.

For computer-aided diagnosis, the ultimate goal is to be able to
identify and localize all the diseases present on CXR. Unfortunately, it
is difficult to accurately make disease diagnoses using only CXRs in
clinical work. Certain chest diseases may exhibit various radiological
features, and different chest diseases may share similar radiological
features. To make a good CXR report, radiologists must be aware of
the clinical symptoms and laboratory examination results, in addition
to comprehensively reviewing all radiological abnormalities in CXRs.
Therefore, our framework focused on the identification and localiza-
tion of various abnormal radiological signs (not the detection of dis-
eases), which is of paramount importance in the interpretation of
CXRs. In addition, before radiologists annotated CXRs, we developed
annotation principles for each abnormality to reduce the difference in
annotation by different radiologists. Therefore, we believe our fra-
mework has practical value in an actual clinical setting.

a

Brightness

m
AP

b

Constrast

m
AP

Fig. 7 | Performance curves of the YOLOX model under different changes of
brightness or contrast. Set the brightness (a) or contrast (b) of all the CXRs in the
held-out test dataset to 1.0, then negative and positive brightness or contrast
changes with increments and decrements of 0.1 were tested. It was obvious that

small changes in brightness and contrast had little effect on the performanceof the
YOLOX model. mAP: mean average precision, IoU-T: intersection over union
threshold. (Source data are provided as a Source Data file.).
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Although we formulated the annotation principles for each
abnormality, it was still difficult to ensure that the sizes and localiza-
tions of the bounding boxes annotated by different radiologists were
completely consistent due to the cognitive differences, small sizes or
ill-defined edges of some abnormalities.With the increase in the IoU-T,
the degree of overlap between the predicted bounding box and theGT
box must be more stringent to achieve good performance. In our
study, the performance of both the YOLOXmodel and the radiologists
decreased as the IoU-T increased. In particular, the performance
achieved for small abnormalities, such as lung nodules and mild effu-
sion, decreased faster. While the bounding boxes of emphysema were
large and well-defined, which led to a high degree of overlap with the
GT bounding boxes, the performance achieved for emphysema was
not affected by the IoU-T. It is encouraging that the F1-scores of most
abnormalities obtained by the YOLOXmodel becamemore stable than
those of the radiologists as the IoU-T changed.

In a performance comparison with radiologists, the overall per-
formance of the YOLOX model was superior to that of all six radi-
ologists even with an IoU-T of 0.5, especially for calcification,
consolidation, effusion, fibrosis, fractures, pleural thickening, pneu-
matosis, and pneumothorax. The precision levels obtained for most
abnormalities by the YOLOX model were higher than those of all six
radiologists. Moreover, the recall values of most abnormalities
achieved by the YOLOX model were higher than those of the radi-
ologists. These results demonstrated that the developed YOLOX
model can greatly reduce the missed diagnosis andmisdiagnosis rates
produced for lesions and has the potential to be applied in routine
clinical practice. For the identification of emphysema, radiologists
outperformed the YOLOX model because the imaging diagnosis pro-
cess has multiple essential objectives, such as a widened thorax and
intercostal space, sparse lung texture, and a flattened diaphragmatic
crest. Note that the AP and F1-score values of atelectasis were lower
than those of the six radiologists under each IoU-T because the num-
ber of GT bounding boxes contained in the CXR-AL14 dataset for
atelectasis was limited, and these boxes were insufficient for achieving
good performance. In addition, the tip of a venipuncture has a high
opacity and is easy to identify, but it sometimes overlaps with the
thoracic vertebra, interferingwith the identification and localization of
the model. In the case of postoperative metals, the YOLOX model
usually misidentified body surface metals as postoperative metals.
Therefore, the F1-scores of venipuncture and postoperative metal
obtained by the YOLOXmodel were slightly lower than those obtained
by radiologists.

