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Systematic review and meta-analysis for a
Global Patient co-Owned Cloud (GPOC)

Niklas Lidströmer 1,2 , Joe Davids3, Mohamed ElSharkawy 3,
Hutan Ashrafian 3 & Eric Herlenius 1,2

Cloud-based personal health records increase globally. The GPOC series
introduces the concept of a Global Patient co-Owned Cloud (GPOC) of per-
sonal health records.Here,wepresent theGPOCseries’ProspectiveRegister of
Systematic Reviews (PROSPERO) registered and Preferred Reporting Items
Systematic and Meta-Analyses (PRISMA)-guided systematic review and meta-
analysis. It examines cloud-based personal health records and factors such as
data security, efficiency, privacy and cost-basedmeasures. It is a meta-analysis
of twelve relevant axes encompassing performance, cryptography and para-
meters based on efficiency (runtimes, key generation times), security (access
policies, encryption, decryption) and cost (gas). This aims to generate a basis
for further research, a GPOC sandbox model, and a possible construction of a
global platform. This area lacks standard and shows marked heterogeneity. A
consensus within this field would be beneficial to the development of a GPOC.
A GPOC could spark the development and global dissemination of artificial
intelligence in healthcare.

The concept of a Global Patient co-Owned Cloud (GPOC) embodies a
global and blockchain protected, worldwide distributed and patient
co-owned platform of personal health records (PHR, ISO/TR
14292:2012). Until now, this concept of a co-ownership model on a
global scale has not been presented.

Here, the GPOC series commences with a systematic review and
meta-analysis of a dozen pivotal facets of a GPOC. It aims to cover the
dozen facets most relevant to the technical construction of a
GPOC model.

The GPOC series consists of four other self-contained
publications1–4. The GPOC concept’s necessity is explored in the
GPOC Survey, revealing a global consensus1. This received answers
from all key opinion leaders of 193 + 3 United Nations’ member states
and the 18 largest international health care organisations1. Thus, the
technical and mathematical foundations were shaped, resulting in a
GPOC sandbox environment2.

Cloud-based PHRs have become increasingly vital in healthcare,
enhancing patient management. The quality of patient care hinges on

maintaining data integrity, privacy, security, and efficient data retrieval
for clinicians and healthcare providers5,6. Centralised PHRs have faced
criticism for security vulnerabilities and clinician burnout7. For
instance, the WannaCry ransomware attack, which began in 2017 and
continues to pose a threat, targets less secure central systems. It
affected over 150 countries and over 40%of theworld’s national health
care systems8. In the security evolution new cloud-based models,
including blockchain-based systems, have been researched
worldwide7. These offer enhanced privacy, security, and access con-
trol. Some even allow for the deletion of patient information when
necessary, addressing privacy concerns5,6.

Another issue arises with travellers in a globalised world, as their
healthcare records may not be accessible in host nations. This under-
scores the need for a secure cloud-based global PHR platform that can
support both patient care during travel and migration.

Ensuring the security of these cloud-based PHRs involves
advanced cryptographic techniques, necessitating continuous
research and testing. However, emerging technologies also pose
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regulatory and ethical challenges, especially regarding data ownership
and responsibility4.

Here, the systematic review andmeta-analysis explore the impact
of these technologies on the concept of co-ownership across borders.
Hereby enabling a foundation to assess PHR management and design
for a global patient co-owned cloud.

Results
Overview
The PRISMA flow diagram in Fig. 1 summarises the screening process.
Search results retrieved 16,045 references with 6683 duplicates
removed and 9362 references screened. Thirty-four were selected for
final inclusion in the review and 12 were included in the meta-analysis.
Figure 2 depicts the twelve GPOC core facets included in the sys-
tematic review and meta-analysis. Figure 3 shows the geographical
distribution of the institutions included in the GPOC systematic review
and meta-analysis. As an illustration of our analytical approach, Fig. 4
showcases a forest plot derived from themeta-analysis, while all forest
plots are available in Supplementary File 2 (S2).

