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Artificial intelligence-enabled prediction of
chemotherapy-induced cardiotoxicity from
baseline electrocardiograms

Ryuichiro Yagi1,2,3,8, Shinichi Goto 1,2,4,8, Yukihiro Himeno5,
Yoshinori Katsumata6, Masahiro Hashimoto7, Calum A. MacRae 1,2 &
Rahul C. Deo 1,2

Anthracyclines can cause cancer therapy-related cardiac dysfunction (CTRCD)
that adversely affects prognosis. Despite guideline recommendations, only
half of the patients undergo surveillance echocardiograms. An AI model
detecting reduced left ventricular ejection fraction from 12-lead electro-
cardiograms (ECG) (AI-EF model) suggests ECG features reflect left ventricular
pathophysiology.We hypothesized that AI could predict CTRCD frombaseline
ECG, leveraging the AI-EF model’s insights, and developed the AI-CTRCD
model using transfer learning on theAI-EFmodel. In 1011 anthracycline-treated
patients, 8.7% experienced CTRCD. High AI-CTRCD scores indicated elevated
CTRCD risk (hazard ratio (HR), 2.66; 95% CI 1.73–4.10; log-rank p <0.001). This
remained consistent after adjusting for risk factors (adjusted HR, 2.57; 95% CI
1.62–4.10; p < 0.001). AI-CTRCD score enhanced prediction beyond known
factors (time-dependent AUC for 2 years: 0.78 with AI-CTRCD score vs. 0.74
without; p = 0.005). In conclusion, the AI model robustly stratified CTRCD risk
from baseline ECG.

Cancer therapy-related cardiac dysfunction (CTRCD) occurs in more
than 10% of patients treated with cardiotoxic agents such as
anthracyclines1–4 and is strongly associated with poor prognosis5,6. If
adequately treated before the onset of overt heart failure, reduced
left ventricular ejection fraction (LVEF) due to chemotherapy is often
reversible, and clinical outcomes can be improved7. Thus, current
guidelines strongly recommend surveillance echocardiograms for all
patients treated with cardiotoxic regimens8–12. However, in the real-
world setting, performing echocardiograms on all the patients may
not always be feasible for various reasons, including the lack of
integrated systems for such surveillance, the limited capacity for
echocardiograms at some institutions, and the lack of awareness of

the extent of the risk of CTRCD13. In fact, it has been reported that
approximately half of the patients at risk do not receive echo-
cardiograms during cardiotoxic cancer treatment14–16. Although
accurate risk assessment before systemic cancer treatment could
facilitate physicians’ detection of the occurrence of CTRCD, its pre-
diction remains a major challenge due to the limited predictive
accuracy and availability of current approaches8,17–19. If a screening
strategy utilizing a more accessible modality capable of accurate
stratification of CTRCD risk is established to triage the patients to
surveillance echocardiography under resource constraints, then
fewer CTRCD patients would be missed with similar echocardio-
graphy resource utilization.
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12-lead electrocardiogram (ECG) is a non-invasive, inexpensive,
and accessible modality for cardiac evaluation. Recently, artificial
intelligence (AI) algorithms analyzing a single 12-lead ECG demon-
strated considerable potential to improve diagnostic accuracy for
cardiac abnormalities beyond human physician recognition20–23. In
these settings, an AI model accurately detected reduced LVEF from
ECGs (AI-EF model)24, suggesting that AI could interpret subtle ECG
abnormalities that are deeply associated with cardiac systolic dys-
function. We hypothesized that the features might be shared in those
who are susceptible to cardiotoxicity but do not yet have reduced
LVEF, and thus the AI-EF model could be repurposed to evaluate the
risk of CTRCD in deployment to assess potential or subclinical cardiac
systolic dysfunction (undetected on routine echocardiography) from
ECG via transfer learning against the occurrence of CTRCD. To test this
hypothesis, we assessed whether the AI algorithm, trained by taking
the AI-EF model as the pre-trained model, is capable of stratifying the
risk for CTRCD from baseline ECG in patients treated with
anthracyclines.

Results
Patient population
A total of 5495 patients received chemotherapy with a regimen
including anthracyclines at Brigham and Women’s Hospital (BWH)
andMassachusetts General Hospital (MGH) between June 1st, 2015 and
October 1st, 2020. Of these, 1138 individuals who underwent ECG and
transthoracic echocardiogram (TTE) within 90 days prior to the initial
treatment with chemotherapy were retrospectively identified (Sup-
plementary Fig. 1, Supplementary Table 1, 2). Of note, even at these
heavily resourced academic medical centers, nearly half of the at-risk
population did not have a baseline echocardiogram documented,
though many may have had such testing at external referral institu-
tions. The median follow-up duration was 560 days (Interquartile
range, 149 to 999). In total, 99 participants experienced CTRCD,
defined as LVEF < 53% and >10% decrease in LVEF from the baseline25.

Similarly, a total of 880 cancer patients were treated with
anthracyclines at Keio University Hospital between January 2013 and
December 2019. Of those, 190 patients who underwent baseline ECG
and TTE were included in the study (Supplementary Table 3). To
construct a training dataset, the BWH cohort was randomly split in a
2:8 ratio, and the former (n = 127)was usedwith the entire dataset from
the Keio cohort as the training dataset (Supplementary Fig. 1, Sup-
plementary Table 4).