The multicentre validation demonstrated that the mAP values
obtained for all four centres exceeded 0.570 with an IoU-T of 0.5. The
YOLOX model still maintains good performance on external datasets,
although there were some differences in the distribution of the 14
abnormalities between the CXR-AL14 dataset and the external test
datasets. We found that the proportion of nodules in external datasets
A-D was higher than that in the CXR-AL14 dataset. In contrast, the
proportion of pneumatosis, pneumothorax, postoperative metal and
venipuncture was lower than that in the CXR-AL14 dataset, which may
be due to the different hospital levels of this dataset. Thus, the dis-
tributions of the CXR abnormalities at four centreswere different from
that at our hospital. However, our results demonstrated that the dis-
tribution of abnormalities had little effect on the performance of the
YOLOX model. The AP values and F1-scores of atelectasis on each test
dataset were limited because of the small number of bounding boxes
of atelectasis on theCXR-AL14 dataset.Moreover, theAP values and F1-
scores of pneumatosis and effusion on the multicentre test datasets
were lower than those on the held-out test dataset. In general, small
abnormalities, blurred boundaries, and multiple scattered abnormal-
ities are difficult to accurately identify and localize. In the multicentre
test datasets, a small amount of pleural effusion was more common,
and pneumatosis was usually small and scattered in the CXRs from

multicentre datasets. Thus, the performance of the YOLOX model for
localizing these two abnormalities was limited. The performance
achieved for atelectasis was also not satisfactory on the prospective
test dataset (only 6 bounding boxes for atelectasis in the dataset).

To our knowledge, there are currently two methods for calculat-
ing CTR. In one method, CTR is the ratio of the maximal horizontal
cardiac diameter to the maximal horizontal thoracic diameter (inner
edge of ribs/edge of pleura), and CTR>0.50 is usually considered
cardiomegaly. Several previous studies27,28 have been conducted on
the automatic calculation of theCTRby referring to the abovemethod;
However, in professional reference book19, CTR is defined as the ratio
of the cardiac diameter (the horizontal distance between the most
rightward and most leftward margins of the cardiac shadow) to the
thoracic diameter (the distance from the innermargin of the ribs at the
level of the dome of the right hemidiaphragm), and CTR >0.55 is
usually considered to be cardiomegaly. The automatic calculation of
CTR according to the former method only requires the segmentation
of both lungs and the heart. However, for the latter method, the dome
point of the right hemidiaphragm needs to be automatically identified
in addition to the segmentation of both lungs and the heart. In our
studies, the automatic calculation of CTR in the framework was
developed by referring to the latter method. In addition, these two
methods cannot be applied to anterior-posterior (AP) CXRs and bed-
side CXRs due to the amplification effect of the heart shadow in these
two cases. It is worth noting that when the anatomical boundaries of
the heart are invisible due to the presence of lesions near the heart
shadow, the CTR cannot be calculated.

There were some limitations in our study. First, the CXRs in the
created CXR-AL14 dataset came from a single hospital, and adding
CXRs from other hospitals may improve the performance of the deep
model. Second, the distribution of the numbers of different types of
abnormalities was unbalanced, which reduced the performance
achieved by the YOLOXmodel. Third, lateral CXRs, whichmay provide
additional information for identifying abnormalities, were not inclu-
ded in the study.

In conclusion, we created a large CXR-AL14 dataset containing
category and localization information approximately for 14 abnorm-
alities. It is expected that the CXR-AL14 dataset will promote further
localization research involving CXRs. Based on the created dataset, a
frameworkwasdeveloped to identify and localize 14 abnormalities and
simultaneously calculate the CTR. Internal and external validations
demonstrated that our framework has the potential to be used in
auxiliary CXR diagnoses, efficiently reducing the workloads of radi-
ologists and improving their diagnostic efficiency.

Methods
Ethics and information governance
This study was approved by the Medical Ethics Committee of the
Second Affiliated Hospital of Army Medical University (no. 2021-159-
01, no. 2022-193-01 and no. 2023-123-01). All methods were imple-
mented in accordance with the approved regulations and the
Declaration of Helsinki. The CXR-AL14 dataset and held-out test data-
set were collected retrospectively with a waiver granted for the
requirement of informed consent (no. 2021-159-01). The multicentre
validation in this studywas approved by theMedical Ethics Committee
of the principal investigator’s hospital. The multicentre hospital ret-
rospectively collected CXR data according to the approved experi-
mental procedures (no. 2022-193-01), and informed consent was
waived for this retrospective analysis. Moreover, the CXRs of all the
retrospective datasets, including the CXR-AL14 dataset, held-out, and
multicentre test datasets were de-identified to remove any patient-
related information before collection. None of the authors partici-
pated in the data de-identification process. The prospective test
dataset was collected prospectively in accordance with procedures
approved by the hospital Ethics Committee (no. 2023-123-01) and
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written informed consent was obtained from each participant. The
CXRs of prospective test datasets were also de-identified before
transfer to study investigators.