Efficiency-based parameters
Runtimes defines the amount of time it takes for a programmeor piece
of code to run (ms). In 117 sub studies on runtimes, a pooled effect size
estimate of 12874ms (CI: 12867–12881, I2 100%; p = 0.0005). A log
transformed meta-analysis of the 117 sub studies on runtimes also
showed an effect size estimate of 1.98ms (CI: 1.97–1.98, I2 100%;
p =0.0005).

Key generation times was defined as the time required for the
process of generating cryptographic keys (ms). In 46 sub studies
on key generation time, a pooled effect size estimate of 143ms (CI:
121–165, I2 98%; p = 0.0005). A log transformedmeta-analysis of the
46 sub studies on key generation time also showed an effect size
estimate of 4.5 ms (CI: 4.52–4.47, I2 99.9%; p = 0.0005). Figure 4
illustrates the forest plot for the key generation time meta-
analysis.

Other time-based activities
In 26 sub studies on time analysis such as key management and
increased keyword query search time for PHR server transfer, a pooled
effect size estimate of 3951ms (CI: 3949–3955 I2 100%; p =0.0005). A
log transformed meta-analysis of the 26 sub studies on usage policy
also showed an effect size estimate of 2.56ms (CI: 2.55–2.56, I2 100%;
p =0.0005).

Security-based parameters
Access policies define the protection of cloud data access and devices.
These are set up to block access to all unauthorised uploads. In 34 sub
studies on usage policy, a pooled effect size estimate of 30076
security-based policy of granularity of data access and response (CI:
30073–30079, I2 100%; p = 0.0005) was identified. A log transformed
meta-analysis of the 34 sub studies on usage policy also showed an
effect size estimate of 3.98 policies (CI: 3.97–3.98, I2 100%; p =0.0005).

Encryption ensures the conversion of information secretly to hide
its original contents and was defined as the total encrypted data
(bytes) divided by the encryption time (ms). In 86 sub studies on
encryption, a pooled effect size estimate of 80.76ms (CI: 80.7–80.7, I2

100%; p =0.0005). A log transformed meta-analysis of the 86 sub
studies on encryption also showed an effect size estimate of 1.86ms
(CI: 1.86–1.86, I2 100%; p =0.0005).

In 20 sub studies on ratio of means of encryption, a pooled effect
size estimate of 0.16ms (CI: 0.11–0.21, I2 100%; p =0.0005). A log
transformed meta-analysis of the 20 sub studies on ratio of means of
encryption also exhibited an effect size estimate of 0.162ms (CI:
0.110–0.214, I2 100%; p =0.0005).

Decryption reverses the coded information to its original content
and was defined as the total decrypted data (bytes) divided by the
decryption time (ms). In 73 sub studies on decryption, a pooled effect
size estimate of 59.50ms (CI: 59.50–59.51, I2 100%; p =0.0005). A log
transformed meta-analysis of the 73 sub studies on decryption also
showed an effect size estimate of 1.70ms (CI: 1.70–1.70, I2 100%;
p =0.0005).

Fig. 1 | Search strategy and article selection process: PRISMA flowchart.
PRISMA Flow chart illustrating our search strategy and article screening and
selection. For the PRISMA 2020 checklist see Supplementary File 3 (S3). The chart

was createdwith KeyNote 11. SourceData files are available in the article repository
on Figshare, https://doi.org/10.6084/m9.figshare.c.7066553.
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Cost-based parameters
Data transfer cost (gas cost) was defined as gas, which is the price per
unit of computation that is performed on the Ethereum network. In
8 sub studies on gas analysis, a pooled effect size estimate of 70193
Ethereum (CI: 70113–70272, I2 100%; p =0.0005). A log transformed
meta-analysis of the 8 sub studies on gas analysis also showed an effect
size estimate of 1.71 Ethereum (CI: 1.63–1.79, I2 99.9%; p =0.0005).