Overall, participants in the test set were 57.1 ± 16.4 years old, and
47.8% were male (Table 1). Most cancer diagnoses were hematologic
malignancies (n = 704, 69.7%). The mean LVEF at baseline was
65.1 ± 6.5%. While mean age was not different between patients with
and without CTRCD, baseline LVEF was significantly lower at baseline
in patients who went on to develop CTRCD than in patients without
CTRCD (age, 57.5 ± 16.8 years and 57.1 ± 16.3 years, p =0.97; LVEF,
62.4 ± 6.5% and 65.4 ± 6.4%, p <0.001 for patients with and without
CTRCD, respectively). The prevalence of comorbidities was similar
between the two groups. Patients at BWH were older than those at
MGH, and a lower baseline LVEF and higher prevalence of leukemia
were observed at BWH compared with MGH.

AI-CTRCD model predicts the risk of CTRCD from ECG taken
prior to chemotherapy initiation
If ECG-based baseline screening accurately stratifies the risk of CTRCD,
fewer patients with CTRCD will be missed when the same number of
echocardiograms are performed. We, therefore, sought to predict
CTRCD from ECG prior to the initiation of chemotherapy. However,
collecting sufficient data to train a de-novo deep-learning model was
impractical given the limited number of those who were treated with
regimens including anthracyclines and developed CTRCD. Thus, we
pursued an alternative approach driven by the hypothesis that our

previously published general AI-EF model could be repurposed to
evaluate the risk of CTRCD using transfer learning26. In brief, our AI-EF
model achieved excellent discrimination for decreased cardiac systolic
function (LVEF less than 40%) with an area under the receiver oper-
ating curve (AUROC) of 0.91 in the internal test datasets and was well-
generalized on datasets from three external institutions. We thus
updated this AI-EF model by additionally training on ECGs obtained
from patients treated with anthracyclines and tested the ability of the
model to stratify the risk of CTRCD occurring during subsequent
follow-up.

In linewith our hypothesis, our AI-CTRCDmodel stratified the risk
of CTRCD using baseline ECG. Patients in the high AI-CTRCD score
group were at higher risk for developing CTRCD compared to those in

Table 1 | Baselinedemographics andclinical characteristics of
the MGB test cohort, stratified by the occurrence of CTRCD

CTRCD

All (n = 1011) No (n = 923) Yes (n = 88) P-value

Age, years (SD) 57.1 (16.4) 57.0 (16.3) 57.1 (16.8) 0.966

Male, n (%) 483 (47.8) 434 (47.0) 49 (55.7) 0.149

Race, n (%) 0.053

White 849 (84.0) 784 (84.9) 65 (73.9)

Black 39 (3.9) 33 (3.6) 6 (6.8)

Asian 38 (3.8) 32 (3.5) 6 (6.8)

Other 85 (8.4) 74 (8.0) 11 (12.5)

Diagnosis, n (%) 0.004

Lymphoma 395 (39.1) 363 (39.3) 32 (36.4)

Leukemia 309 (30.6) 268 (29.0) 41 (46.6)

Breast cancer 141 (13.9) 137 (14.8) 4 (4.5)

Sarcoma 89 (8.8) 82 (8.9) 7 (8.0)

Other 77 (7.6) 73 (7.9) 4 (4.5)

LVEF, % (SD) 65.1 (6.5) 65.4 (6.4) 62.4 (6.5) <0.001

Comorbidities, n (%)

CAD 52 (5.1) 43 (4.7) 9 (10.2) 0.045

Hypertension 294 (29.1) 266 (28.8) 28 (31.8) 0.639

Diabetes 103 (10.2) 93 (10.1) 10 (11.4) 0.844

Dyslipidemia 352 (34.8) 316 (34.2) 36 (40.9) 0.255

Obesity 333 (32.9) 302 (32.7) 31 (35.2) 0.719

Smoke, n (%) 475 (47.0) 434 (47.0) 41 (46.6) 1

Initial anthracycline dose,
mg/m2, median [IQR]

40.0
[25.0, 50.0]

40.0
[25.0, 50.0]

45.0 [30.0,50.0] 0.36

Cumulative anthracycline
dose, mg/m2, med-
ian [IQR]

180 [90, 285] 180 [90, 281] 186 [95, 291] 0.17

ECG abnormalities, n (%)