Study design
The flowchart of the study is shown in Fig. 1. In brief, our study for-
mulated two tasks. One was to create a large dataset (CXR-AL14) with
high-quality annotations for the training and tuning of the YOLOX
model to enable it to identify and localize 14 chest abnormalities. A
held-out test dataset that was independent of the CXR-AL14 dataset
and a recombination test dataset, were used to evaluate the perfor-
mance of the YOLOX model and compare it with that of radiologists.
Moreover, multicentre and prospective validations were conducted to
evaluate the generalization of the YOLOX model (Fig. 1a). The other
task was to propose a CTR calculation algorithm based on deep
learning for the quantitative assessment of cardiomegaly. Similarly,
internal, multicentre and prospective validations were performed to
evaluate the performance of the proposed algorithm (Fig. 1b). Finally,
the above two tasks were integrated into a framework that could assist
radiologists in reviewing CXRs in clinical practice.

Data collection
We consecutively collected 315,072 original CXRs from 159,996
patients at the Department of Radiology, Second Affiliated Hospital,
Army Medical University (AMU), between August 2011 and December
2021. Lateral or anteroposterior CXRs, CXRs from patients under the
age of eighteen, and duplicate CXRs were excluded from the study.
After filtering, 171,988 CXRs from 150,914 patients remained. Then,
6,000 CXRs were randomly selected as a held-out test dataset. Finally,
all 165,988 remaining CXRs were annotated by the human-in-the-loop
approach to create the CXR-AL14 dataset. The CXR screening process
can be found in Supplementary Fig. 1. All CXRs were taken by the
following three devices: AXIOM Aristotle VX Plus (Siemens, Germany),
DRX Evolution (Carestream Health, Canada) and DirectView DR7500
(Kodak, USA).

Multicentre validation datasets were randomly collected from
four hospitals, namely, External dataset A (People’s Hospital of Banan
in Chongqing), External dataset B (Fengdu People’s Hospital of
Chongqing), External dataset C (People’s Hospital of Nanchuan in
Chongqing) and External dataset D (Xishui Hospital of Traditional
Chinese Medicine in Guizhou). After filtering the data with the above
exclusion criteria, 2,978, 2,633, 2,651 and 2,683 CXRs from each hos-
pital were included in this study. Furthermore, 700 CXRs from each
multicentre were randomly selected to construct the recombination
test dataset (a total of 2800 CXRs) for a further performance com-
parison between the YOLOX model and radiologists.

Prospective test dataset was collected from the Second Affiliated
Hospital of Army Medical University through the process as follow.
The inclusion criteria for the prospective validation study were parti-
cipants over 18 years old who need to underwent CXR examination
written out by clinicians. Before the participants underwent the
examination in the radiology department of our hospital, we fully
informed them the content of the prospective study. Only after they
agreed to participate in the study and signed the informed consent
form, their CXRs will be collected. From Oct 1 to Oct 15, 2023, 1517
participants signed 1540 copies of the informed consent forms (a few
participants underwent two or three times CXR examinations) and
participated in this study. A total of 1540 posteroanterior CXRs and
1161 lateral CXRs were collected. After excluded the lateral CXRs, the
remaining posteroanterior CXRs were constructed as the prospective
test dataset.

Themanufacturer and device information of all the above CXRs is
displayed in Supplementary Table 1. The general information and fil-
tering details of the held-out, multicentre, recombination and pro-
spective test datasets are shown in Supplementary Table 4.

Annotations for categories and localizations
Our annotations included both category labels and localizations with
bounding boxes for each abnormality. We focused on 14 common
abnormalities in CXRs, including atelectasis, calcification, consolida-
tion, effusion, emphysema, fibrosis, fracture, mass, nodule, pleural
thickening, pneumatosis, pneumothorax, postoperative metal and
venipuncture. The implication of each abnormality can be found in
Supplementary Table 25.