Risk of Bias (ROB)
Figure 5 illustrates risk of bias of the 12 meta-analysed studies across
seven bias domains, with 31% moderate and 69% of low risk. The stu-
dies presentedmoderate risks of bias: 8% due to confounding, 75%due
to selection of participants, 25% in classification of interventions, 42%
due to deviations from intended interventions, 25% due to missing
data, 17% in measurement of outcomes, and 25% in selection of the
reported result.

Discussion
Cloud-based PHRs gain momentum worldwide. This motivates
research into their security, managing, efficiency, and costs. This field
has never been meta-analysed before. The findings provide the foun-
dation for the eventual construction of a GPOC. A global PHR platform
could power machine learning and spark AI within healthcare

everywhere. Though, PHR datasets remain fragmented. There are also
many ethical, policy and regulatory challenges. For instance, security
and security have implications of HIPAA andGDPR. These are analysed
on a global scale in another part of the GPOC-series4.

In addition to centralised PHRs, there are alternative archi-
tectures. These include fog-based, peer-to-peer and hierarchical
methods. The former leverage edge computing resources, providing
proximity benefits and enhancing data privacy. The two latter models
distribute control and ownership among users. With these a GPOC
could offer greater autonomy.

The integration of AI into GPOC would provide incorporated
multilingual support and patient decision guidance. Bridging lan-
guage and some education barriers. Notably, AI integration might
interpret and explain complex medical texts to patients, interact
and provide advice. Hence, a medical GPOC integrated generative
AI. Likewise, patients with impaired hearing or vision would also be
helped with integrated AI tools. Here, natural language processing
(NLP) would provide in real-time assistance and decision support to
co-owners.

Currently, these AI tools are oftenmade by companies. They have
trained algorithms on data. However, patients’ consent is pivotal4,9.
Therefore, integrated omics data for precisionmedicine provides both
possibilities and considerations4,10.

Fig. 2 | Overview of core subjects in retrieved articles. Overview of the twelve
core subjects included in the 226 articles sought for retrieval (blue), the penulti-
mate 35 articles (pink), and the 12 meta-analysed articles (yellow). Eighty-four
articles (37%) contained in numbers, 107 articles contained no numerals (47%), 36
articles were not retrieved (16%), and 9 articles had no relevance to GPOC (4%). Of
all 226 articles, the top-three subjects were privacy/security covered by 148 articles
(65%), sharing by 78 (35%), and ownership by 48 articles (21%). Of the penultimate
35articles, the top-three subjectswereprivacy coveredby 22 articles (63%), sharing

by 12 articles (34%), and movability by 6 articles (17%). Of the meta-analysed 12
articles the top-three subjects were privacy covered by 10 articles (83%), sharing by
6 articles (50%), andmovability by 3 articles (25%). For theGPOCWordCloudof the
100 commonest words, based on 38,000 words selected equally and representa-
tively from all 190 eligible articles (out of 226 articles sought for retrieval), see
Supplementary File 4 (S4). Source Data files are available in the article repository
on Figshare, https://doi.org/10.6084/m9.figshare.c.7066553.
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Fig. 3 | Global distribution of institutions and gender representation in GPOC
study authors. Illustration of the global breakdown and distribution of the insti-
tutions in the 47 countries of 834 co-authors of the 226 articles included in the
GPOCsystematic review andmeta-analysis. 42%of the 1st authorswerewomen. The

map was created using MapChart.net and adapted with KeyNote 11. Source Data
files are available in the article repository on Figshare, https://doi.org/10.6084/m9.
figshare.c.7066553.