1AVb 20 (2.0) 17 (1.8) 3 (3.4) 0.543

Atrial fibrillation 25 (2.5) 21 (2.3) 4 (4.5) 0.342

RBBB 19 (1.9) 17 (1.8) 2 (2.3) 1

LBBB 13 (1.3) 9 (1.0) 4 (4.5) 0.019

ST-T change 6 (0.6) 6 (0.7) 0 (0.0) 0.974

LVH 85 (8.4) 81 (8.8) 4 (4.5) 0.244

PAC 58 (5.7) 52 (5.6) 6 (6.8) 0.828

PVC 16 (1.6) 13 (1.4) 3 (3.4) 0.322

Low voltage 9 (0.9) 9 (1.0) 0 (0.0) 0.736

Paced rhythm 11 (1.1) 9 (1.0) 2 (2.3) 0.56

Any abnormality 232 (22.9) 207 (22.4) 25 (28.4) 0.253

A χ2 test (two-sided)was used to identify differences in proportions across race and diagnosis. A
Wilcoxon test (two-sided) was used for initial anthracycline dose and cumulative anthracycline
dose, and a t test (two-sided) was used for other variables. No adjustments were made for
multiple comparisons.
CTRCD cancer therapy-related cardiac dysfunction, LVEF left ventricular ejection fraction, CAD
coronary artery disease, ECG electrocardiogram, 1AVb first degree atrio-ventricular block, RBBB
right bundle branchblock, LBBB left bundle branch block, LVH left ventricular hypertrophy, PAC
premature atrial contraction, PVCpremature ventricular contraction, SD standard deviation, IQR
interquartile range. N represents number of patients.
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the low AI-CTRCD score group (incidence rate per 100 person-year,
8.93 vs 3.08 in high and low AI-CTRCD score groups, respectively;
hazard ratio (HR), 2.66; 95% confidence interval (CI), 1.73–4.10; log-
rank p <0.001; Fig. 1A). This finding was consistent after adjustment
for known risk factors including age, sex, race, cancer types, low
baseline observed LVEF on echocardiogram, comorbidities such as
coronary artery disease and hypertension2,26–28, and the presence of
overt ECG abnormalities (adjusted HR, 2.57; 95%CI, 1.62–4.10;
p <0.001; Fig. 2).

The AI-CTRCDmodel stratifies the risk of CTRCD across clinical
subgroups
Subgroup analyses regarding cancer types, sex, baseline LVEF, and
anthracycline dose were performed to understand the robustness of
the model performance across different characteristics. First, we per-
formed a subgroup analysis by cancer type, given their large impact on
patients’ general medical condition, care, and prognosis. The risk of
CTRCD was consistently higher in the high AI-CTRCD score group
compared to those in the low AI-CTRCD score group regardless of the
cancer type (HR 2.52; 95%CI 1.57–4.06; log-rank p <0.001 and HR 2.91;
95%CI 1.03–8.18, log-rank p =0.03 in patients with hematologic
malignancies and with solid tumors, respectively; Fig. 3A, B).

Sex difference in cardiovascular outcomes is well recognized. We
thus performed a subgroup analysis based on patients’ sex, showing
consistent performance of the AI-CTRCD model (HR 2.54; 95%CI
1.41–4.58; log-rank p =0.001 and HR 2.70; 95%CI 1.43–5.12; log-rank
p =0.002, respectively; Fig. 3C, D).

Since baseline LVEF by echocardiogram was different between
patients who subsequently developed CTRCD and those who did not,
subgroup analysis was performed for patients with preserved and
reduced LVEF at baseline. This analysis consistently demonstrated that
individualswith highAI-CTRCD scoreswere at increased riskofCTRCD
regardlessof the existence of reduced LVEF atbaseline (HR2.26; 95%CI
1.30–4.00; log-rank p =0.003 and HR 2.93; 95%CI 1.45–5.92; log-rank
p =0.002 in patients with baseline LVEF of >60% and ≤60%, respec-
tively; Fig. 3E, F), supporting the assertion that prediction of CTRCD
was not driven by our model simply detecting low-EF at the initial
evaluation. This finding was robust to the LVEF values used to define
reduced LVEF at baseline (Supplementary Fig. 2A–C). Furthermore,
sensitivity analyses revealed that themodel robustly predicted CTRCD
defined using different LVEF cutoff points (Supplementary Fig 2D–F).

A high cumulative anthracycline dose is associated with the
occurrence of CTRCD; however, the cumulative dose cannot be
determined at the initiation of the chemotherapy and is thus not

Fig. 1 | Comparison of high and low AI-CTRCD score groups. A Kaplan–Meyer
plot showing cumulative incidence of CTRCD between high and low AI-CTRCD
score. The transparent ribbons indicate 95%CI. Source data are provided as a
SourceDatafile.BRepresentative electrocardiogramsof patientswith high and low

AI-CTRCD score. AI artificial intelligence, CTRCD cancer therapy-related cardiac
dysfunction, HR hazard ratio, CI confidence interval, LVEF left ventricular ejection
fraction.
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relevant for the prediction of adverse outcomes. Therefore, we per-
formed stratification based on the initial anthracycline dose adjusted
for body surface area as a surrogate. Using the median initial anthra-
cycline dose across all patents (40.0mg/m2) as a stratification cutoff,
the subgroup analysis revealed a similar performance of the model
across the dosing strata (HR 3.48; 95%CI 1.78–6.83; log-rank p =0.001
and HR 2.15; 95%CI 1.21–3.82; log-rank p =0.008 in patients receiving
>40mg/m2 and ≤40mg/m2 of doxorubicin equivalent anthracycline
dose, respectively; Fig. 3G, H). Results were also similar when the
population was stratified by cumulative anthracycline dose (HR 2.83;
95%CI 1.54–5.17; log-rank p <0.001 and HR 2.41; 95%CI 1.30–4.49; log-
rank p =0.003 in patients receiving >180mg/m2 and ≤180mg/m2 of
cumulative anthracycline dose, respectively; Supplementary
Fig. 3A, B).