The standardization of the annotations is extremely important to
ensure annotations with high quality29. To ensure the accuracy of the
GT annotations, we formulated three general rules for the annotation
of each bounding box by referring to the labelling principles of target
detection. (1) The bounding box should be the minimum external
rectangle box that contains the whole abnormality in principle. It is
worth noting that for the annotation of small abnormalities, such as
tiny nodules and pacemaker tip electrodes, the minimum external
rectangular box can be appropriately enlarged. (2) If the edge of one
abnormality is obscured or sheltered, the edge should be confirmed
according to the knowledge and experience of radiologists. For
example, when the lower boundaryof the pleural effusion is difficult to
determine, radiologists need to use their knowledge and experience to
determine the lower boundary of the pleural effusion according to the
position of the contralateral hemidiaphragm and costophrenic angle,
as well as further annotate the effusion (Supplementary Fig. 15). (3) If
there are multiple abnormalities with the same category in the same
CXR, each abnormality should be individually annotated by a bound-
ing box as long as they are not connected. Under the above general
rules, the details of the annotation principles for each abnormality are
described in Supplementary Table 25, and annotation examples for
each abnormality are given in Supplementary Fig. 16. All the radi-
ologists were trained according to the details of annotation principles
for each abnormality andmade full sense of them before participating
in the annotation process.

Both the category and localization of each abnormality in CXRs
were annotated by the LabelImg tool (v1.8.0, https://pypi.org/project/
labelImg/1.8.0/).

Constructionof the CXR-AL14dataset via the human-in-the-loop
approach
Accurately annotating multiple abnormalities on a large number of
CXRs is a massive challenge. To address this issue, we employed an
approach named human-in-the-loop in which humans and models
work in tandem (Fig. 9); this is similar to the labelling process in
Greenwald’s study30. First, six expert radiologists (with more than 20
years of experience in radiological diagnosis) collectively annotated
all abnormalities on 8,000 CXRs, which were adopted to train a
preliminary deep model. During this process, the six experts jointly
formulated the GT bounding boxes for each CXR, and if there were
any conflicts of opinion, they discussed together to obtain the final
decision. Second, predictive annotations for the new unannotated
CXRs were generated by the preliminary model, and these annota-
tions were randomly sent to twelve senior radiologists (with more
than 10 years and less than 20 years of experience in radiological
diagnosis) to correct the categories, sizes and localizations of the
bounding boxes. The corrected annotations were then randomly
dispensed to the six expert radiologists for further correction. The
checks by two levels of radiologists are analogous to the routine
workflow of radiologists interpreting CXRs. In this process, if one
expert had doubts about any annotation, a final decision was made
after discussion with another expert radiologist. After expert cor-
rection, the CXR annotations could be considered GT-level annota-
tions. Then, the CXRs with corrected annotations were added to the
training dataset for retraining themodel and sent to the final dataset.
As the number of iterations increased, the predictive performance of
themodel increased, and the correction workload of the radiologists
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gradually decreased. After seven iterations, a large CXR dataset
named CXR-AL14 was created, which contained 165,988 CXRs
(102,904 abnormal CXRs and 63,084 CXRs with “No finding” labels)
from 144,968 patients with 253,844 GT categorical and localization
bounding boxes. There were 47,016 CXRs with one abnormality,
28,683 with two abnormalities, and 27,205 with multiple abnormal-
ities in the CXR-AL14 dataset; more details can be found in Supple-
mentary Table 26. The volume of CXRs for each iteration, and the
number of each abnormality annotated by each expert are shown in
Supplementary Tables 27-28. Moreover, the performance of the
updated model after each iteration was evaluated on the held-out
test dataset.

To ensure the accuracy and reliability of the GT labels in the CXR-
AL14 dataset, the intrareader and intrareader variability of the anno-
tation of six experts in the expert group was evaluated. Since the six
experts played thefinal role in the creationof theCXR-AL14dataset,we
only observed the interreader and intrareader variability among these
six experts. First, 600 CXRs were randomly selected from the CXR-
AL14 dataset (excluding the 8000 CXRs for training the preliminary
model) and interpreted by the preliminary model. Then, each radi-
ologist of the twelve radiologists was given 50 CXRs on average for
correction (the process is completely consistent with the human-in-
the-loop approach). Finally, we sent the 600 CXRs with corrected
annotations to six experts for further correction. After each expert
independently corrected all 600 CXRs for the first time, the IoU values
of each abnormality between pairs of experts were calculated to
observe the interreader variability31. One month later, the annotations
of all 600 CXRs corrected by the twelve radiologists were indepen-
dently corrected by the six experts for a second time to evaluate the
intrareader variability by calculating the IoU values of each abnorm-
ality between two annotations.