Fig. 4 | Forest plot for key generation time meta-analysis. The forest plot dis-
plays the results of the meta-analysis for key generation time, with a heterogeneity
chi-squared of 2430 (degrees of freedom 45), p =0.0005, and I-squared (variation
in effect size attributable to heterogeneity) of 98.1%. ES (effect size) with 95%
confidence interval (CI) is shown. The diamonds represent the pooled effect size
estimates, with error bars indicating the 95% confidence intervals. Please note that

themeasure of centre for the error bars corresponds to themean of each estimate.
Statistical tests used were two-sided. The forest was created with Stata 17 and
adaped with KeyNote 11. For all 18 forest plots of the meta-analysis, refer to Sup-
plementary File 2 (S2). Source Data files are available in the article repository on
Figshare, https://doi.org/10.6084/m9.figshare.c.7066553.
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The results’ section showed security-based parameters such as
encryption and decryption time in milliseconds (ms). However, these
metrics are inherently influenced by the basic infrastructure. This
includes CPU performance, available memory, network bandwidth,
and other hardware resources. The absolute timing values may not
give the full picture of security issues. For instance, a more powerful
CPU or increased network bandwidth, might reduce time and enhance
security. Therefore, the results must be put into context and industry
standards considered.

Here, efficiency-based parameters that could impact the retrieval
of data from PHR were meta-analysed. Significantly fast run-times for
PHRs were seen in 117 sub studies. These studies demonstrate that
information access speed may impact clinical decision-making. Com-
munication within healthcare would benefit from accelerated models.

One study on efficiency and performance of cloud-based PHRs
analysed chunking, bundling, deduplication, delta-encoding, and data
compression11. All these contribute to cloud characteristics. Perfor-
mance indicators included control data overhead quantification of an
average packet transmission rate of 93% compared to cloud storage
services11. This illustrates one way of comparing several factors in
parallel, to find a suitable PHR solution.

Others have shown similar results. That is, with a time efficiency
comparison of values for different attributes, with different files
(n = 10–50, and key generation times 401–998ms)12. Computation
times ( | S | = 100) have been presented for six models (WTCM, WTCF,
SADS, VAKF, LSTM, MLPPT-MHS), with key generation times ranging
824–4093ms13,14. Thus, a great variation is seen. A computation of
delegation in key verification by comparing two models (proposed
ECP-ABE vs existing CP-ABE), gave key generation times varying from 1
vs 1.2ms to 3.2 vs 4.7ms15,16. A comparison of six models (Blowfish,
RSA, ASE, El-Gamal, ECC, Modified El-Gamal, Modified ECC) showed
key generation times from 1–14ms17. Others argue that centralised

cloud providers to organisations affect the ease of movement of var-
ious PHR datasets18. The ease of moment is important for a GPOC.

The above-mentioned technical variables may affect how effec-
tively PHRs are shared. Possibly patients may be open to sharing for
better care and for research, even in the face of privacy concerns19.

The security efficiency of PHRs was presented with encryption
types and how cryptographic keys are generated to safeguard from
unauthorised access. PHRs were significantlymore efficient than other
methods of record keeping. However, this efficiency can pose risk to
PHR integrity and lead to ransomware attacks or distributed denial of
service (DDoS) attacks. Similarly, other time-based analysis including
file transfer times had a significantly better efficiency-based measure
recorded for PHRs20.

PHR security with access policies, optimised speed and efficiency
of shared data is therefore pivotal. To measure these objectively is
hard. Many users do not have technical knowledge and may not be
aware of security risks leading to unauthorised access. Here, we
identified a heterogenous pooled effect size estimate of
30,076 security policies, that impact granularity of data access and
response. An effect size estimate of 3.98 policies (p =0.0005) in log
transformed meta-analysis was also identified here. This data is novel.

However, discussions exist regarding innovations, such as patient-
controlled health access brokerage services with necessity for imple-
menting security logs and unique methods of intrusion detection20–22.

Encryption is a backbone of security. Security concerns were dis-
cussed by a majority of included articles. With 148 articles (65%) it was
the commonest elaborated of all facets. The encryption type, is crucial
for safe transfer, sharing and compressing PHRs. In 86 substudies on
encryption, a pooled effect size estimate of encryption speed of 81ms
was seen. The response ratio was examined on 20 substudies, looking at
mean encryption times, which demonstrated an effect size estimate of
0.16ms. The literature review of the meta-analysed articles presented