Additional sensitivity analyses showed the robustness of our
model to a range of potential biasing factors. Model performance was
consistent across two different institutions when analyzed separately
(HR 2.94; 95%CI 1.58–5.00; log-rank p < 0.001 and HR 2.42; 95%CI
1.33–4.43; log-rank p =0.003 for BWH and MGH respectively, Supple-
mentary Fig. 3C, D). Similarly, the model robustly predicted CTRCD
after excluding CTRCD within 30 days of chemotherapy (HR 2.73; 95%
CI 1.70–4.41; log-rankp <0.001; Supplementary Fig. 3E).While42.5%of
the patients did not undergo a follow-up echocardiogram, a similar
result was observed even after limiting the cohort to thosewith at least
one follow-up echocardiogram (HR 2.43; 95%CI 1.58–3.73, log-rank
p <0.001) (Supplementary Fig. 3F). Also, we found that the model
prediction was not influenced by the duration between baseline ECG
andTTE (Supplementary Fig. 3G,H). The results were also robustwhen
considering death as a major competing risk using the model of Fine
and Gray (sub-distribution HR, 2.37; 95%CI, 1.55–3.65; p <0.001). Of
note, patients with high AI-CTRCD scores experienced higher mortal-
ity compared to those with low AI-CTRCD scores (43.1% and 32.5% in

the high and low AI-CTRCD score group, respectively; log-rank
p <0.001; Supplementary Fig. 4).

AI-CTRCD score significantly improved the prediction of CTRCD
beyond known risk factors
To test whether the AI-CTRCD model provides additional predictive
value over known risk factors, we compared prediction models using
demographic and clinical variables with or without the AI-CTRCD
score. Since most CTRCD cases (87.5%) were observed in a period of
2 years (consistent with previous reports6), time-dependent AUROCs
for 0.5, 1, 1.5, and 2 years were calculated. Themodel, including the AI-
CTRCD score consistently showed statistically higher AUROCs com-
pared with the model without AI-CTRCD score (Table 2). The model
with AI-CTRCD score detected CTRCD at 2 years with a positive pre-
dictive value (PPV) of 16.1% for a sensitivity of 91.1%, and with a PPV of
26.1% for a sensitivity of 60.5%, showing a statistically significant
improvement from baseline prevalence (8.7%) (Table 3). Based on the
full model containing all the clinical variables and AI-CTRCD score,
patients with high scores were approximately 7 times at higher risk of
CTRCD compared to those with low scores (incidence rate per 100
person-year, 9.58 vs 1.25 in thehigh and low scoregroups, respectively;
Supplementary Fig. 5). The results were similar when the clinical vari-
ableswere limited to those that are readily available (age, sex, race, and
cancer type). The specificity and PPV were higher compared to the
model without AI-CTRCD score at similar sensitivity levels, showing
the independent contribution of the AI-CTRCD model for CTRCD
prediction.

The model, including the AI-CTRCD score, improves the detec-
tion of CTRCD under limited echocardiogram capacity
To test the clinical utility of the model, we performed a deployment
simulation assuming a cohort of 1000 patients receiving cardiotoxic
chemotherapy with the same prevalence of CTRCD (9%) in a setting
where all patients undergo baseline ECG with the use of the full model
(including the known risk factors and the AI-CTRCD model) to select
patients on whom to perform follow-up echocardiograms. Based on
the observed rate in our analysis, the resources for surveillance
echocardiogramswere assumed to allow 579 (57.9%) procedures in the
whole simulated cohort. In this context, 52 out of 90 patients with
CTRCD would be detected if the follow-up echocardiograms were
randomly provided (Supplementary Table 5). In contrast, if the target
population was pre-selected based on our prediction model with the
cutoff for a sensitivity of 93.5% and a PPV of 14.4%, 545 patients would
be allocated to undergo surveillance echocardiograms (allowing for
the echocardiographic evaluation of all patients tested positive from
the ECG screening tool), and 84 out of 90 CTRCD patients would be
detected. This simulation suggests that a predictive tool using the
baseline ECGwould result in a 60%higher detection rate (an additional
32 cases) in the detection of CTRCD with the same total number of
echocardiograms performed. Similarly, when using a model with AI-
CTRCD score and readily available clinical variables (age, sex, race, and
cancer type), 546 patients would be categorized in the high-risk group,
and 81 CTRCD cases (additional 29 cases compared to the random-
echo strategy) would be detected at the cutoff of a sensitivity 90.5%
with a PPV 14.8%.