Development of the YOLOX model
In the study, the YOLOX architecture32 was used to train the required
deepmodel.We randomly divided all CXRs from the CXR-AL14 dataset
into training and tuning datasets at a ratio of 9:1 (Table 1). The training
dataset was used to train the YOLOX model for the identification and
localization of 14 abnormalities, and the hyperparameters of the
YOLOXmodel were adjusted by the tuning dataset during the training

process. Note that the YOLOX architecture was used to train the
required deep model; the backbone of this network is the cross-stage
partial (CSP) Darknet, which mainly includes a focus stem and a CSP
layer. Its patch aggregation-based featurepyramid structure integrates
underlying and superficial features, and the design of its decoupled
head contributes to the convergence of the model (Supplementary
Fig. 17). As a high-performance anchor-free detector in the YOLO ser-
ies, YOLOX achieves a balance between speed and accuracy. During
the training and tuning stages, the size of each input image was
1280×1280, the batch size was 8, and the number of training epochs
was 30. Note that data enhancement strategies such as mosaicking,
mix-up, random flipping and colour jitter were also adopted, the sto-
chastic gradient descent (SGD) strategy was selected as the model
optimizer, and the initial learning rate was set to 0.01 with a cosine
schedule. Furthermore, we also used a pretrained model on the
Microsoft CommonObjects in Context (MSCOCO) dataset to improve
the training efficiency of YOLOX. The epoch value was an important
hyperparameter for the training of the YOLOX network. An epoch
value that is too small could lead to underfitting of themodel, while an
epochvalue that is too large could lead to overfitting of themodel. The
relationship between the loss values and the epoch values during the
training of the YOLOX model is given in Supplementary Fig. 18.

In addition, the other two localization networks, including Faster
R-CNN33 and RetinaNet34, were further separately trained on the CXR-
AL14 dataset. In this study, YOLOX, Faster R-CNN and RetinaNet were
all implemented with PyTorch 1.10.1. All training, validation, and test
procedures were conducted on eight NVIDIA RTX 2080Ti graphics
processing units (GPUs).

Performance evaluation of the YOLOX model
Five validations were performed in our study. First, 5-fold cross-vali-
dation was performed on the CXR-AL14 dataset, and the five models
were further tested on the held-out test dataset. Second, the held-out
test dataset was used to evaluate the general performance of the
YOLOX model. In addition, the Faster R-CNN model and RetinaNet
model were also tested on the held-out test dataset, and the perfor-
mance of these two models was compared with that of the YOLOX
model. Third, to assess the generalization of the YOLOX model, a
multicentre validation was performed by using CXRs from four

CXR dataset
(CXR-AL14)Preliminary training dataset

Send to the final dataset

Preliminary training dataset

Model training

Preliminary model

Expert group annotation

Model annotation

Radiologists correction

Expert group correction

Add to the training dataset

New CXRs

Retrain and 
update model

Fig. 9 | The creationprocess of theCXR-AL14dataset via the human-in-the-loop
approach. In the first stage, six expert radiologists (with more than 20 years of
experience) collectively annotated the GT bounding boxes of all abnormalities on
8,000 CXRs, which were adopted to train a preliminary deep model and sent to
CXR-AL14 dataset. In the second stage, predictive annotations for the new unan-
notated CXRs were generated by the preliminary model, and these annotations
were randomly sent to twelve senior radiologists (with 10-20 years of experience)
to correct the categories, sizes and localizations of the predicted bounding boxes.

After first correction, the corrected annotations were then randomly dispensed to
the six expert radiologists for second correction. The checks by two levels of
radiologists are analogous to the routine workflow of radiologists interpreting
CXRs. After expert correction, the annotations ofCXRcouldbeconsideredGT-level
annotations. Then, the CXRswith corrected annotations were added to the training
dataset for retraining themodel and sent to the final dataset. After seven iterations,
the CXR-AL14 dataset was created. GT: ground-truth.