Fig. 5 | Assessment of risk of bias in meta-analysed studies. Pictorial repre-
sentation of the results from the risk of bias analysis indicating low tomoderate risk
of bias presented in the studies14–20,23–26,39. The figure was generated with the online

RobVis tool. Source Data files are available in the article repository on Figshare,
https://doi.org/10.6084/m9.figshare.c.7066553.
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several studies on encryption (800–1200ms20, 8654-10025ms23, 29-
98ms24, 80-5040ms25, 9919–280ms12, 8–12ms16, and one team com-
pared six schemes (Blowfish, RSA, ASE, El-Gamal, ECC, Modified El-
Gamal, and Modified ECC) with ranges 0.00006–0.03ms17, and where
the meta-analysis gave a pooled effect size estimate of 81ms, an effect
size estimate of 1.86ms and p=0.0005).

Decryption time, necessary for retrieving information by a patient
or clinician, had a pooled effect size estimate of 59.5ms. This is a PHR
benchmark, which future studies could improve. Several studies pre-
sented decryption, e.g., 4236–7546ms20,23, 16–74ms24, 30–2290ms25,
4–12ms26, 90–71,167ms12. Moreover, one team compared six schemes
(Blowfish, RSA, ASE, El-Gamal, ECC, Modified El-Gamal, and Modified
ECC) with ranges 0.000086–0.00054ms17, The meta-analysis gave a
pooled effect size estimate of 59.5ms, an effect size estimate of 1.7ms
and p =0.0005) performances for proposed algorithms and security
solutions27–31.

There are several encryption types. For instance, symmetric
encryption uses a single key for both encryption and decryption and is
known for its speed and efficiency. Asymmetric encryption, also called
public-key cryptography, uses a pair of keys (public and private) for
secure communication. Homomorphic encryption allows users to
perform computations on encrypted data without the need to decrypt
it, preserving privacy. Hence, a fully homomorphic encryption (FHE)
allows users to analyse on encrypted datasets without seeing the
underlying data32. For GPOC we have explored this type further2. End-
to-End Encryption is often used in communication applications, this
ensures that only the sender and recipient can access the content,
making it highly secure. Blockchain-embedded PHRs utilises block-
chain encryption, ensuring data immutability and security through
distributed, tamper-proof and interoperable ledgers. Herepatients can
regulate PHR access. These encryption protocols enhance security,
traceability and privacy of PHRs, explored further in the technical part
of the GPOC series2.

While encryption and decryption are crucial aspects of security, a
more holistic analysis must contain other fundamental pillars. In
addition, confidentiality means examining access controls, user
authentication and data masking techniques that protect PHRs from
unauthorised access. Ensuring integrity, involves digital signatures,
checksums and audit trails hindering PHR tampering or alteration. In
healthcare continuous availability of PHRs may be lifesaving. This
includes redundancy in data storage, disaster recovery plans and load
balancing strategies. Several articles discussed confidentiality (19),
integrity (14) and availability (12). However, these were not measured
enough with numeric values for a meta-analysis.

Previous proof-of-work blockchain technologies allowed an
organisation to calculate exact costs of performing software and
mathematical operations needed for digital tokenisation and activities.
This is expressed as gas on Ethereum, which is a decentralised block-
chain with smart contract functionality. This has advantages, since
those operating on the Ethereumvirtualmachine use ameasurable gas
cost for executingprogrammes supporting the functioningof the PHR,
using smart executable contracts. Based on inborn technical limita-
tions of the design standard for smart contracts, these could be tai-
lored to one specific action without affecting other necessary
components of the PHR. This makes useability costs measurable and
auditable. The gas meta-analysis demonstrated a pooled effect size
estimate of 70193ms with a log transformed effect size estimate of
1.7ms. An ideal PHR should allow accurate estimation of costs for
information transfer, data mining and interdisciplinary access for
decision support to compensate users in a co-ownership model.