Discussion
We demonstrate here that the AI-CTRCD model, trained to detect
CTRCD by applying transfer learning to the AI model detecting low
LVEF from ECG, accurately predicts CTRCD from baseline ECG in
patients treatedwith cardiotoxic chemotherapy. The AI-CTRCDmodel
robustly determined the risk of future CTRCD beyond overt ECG
abnormalities and across various subgroups. We further demonstrate
that the addition of the AI-CTRCD score on conventional risk factors
yielded a statistically significant increment in predictive performance

Fig. 2 | Multivariable Cox proportional hazard analysis for developing CTRCD.
A forest plot of HRs of AI-CTRCD score and each clinical variable (n = 1101). The
X-axis shows the log HRs, with error bars representing 95%CI. HighAI-CTRCD score
was significantly associated with CTRCD after adjusting demographic and clinical
characteristics. Age, LVEF, and anthracycline dose were treated as continuous
variables. Source data are provided as a Source Data file. CTRCD cancer therapy-
related cardiac dysfunction, AI artificial intelligence, LVEF left ventricular ejection
fraction, CAD coronary artery disease, ECG electrocardiogram, HR hazard ratio, CI
confidence interval.
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Fig. 3 | Subgroup analyses for the risk-stratification for CTRCDusing AI-CTRCD
scores. Kaplan–Meyer plots showing the cumulative incidence of CTRCD between
high and low AI-CTRCD scores in those with hematologic malignancies (A), solid
tumors (B), male sex (C), female sex (D), baseline LVEF > 60% (E), baseline LVEF ≤
60% (F), and those treated with initial anthracycline dose of >40mg/m2 (G) and
≤40mg/m2 (H). The same cutoff as the primary analysis was used across all

subgroups to define high and low AI-CTRCD score. Patients with high AI-CTRCD
score were consistently at higher risk of CTRCD compared to patients with low AI-
CTRCD score across subgroups. The transparent ribbons indicate 95%CI. Source
data are provided as a Source Data file. CTRCD cancer therapy-related cardiac
dysfunction, HR hazard ratio, AI artificial intelligence, LVEF left ventricular ejection
fraction.
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over conventional risk factors. Together thesedata suggest that ourAI-
CTRCD model captures biological information associated with vul-
nerability to subsequent cardiac effects from anthracyclines.

Currently, a considerable number of cancer patients receiving
cardiotoxic therapeutics do not undergo follow-up echocardiograms
despite guideline recommendations. A recent population-based study
of 4325 patients with breast cancer who received cardiotoxic che-
motherapies revealed that 46.2% of the population missed a one-year
follow-up echocardiogram after initiation of treatment14. Conse-
quently, a substantial number of patients with asymptomatic CTRCD
may be under-detected despite the fact that even asymptomatic
CTRCD is associated with poor prognosis5,6. Cardioprotective medical
therapies have been shown to be effective in preventing theworsening
or even reversing LVEF7, highlighting the importance of optimizing
screening and detection protocols to prevent the progression of
CTRCD to overt heart failure. Ideally, adherence to guideline recom-
mendations could be improved by increasing the availability of echo-
cardiography for those receiving cardiotoxic chemotherapy. However,
this approach is not always feasible given the resource constraints at
most institutions29. An alternative approach for improving the detec-
tion while optimizing the use of current echocardiography capacity is
to increase the yield of testing by risk stratification. To this end, several
cardiac biomarkers have been evaluated for CTRCD prediction. For
example, elevated levels of troponinor B-type natriuretic peptide from
baseline after initiation of chemotherapy may identify patients at high
risk for CTRCD30. However, it remains unclear whether baseline levels
alone contribute to accurate risk assessment for CTRCD, as a con-
sequence of the absence of definitive studies of the utility of these
biomarkers. Reduced global longitudinal strain (GLS), a myocardial
deformation analysis reflecting myocardial function, has been pro-
posed as a strong predictor for CTRCD. A study of 73 patients treated
with anthracycline chemotherapy reported that the AUROC for the
association of baseline GLS and CTRCD was 0.7731, while a second
study found that a low baseline GLS was significantly associated with
cardiac events even in those patients with normal baseline LVEF32.

However, the availability of GLS measurement is limited due to the
requirement for proprietary specialized software. Several risk scores
using clinical features and treatment factors have also been developed
for predicting CTRCD, none of which has been established for clinical
use due to limited performance or the lack of validation studies18,33.
Therefore, establishing a more reliable, generalizable, and accessible
risk stratification strategy for CTRCD is necessary to improve the
management of patients who receive cardiotoxic chemotherapy34.

The development of an accurate CNN-based algorithm hinges on
the size of the training dataset, with a substantial number of manually
labeled ECG data often required35. However, gathering a sufficient
amount of data on patients treated with anthracyclines could be
impractical due to the limited number of patients along with the need
for long follow-up duration. To address this challenge, we adopted a
transfer learning approach. Transfer learning involves utilizing a pre-
trained model for a different yet relevant problem36 and has exhibited
promising results in AImodels for ECG data analysis37. In this study, we
leveraged a CNN-basedmodel detecting low LVEF. Our previous study
showed its accurate and generalizable detection ability of low LVEF
from ECG. CTRCD risk has been linked to baseline cardiac systolic
function, represented by LVEF and GLS38. Consequently, we anticipate
that the model would be capable of identifying ECG abnormalities
present in patients with impaired cardiac systolic function, making it
an appropriate candidate for the pre-trained model in the develop-
ment of a new model to assess the baseline risk of CTRCD.