Article https://doi.org/10.1038/s41467-024-45599-z

Nature Communications |         (2024) 15:1347 11



participating hospitals. Moreover, the IoU was used as a final evalua-
tion indicator to demonstrate the localization accuracy achieved by
the YOLOX model. On the premise of correctly identifying categories,
we further calculated the average IoU value of the predicted bounding
boxes relative to the GT bounding boxes for each abnormality on the
external test dataset (all CXRs come from four multicentres). Fourth,
using the held-out test dataset and the recombination dataset, the
performance of the YOLOX model was compared with that of six
radiologists, including three senior radiologists (with 15-18 years of
experience) and three junior radiologists (with 6-8 years of experience)
whodid notparticipate in the creation of the CXR-AL14 dataset. Fifth, a
prospective validation was conducted on the 1,540 CXRs to test the
clinical applicability of the YOLOXmodel. After the YOLOXmodel was
developed, we simulated clinical practice and used this model to
interpret the newly generated CXRs. Then, two expert radiologists
annotated theGTbounding boxes for theseCXRswithout knowing the
results achieved by the YOLOX model. Finally, the prospective vali-
dation results could be obtained for the YOLOX model by comparing
the predicted bounding boxes with the GT bounding boxes.

In order to accurately assess the model performance, all the GT
bounding boxes for the CXRs from the held-out test dataset, the
multicentre test datasets A-D, recombination test dataset and pro-
spective test dataset were manually annotated by two expert radi-
ologists from the expert group together without the help of the
human-in-the-loop approach. If the two expert radiologists disagreed
on the annotation of any abnormality, a third expert radiologist was
required to reach a final conclusion. The abnormality distribution in
the above CXRs is shown in Supplementary Table 4.

Stress test for the YOLOX model
A quality control stress test for the YOLOX model was performed on
the held-out test dataset. The quality of CXRs is primarily exhibited by
their brightness and contrast. Thus, we tested the performance of the
YOLOX model with various degrees of brightness and contrast chan-
ges in CXRs. Negative and positive ranges of both brightness and
contrast were tested, respectively, with increments or decrements of
0.1, where 1.0 was the baseline.

Development and validation of the automatic CTR calculation
algorithm
A total of 12,000 CXRs randomly selected from the included CXRs
were applied to develop and validate an automatic CTR calculation
algorithm. Ten thousand CXRs selected randomly from the 12,000
CXRs were used to manually generate the GTmasks of both lungs and
the heart by two junior radiologists. Note that if both radiologists were
unable to effectively segment both lungs or the heart from the same
CXR due to the edge of the heart being obscured by some abnormal-
ities, this CXR was excluded. If only one junior radiologist could not
segment them, a senior radiologist would be invited to jointly decide
whether to continue the segmentation process or exclude this CXR.
Finally, 426 CXRs were excluded, and the remaining 9,574 CXRs with
GT masks (at a ratio of 9:1 for training and fine-tuning) were used to
develop adeepmodel for segmentingboth lungs and theheart inCXRs
based on the attention UNet architecture35. Once the segmentation
mask was obtained for each CXR, the CTR could be calculated auto-
matically by using the proposed algorithm. (Supplementary Fig. 19)

The CTR can be calculated using the convention of measuring the
thoracic diameter (L) as the distance from the inner margin of the ribs
at the level of the dome of the right hemidiaphragm and the cardiac
diameter (L1 + L2) as thehorizontaldistancebetween the rightmost and
leftmostmargins of the cardiac shadow. In our study, the calculationof
the CTR was based on the segmentation of both lungs and the heart in
CXRs. In particular, we employed attention UNet to develop the deep
model for the segmentation of both lungs and the heart, where the
input image size was 512 × 512, the number of epochs was set to 100

and the batch size was set to 4. The initial learning rate was 0.00001;
when the loss of the validation set increased for two consecutive
epochs, the learning rate was reduced by half. Once the binarymask of
both lungs and the heart was obtained, the thoracic diameter (L) and
the cardiac diameter (L1 + L2) could be calculated by the proposed
algorithm, where the process for doing so is described as follows.

Step 1: The closedmorphology operation was applied to themask
to eliminate holes and burrs.

Step 2: By using the connected area labelling approach, the two
largest connected areas of the lung and the largest connected area of
the heart were preserved in the mask.

Step 3: The Canny operator was applied to the mask to obtain the
single-pixel boundary between the lung and the heart.