While Blockchain technology is a significant trend, the field of
PHRs moves rapidly. Emerging technologies such as Federated
Learning, Fog Computing and the Internet of Things are poised to
shape future PHRs. Blockchain’s decentralised and immutable ledger
capabilities continue to spread among PHRs and improve security,

integrity and interoperability. Federated Learning allows collaborative
training in distributed datasets while upholding privacy. It will poten-
tially revolutionise how PHRs will be used for research and enable
personalised precision healthcare without centralisation. Fog com-
puting extends the edge computing capabilities. It enables real-time
data processing at the edge of the network. Hence, it enhances the
responsiveness of PHRs. This would advance the field of critical
applications such as remote monitoring. With Internet of Things (IoT)
data from wearables and devices could be integrated with PHRs. This
data convergence takes real-time monitoring and personalised care to
a new level. The above technologies represent pivotal health IT trends,
with important applications and synergies with cloud-based PHRs.

One study applied Blockchain technologies in patient-centric
models for PHR data management allow for smarter interconnectivity
between healthcare and the Internet of Things (IoT)33. The aim is to
streamline the provision of higher quality privacy powered healthcare
services using zero-knowledge proofs. The intended consequence is a
fusion of a zero-knowledge proof for encryption whilst ensuring
patient consent is acquired for data insight discovery to maintain
privacy and anonymity. One patient-centred PHR model with an
information access control scheme used Lagrange interpolation
polynomials for secure multi-user permissible information access21.
Many teams discuss the application of machine learning analysis of
cloud-based datasets and IoT34. Also the driving development role of
companies’ AI tools for large datasets35.

In all future healthcare, machine learning will play a central role.
Data-driven decision-making in healthcare may be integrated into a
GPOC and needs several methods to preserve patient privacy. Anon-
ymisation, such as de-identification and pseudonymization, play a
pivotal role in protecting patient identities while enabling PHR for
research. These methods help mitigate privacy concerns associated
with data sharing and analysis. Obfuscation involves the transforma-
tion of sensitive data to protect the confidentiality, while still allowing
meaningful analysis. It is an effectivemeans to strike a balancebetween
data utility and privacy protection.

The significant global trend of interoperability means that dif-
ferent PHR systems and software applications could seamlessly
exchange patient data across platforms and organisations. It is crucial
to improve patient care and streamline the administration, and boost
both research and AI development. To make this easier, there are
technical standards and policies have been developed. An important
example is HL7 FHIR (Fast Healthcare Interoperability Resources). It is
an open standard for healthcare data exchange that focuses on sim-
plicity, flexibility, and scalability. It uses RESTful web services and
resources to enable the exchange of structured clinical and adminis-
trative data. FHIR resources are designed to represent specific
healthcare concepts. These use widely accepted healthcare terminol-
ogies, facilitating sharing. FHIR also incorporates modern web tech-
nologies, such as JSON and XML, to help developers.

In addition, other technical standards and policies include: HL7
v2.x, CDA (Clinical Document Architecture), DICOM (Digital Imaging
and Communications in Medicine), IHE (Integrating the Healthcare
Enterprise), HIPAA (Health Insurance Portability and Accountability
Act) and EHR Certification Programmes.

Finally, for three time-based security aspects there are neither
previous meta-analyses, nor standards: (1) Runtimes. In a GPOC these
could reduce the effects of data retrieval lag. In 117 substudies on
runtimes, a pooled effect size estimate of 12874ms (CI 12867–12881, I2

100%; p =0.0005). A log transformation gave 1.98ms (CI: 1.97–1.98, I2

100%; p =0.0005). (2) Key generation times. In 46 substudies on key
generation time, a pooled effect size estimate of 143ms (CI: 121–165, I2

98.1%; p =0.0005). A log transformation gave 4.49ms (CI: 4.52–4.47, I2

99.9%; p =0.0005). (3) Server transfer times. In 26 substudies on time
analysis, suchas keymanagement and increased keywordquery search
time for PHR server transfer, a pooled effect size estimate of 3952ms
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(CI: 3949–3955, I2 100%; p = 0.0005). A log transformation gave
2.56ms (CI: 2.55–2.56, I2 100%;p = 0.0005). Thus, there are noprevious
meta-analyses or standards for three time-based security aspects,
highlighting the need for further research in these areas.