Baseline ECG, enhanced by the AI-CTRCD model, could have sig-
nificant clinical utility in managing patients exposed to cardiotoxic
regimens. Considering its impact on the poor outcome, it is crucial not
to miss the cases with CTRCD. We proposed an AI-based approach
using a single recording of baseline ECG along with easily obtainable
clinical variables, as an instant tool to efficiently detect patients at high
risk forCTRCD. This approachoperateswithin the current limitationof
echocardiogram capacity through prioritization of patients identified
as high risk for subsequent echocardiographic monitoring. Notably,
ECG is a more widely available metric demanding less expertize (par-
ticularly for data acquisition) and considerably lower cost compared to
an echocardiogram. Changes in ECG parameters such as QRS pro-
longation can be correlated to incident CTRCD39,40, but the association
of baseline ECG measurements and risk of CTRCD has not previously
been assessed.Our data demonstrate that ECGdata analyzedby theAI-
CTRCD model was an independent predictor of CTRCD beyond overt
baseline ECG abnormalities or baseline echocardiographic data and
could contribute to improved risk assessment for CTRCD. The addi-
tionofbaseline ECG togetherwith theAI-CTRCDmodel for general risk
screening would enable accurate stratification that enables better
utilization of echocardiographic resources to detect CTRCD.

Since the AI-CTRCD model is applied before the initiation of
chemotherapy, the model could only detect abnormalities present at
baseline. Thus, the prediction of CTRCD probably is driven by the
detection of susceptibility to cardiac damage induced by

Table 3 | Performances of the prediction model with and without the AI-CTRCD score for 2 years CTRCD at various cutoffs

Target sensitivity Sensitivity Specificity PPV NPV

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

100 0 8.7 NA

90 91.1 92.3 47.8 30.3 16.1 12.7 98.0 97.3

80 80.6 82.4 60.4 50.1 18.2 15.3 96.6 96.3

60 60.5 60.6 81.2 70.7 26.1 18.5 94.9 94.3

These values were calculated based on time-dependent area under the receiver operating curve for 2 years from initiation of chemotherapy. PPV at sensitivity of 100% is considered as prevalence in
this cohort.
Model 1: Cox model with AI-CTRCD score, Model 2: Cox model without AI-CTRCD score.
NA not applicable, PPV positive predictive value, NPV negative predictive value.

Table 2 | Comparison of the models with and without the AI-
CTRCD score for predicting CTRCD

AUROC, % (95%CI) ΔAUROC, %
(95%CI)

P value

Model 1 Model 2

0.5 year 78.0 (72.4–83.6) 74.2 (68.3–80.2) 3.8 (0.4–7.1) 0.03

1 year 79.3 (73.8–84.8) 75.9 (70.0–81.2) 3.4 (0.5–6.3) 0.02

1.5 year 78.1 (72.6–83.7) 74.6 (68.5–80.6) 3.6 (0.6–6.5) 0.02

2 years 78.1 (72.2–84.0) 73.8 (67.6–80.1) 4.3 (1.3–7.2) 0.005

Delong test (two-sided) was used to calculate P-values for comparing AUROCs. No adjustments
were made for multiple comparisons.
Model 1: Coxmodelwith AI-CTRCD score, Model 2: Coxmodelwithout AI-CTRCD score AUROC:
area under the receiver operating curve, CI: confidence interval.
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chemotherapy. While the detected features may not be specific to the
susceptibility to chemotherapy and could be a general marker of poor
left ventricular substrate, we believe that the extraction of predictive
features from a low-cost modality (i.e., ECG) is valuable. For instance,
although GLS is an echocardiographic value assessing left ventricular
systolic function and not necessarily specific to the risk of CTRCD, its
clinical utility as a risk factor of CTRCD is widely recognized in cardio-
oncology12. Our results indicate the feasibility of expanding the
applicability of predictive measures beyond GLS by leveraging data
from ECG, a much more accessible modality.

There are several limitations to this study. First, a number of
patients were excluded because of a lack of ECG and/or echocardio-
gram prior to chemotherapy. Furthermore, CTRCD events could be
missed with a lack of surveillance echocardiogram after chemother-
apy. The study population might have been at a higher risk of CTRCD
compared to the overall population receiving anthracyclines (physi-
cians might have considered that these patients were likely to be at
high risk for CTRCD and therefore performed ECG/echocardiographic
evaluation). Nonetheless, this study indicated that the prediction
model using the AI-CTRCD scores performed well in such a high-risk
population. Second, the study population experienced a considerable
number of deaths,which couldhave introduced a bias given that death
is a major competing risk for CTRCD. However, the patients with high
AI-CTRCD scores experienced more deaths compared to those with
lowAI-CTRCD scores, indicating that even if deathdoes introducebias,
the direction of the bias would be toward the null. Furthermore,
additional analysis using the Fine and Gray model demonstrated
consistent results, supporting thatour analyses are robust todeath as a
competing risk. Third, since the GLS values were not available in our
dataset, it remains unclear whether the AI-CTRCD model performs
better compared to the prognostic value of GLS. However, the absence
of GLS measurement in the real-world setting could indicate the clin-
ical utility of the AI-CTRCD model as an instant tool for baseline risk
stratification of cardiotoxicity when access to the echocardiographic
resources is limited. Fourth, another but more straightforward
approach for early detection of CTRCD using the AI-EF model is to
utilize surveillance ECGs taken after the initiation of chemotherapy to
detect patients who already develop CTRCD as early as possible. Since
routine ECG after chemotherapy is currently not recommended,
patients who underwent ECGs after chemotherapy could likely have
cardiac dysfunction because physicians considered them at high risk
for heart failure (i.e., they presented subjective symptoms), leading to
a significant bias when analyzed retrospectively. Further prospective
studies are warranted to validate this strategy to enhance the potential
of ECG and the AImodel. Fifth, because only 20 cardiovascular disease
(CVD)-related deaths in 375 patients who died during follow-up were
seen in the MGB test set, the association of AI-CTRCD score and CVD-
related death could not be assessed. Further studies with a larger
population and longer follow-up periods are also warranted to show
that the AI model could contribute to the prediction of more severe
cardiac dysfunction causing CVD-related deaths.