Step 4: Traversing upwards from the lowest point of the right lung
boundary using a number of horizontal lines, at least two intersections
were encountered between each horizontal line and the boundary.
The first two intersections were determined from left to right, and the
distance between these two intersections was calculated. As the
upwards traversal process proceeded, a number of difference values
between two adjacent distances could be obtained. Note that the
horizontal line that determined the maximum difference value can be
regarded as a tangent line passing through the right diaphragm.

Step 5: The width of the chest (L) could be calculated by the two
farthest intersections determined by the above tangent line and the
boundary of both lungs.

Step 6: Find the left and right points that were farthest from the
midlineon theboundaryof theheart, and thedistances from the above
two points to the midline were calculated and summed (L1 + L2).

Step 7: The CTR could be easily calculated according to the for-
mula (L1 + L2)/L.

The other 2,000 CXRs were used to evaluate the accuracy of the
CTR calculation algorithm. The above two junior radiologists were also
invited to manually calculate the CTR of each CXR according to the
clinical measurement rules, and their average values were considered
as the reference standards. If both radiologists were unable to calcu-
late the CTR, the corresponding CXR was excluded. If only one junior
radiologist could not calculate it or the difference between the CTR
results measured by two junior radiologists was greater than 0.05, the
above senior radiologistwas invited to achieve a final consensus result.
Ultimately, 1950 CXRswere included when constructing a test dataset.

In addition, 500 CXRs randomly selected from each hospital were
used formulticentre validation, and 300 randomly selectedCXRswere
used for prospective validation. According to the above CTR screening
rule, the final numbers of included CXRs were 498, 495, 484, 492 and
293, respectively. The detailed manufacturer and general information
of all the above CXRs can be seen in Supplementary Tables 23 and 24.

Statistical analysis
The general information of CXRs in the CXR-AL14 dataset was con-
ducted using numpy package (version 1.19.3) in Python (version 3.7.9).
We employed the precision, recall, AP, mAP and F1-score to evaluate
the performance of the YOLOXmodel. The performance of the YOLOX
model was evaluated using the above metrics with different IoU
thresholds, which are indicators for measuring the degree of overlap
between the predicted bounding box and the GT box; the larger the
IoU threshold is, the higher the degree of overlap. For each abnorm-
ality, the precision-recall curve could be easily drawn, and the AP value
could be obtained by calculating the area under the precision-recall
curve. Furthermore, the mAP could be calculated by averaging the AP
values of all abnormalities. TheMcNemar test and chi-square test were
carried out using the statsmodels (version 0.13.2) and scipy (version
1.5.4) packages in Python (version 3.7.9), and the 95% Wilson con-
fidence interval was applied to both the precision and recall. ANOVA
and the LSD method for pairwise comparisons were conducted using
SPSS Statistics (Version 22.0.0, IBM SPSS Statistics). Bland‒Altman
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analysis and the ICC were employed to measure the precision of the
CTR value calculated by the proposed framework. Note that a P value
less than 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information.
According to relevant national regulations, there are certain restric-
tions on the number of medical images for publicly available. There-
fore, the CXR-AL14 dataset is partially available for public use (nearly
100,000 CXRs), interested researchers can contact the corresponding
author Dong Zhang (hszhangd@tmmu.edu.cn.) or visit this website
[cxr-al14.top] to request access. In addition, the total CXR-AL14 dataset
is available for online use by requested on the website [https://www.
ncmi.cn//phda/dataDetails.do?id=CSTR:17970.11.A0048.202312.605.
V1.0]. It should be noted that the CXR-AL14 dataset will only be avail-
able for academic research, and not for other purposes. Interested
researchers need to register their personal and institutional informa-
tion on above websites and send data access requests to the web
administrator. The web administrator and corresponding author will
review the requests for consideration and respond within two weeks.
Once approved, the dataset can be used by the interested researchers.
Note that interested researchers who have utilized the CXR-AL14
dataset for research must cite this article.

Themulticentre test datasets arenot available for public use. If the
interested researchers want to achieve the multicentre test datasets
for non-commercial use, they can request for the corresponding
author Dong Zhang (hszhangd@tmmu.edu.cn.). Corresponding
author will review their requests and ask for consent from each centre,
requestors will receive a response within two weeks. Source data are
provided with this paper.

Code availability
The program codes of the YOLOX model and the CTR calculation
algorithm in this study are publicly available, which can be down-
loaded at https://github.com/CXR-AL14/CXR-Code. DOI link: https://
doi.org/10.5281/zenodo.8120660.
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