In summary, there are several future key challenges:
1. Global Healthcare Data Platform: Future efforts should focus on

designing a comprehensive global PHRplatform to combat health
crises and promote global health. This platform would enable
international healthcare and research communication and inter-
action. During COVID-19, researchers tried to design a global
pandemic monitoring platform36. Others conclude that the pre-
sent centralised systems cannot adapt to the vast volumes of
globalised PHRs6. An optimal and complete use of PHRs could
become prophylactic and have a major impact on global health37.
Another team concludes that COVID-19 a global PHRs platform,
would play a pivotal role in combatting the pandemic38.

2. AI Integration and Security: Siloed use of AI on health data,
security concerns and no pipeline for future AI improvement12.
Future work should explore integrated AI-empowered cloud-
basedPHR systems. Patients sharing their PHRcontents andusage
of AI on their data is a game changer39. An AI-empowered cloud-
based PHR system, which could possibly decrease healthcare
errors, costs, and improve quality and effectiveness has been
suggested40. Although PHRs facilitate healthcare, these are often
outsourced to third party cloud service providers, bringing severe
security issues, and increasing the risk of malicious usage and
leakages41.

3. User Experience and User Interface (UX/UI): Current PHRs are
non-interactive and lack ergonomic user interface. Studies have
shown they are so badly designed that it causes health worker
burnouts7. The design must be user-friendly with elderly tools
integrated. It should be possible to integrate IoT and AI tools.
Importantly, cloud-based PHRs may become simplified health
sharing platforms42. For instance, sharing could be to friends,
family or professionals. A team presented the Bluefish algorithm
to improve the security, flexibility, and transmission to third-party
cloud providers43,44. At present cloud security solutions cannot
handle all sophisticated threats39. There are proposed re-
encryption solutions in response to white-box attacks. This to
maintain efficiency even if there are multiple recipients. Easy
accessibility and straight provider access as key vulnerabilities
have been identified45.

4. High PHR SoftwareCosts: PHRs are too expensive formany health
economies globally. There are economic and access advantages
with cloud based PHR platforms46. Even though cloud storage can
cut costs and improve health data sharing, the security issues are
still substantial21.

5. Effective Use of Health Data: Presently PHRs are hindering effec-
tive use of health data. This impacts AI progress in medicine.
Multi-source PHRs with socioeconomic and genetic data would
advance precision healthcare.

6. Global Adoption of PHRs: Globally relevant ethnic and social
perspectives of the patient journey and PHR adoption have been
studied47. As a continuation to these, the needs of the disabled
persons from ethical, social, and judicial perspectives, have been
elaborated48. Another team also showed how multi-source PHRs
with both socioeconomic and genetic data will have a pivotal role
in the realisation of true global and individual-centred precision
healthcare of the near future49.

7. Interaction and Communication: Lack of interaction and com-
munication leads to one fifth of PHRs having serious errors. Cur-
rent PHRs are costing time, money, and lives50. Patients’ self-
management of PHRs has been suggested, along with control and
full ownership22. It has been suggested this decreases the amount
of PHR errors with less nosocomial and adverse effects. Health

expenses are rising with an older global population, and an
intelligent cloud-based electronic health record (ICEHR) has been
suggested to diminish medical mistakes40. Another concept is the
individual-focused, long term and ‘error-free’ PHR47. Another
project involves a smartphone application with a self-
administrative medical solution aiming at increasing PHR
correctness51.

8. Global Patient co-Owned Cloud (GPOC): A GPOC would mean a
global and AI empowered platform which would be a solution to
thementioned challenges. It has also been discussed how a GPOC
could be self-sufficient, and hence facilitate global dissemination
of PHRs and AI for global health2,4. Moreover, a GPOC in the form
of a foundation has been discussed1,3. The ethics’ article in the
GPOC series concludes, among other, the necessary trisection of
ownership between patients, clinicians and clinics4.