In conclusion, we demonstrate that an AI model can be trained to
detect baseline cardiac features predictive of the risk of CTRCD from
baseline ECG acquired prior to cardiotoxic chemotherapy by utilizing
transfer learning. The model performed well across clinically dis-
tinctive subgroups. Our findings support the clinical utility of baseline
ECG, together with the AI-CTRCD model, in identifying patients trea-
ted with anthracyclines at elevated risk of CTRCD.

Methods
Patient selection and data collection
Patient demographics data and prescription information were retro-
spectively obtained from the Massachusetts General Brigham Enter-
prise Data Warehouse, which includes electronic health records from
>20 provider locations across a large integrated delivery network in

Massachusetts. Patients older than 18 years old who were treated with
chemotherapy including at least one dose of anthracyclines (doxor-
ubicin, idarubicin, daunorubicin, and epirubicin) were first identified.
Among these subjects, those who had both an ECG and an echo-
cardiogram ≤90 days before the initiation of chemotherapy were
included in the study.

Patient demographics including age, sex, race, and clinical char-
acteristic including body weight, LVEF at baseline, comorbidities
(coronary artery disease, hypertension, diabetes, dyslipidemia), and
prescription data were obtained from the database. The cancer diag-
noses, treatment drugs, and the dose of drugs were manually con-
firmed by chart review. Missing variables in the dataset were also
manually filled from the chart. Obesity was defined as a body mass
index ≥30. Anthracycline doses were adjusted based on the following
doxorubicin CTRCD equivalence: idarubicin, 5.0; daunorubicin, 0.5;
epirubicin, 0.6741.

All ECGs were recorded digitally and stored in the MUSE Cardi-
ology Information System (GE Healthcare, U.S.), and were interpreted
by physicians at each institution and then manually confirmed by a
cardiologist (R.Y). ECGs were analyzed by the AI-CTRCD model as
digital standard 12-lead vectorized signals.

Similarly, patient demographics data and prescription informa-
tion were collected from Keio University Hospital through manual
chart review with the same inclusion/exclusion criteria. ECG data were
recorded and stored in a system provided by Nihon Kohden.

AI-EF model architecture, training, and output
The development of the AI-EF model is outlined elsewhere42. Briefly,
the model was constructed as a 2D-CNN-based model to identify
LVEF ≤ 40% from 12-lead ECG voltage data as inputs. It consisted of a
layer of 2D-CNN followed by 20 layers of the multi-2D-CNN module,
which was constructed of 3 parallel multilayer CNNs. The ECG model
was trained using data from BWH andwas externally validated at three
different international institutes. The evaluation of the model showed
excellent discrimination of LVEF ≤ 40% (AUROC 0.91 in the BWH test
set and >0.90 in all three independent institutions). The model gen-
erates a score of zero to one from 12-lead ECG voltage data. A high
score (close to one) indicates a higher probability of the patient having
low LVEF, whereas a low score (close to zero) indicates a prediction for
normal LVEF. Since a minor number of ECGs in the study population
were included in the dataset for developing the AI-EF model, we
developed a new AI-EF model after excluding these ECGs from the
training dataset and found the new AI-EF model had equivalent accu-
racy in detecting low LVEF from (Supplementary Table 6).

Development of AI-CTRCD model
To update the model specifically for the CTRCD prediction purpose,
we employed a transfer learning approach37. The BWH cohort was
randomly split in a 2:8 ratio and the former was combined with the
Keio cohort to construct a training set. The training set was further
randomly split into two groups (derivation and validation sets) in a 7:3
ratio. The weights of the abovementioned AI-EF model were used as
initial weights of a new AI model with the same architecture, and the
model was re-trained on the new training dataset to predict the future
occurrence of CTRCD (AI-CTRCD model) with a learning rate of
0.00001 using RMSprop optimizer. The training process was com-
pleted in 150 epochs, and a final mode with the highest AUROC in the
validation setwas chosen and testedonceusing the rest of theMGB set
as the test cohort.

Evaluation of the AI-CTRCD model to stratify the risk of CTRCD
The AI-CTRCD model was applied to the 12-lead ECG obtained imme-
diately prior to the initiation of chemotherapy to calculate the AI-
CTRCD scores. The study population was classified into two groups
based on AI-CTRCD score using a cutoff value determined by Youden
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index43. Themain endpoint of the study was the occurrence of CTRCD
during follow-up. We compared the cumulative incidence of CTRCD
for the two groups, using Kaplan-Meier curves, log-rank test, and
univariate Cox proportional hazard model. To adjust for known risk
factors and clinically relevant covariates, a multivariate Cox propor-
tional hazard model was constructed to adjust for multiple clinical
variables, including age as a continuous variable, sex, race (White,
Black, Asian, or other), LVEF at baseline (as a continuous variable),
history of coronary artery disease, hypertension, dyslipidemia, dia-
betes, obesity, initial anthracycline dose (as a continuous variable), and
thepresence of any ECGabnormalities. Of note, sinceonlyfivepatients
whose self-reported ethnicity was Hispanic/Latino were included, an
analysis regarding ethnicity could not be performed. ECG abnormal-
ities included 1st-degree atrioventricular block, atrial fibrillation, bun-
dle branch block patterns, ST-T change, premature atrial/ventricular
contraction, low voltage in limb leads, and paced rhythm. Subgroup
and sensitivity analyses were performed to evaluate the robustness of
the model under various conditions. The subgroups tested include
hematologic malignancies, solid tumors, male/female, baseline LVEF
of ≤60%, >60%, anthracyclines of >40mg/m2, and ≤40mg/m2. Fur-
thermore, sensitivity analyses regarding baseline LVEF (patients with
baseline LVEF ≥ 55%, ≥50%, and ≥45%, instead of 60% in the main ana-
lysis), and regarding the cutoff of LVEF values to define the CTRCD
diagnosis (cutoff LVEF of 55%, 50%, and 45%, instead of 53% in themain
analysis) were performed. We also evaluated the model separately in
data fromBWHandMGH. Additional analyses excludingCTRCDwithin
30 days from the initial chemotherapy and limiting cases with at least
one follow-up echocardiogram were conducted.

Prediction model
We developed prediction models using the multivariable Cox pro-
portional hazard model with or without AI-CTRCD score to show the
independent contribution of the AI-CTRCD model over known risk
factors. Variables included in the models were selected according to
the clinical characteristics available at initiation of chemotherapy.
Time-dependent AUROCs of the twomodels for 0.5, 1, 1.5, and 2 years
after initiation of chemotherapy were calculated and then compared
to investigate the additional discriminative value of the AI-CTRCD
score in risk prediction of CTRCD44,45. Sensitivity and specificity as well
as PPV and NPV of the model with the AI-CTRCD scores at two-year
follow-up are reported. These calculations were conducted using
timeROC46 package (0.4) in R. The models’ clinical utility was also
examined in a deployment simulation cohort of 1000 patients treated
with anthracyclines.

Statistical analysis
The AI models were developed using Tensorflow 2.647 in Python 3.7.3.
Kaplan-Meier curves were plotted using survival package (3.5.7) and
ggplot248 package (3.4.4) in R 3.6.1. Cox proportional hazard analyses
were also performed using survival package in R. Fine and Gray model
was constructed using cmprsk package (2.2.11). Continuous variables
were presented asmean± SD, and categorical variablesweredescribed
as numbers and percentages if not otherwise specified. A two-sided
p <0.05 was considered significant for all analyses.

Inclusion and Ethics
This study complies with all ethical regulations and guidelines. This
study protocol was approved by the institutional review board of
Mass General Brigham (2019P002651) and Keio University School of
Medicine (approval number: 20200030). The IRB of participating
institutions provides a waiver for individual consent if the research
meets the following criteria: the study involves nomore thanminimal
risk to the subjects; the waiver or alteration will not adversely affect
the rights and welfare of the subjects; the research could not prac-
ticably be carried out without the waiver or alteration; and whenever

appropriate, the subjects will be provided with additional pertinent
information after participation. The IRB approved the waiver of
consent since the study met these criteria. This study had minimal
patient risk: it collected data retrospectively, there was no direct
contact with patients, and data were collected after medical care was
completed. The only minimal risk was the breach of confidentiality
during data abstraction from the electronic health record system. It
was considered impractical to perform the study with consent given
the large number of participants and the need for using historical
data where the patients were no longer in the system. Waiver of
consent was considered essential to recruit an unbiased and repre-
sentative cohort of patients.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the
article, in the Supplementary Information, and on request from the
corresponding author R.C.D. upon approval of the data sharing com-
mittees of the respective institutions. The data are not publicly avail-
able due to the presence of information that could compromise
research participant privacy. Data use agreement will be required for
data sharing. Requests will be responded within 3 months by the
corresponding author. Source data are provided with this paper.

Code availability
The code for training and testing the model is provided at https://
github.com/obi-ml-public/ECG-LV-Dysfunction. The model weights
may contain personal information from patients and thus, are not
shared. We provide a web interface to run our model and generate
predictions at http://onebraveideaml.org.
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