This study is thefirst in thefield. There is no standard yet. Hence, a
clear heterogeneity. It was controlled for using a randomeffectmodel.
The results were significant within core aspects of PHR security, effi-
ciency and cost.

Future research may involve the collaboration of stakeholders to
develop a consensus-driven approach to standardize PHR data. This
would support effective and secure access for clinicians and organi-
sations. It could also enable a standardised approach for AI integration
into a future GPOC.

Final remarks
In conclusion, the meta-analysis of twelve axes for a future GPOC
currently demonstrates marked heterogeneity. This is a consequence
of a new field without standards. Although we have meta-analysed the
cryptographic, cost, performance and speed of the basic techniques
that are currently available. This would facilitate the construction of a
GPOC.Wehave highlighted several limitations. A consensusmay come
within the field of privacy and security for cloud based Blockchain
PHRs. The eventual GPOC may benefit global health.

Methods
Search strategy
The PRISMA-guided multi-platform database review was registered on
PROSPERO (CRD42022342597). Supported by librarians of Karolinska
Institutet and ImperialCollege London. Thematic keyword searches on
Ovid Medline, PubMed, Cochrane Library, EMBASE, Web of Science
core collection, CINAHL, SCOPUS and Engineering village (Inspec and
Knovel). The overarching themes were global cloud-based, decen-
tralised, patient co-ownership, personal/electronic health record sys-
tems. Keywords included data co-ownership, patient rights, artificial
intelligence, ethics, data infrastructure, economics, regulatory, patient
outcomes, and auditing. The period ranged 1946–2022. For complete
search strategy see Supplementary File 1 (S1).

Screening
Articles were imported into referencing software EndNote (Pro-
grammer—The EndNote Team, Year—2013 Title—EndNote Place Pub-
lished—Philadelphia, PA Publisher—Clarivate Version: EndNote 20
Type: 64 bit). Deduplicated and exported to Rayyan (Harvard, USA)52.
Article screening by NL and JD with HA resolving any conflicts.

Inclusion and exclusion criteria
Relevant primary articles addressing global patient co-ownership,
electronic health records (EHRs), Personal Health Records (PHR) and
includes data-co-ownership, patient rights, ethics, economics of PHR
patient systems, personal care records and patient outcomes from
threatened security were identified. This included randomised con-
trolled clinical trials performed on PHRs. Articles were included if they
discussed cloud-based personal health records that had patient and
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healthcare provider co-ownership. Abstracts, reviews, conference
proceedings, articles that do not reference PHR systems and with
unclear outcomes were excluded. Specific exclusions included lack of
reference to patient co-ownership with and without cloud-based
infrastructures.

Initial recording of the number of articles found. Then a trans-
parent selection process by reporting on decisions made at various
stages of the systematic review. Numbers of articles are recorded at
the different stages.

Meta-analysis
A meta-analysis was performed for PHR domains investigating effi-
ciency, security, and cost-based parameters. This was based on access
policies, runtimes, encryption and decryption times, key generation
times, distributed network related data transfer cost (gas cost) and
other time-based activities. Log-transformation was applied when
necessary. Also, a ratio of means standards effect size estimation on
encryption calculated using the following formulae (Mean of inter-
vention—Mean of control)/Mean of control. Analysis was performed
using STATA (StataCorp 2013, Statistical Software, Release 13 College
Station, TX StataCorp LP) for random effects modelling due to result
heterogeneity. Significancewas set at a p < 0.05. Authors contacted for
completion of data if unclear or incomplete.

Validity and bias
Risk of bias (ROB) with seven domains (D1-D7) of ROBINS-I and RobVis
tools. Inclusion and exclusion criteria design to minimise bias. Search
strategy disagreements resolution. Publication bias assessment with
Egger’s test and no adjustments necessary. PRISMA-guided protocol.
PROSPERO registered review protocol for transparency and reduced
bias. Manual check of all retrieved articles assessed the quality of
included studies. Evaluation of the risk of bias in each study. Com-
prehensive search strategy. Wide time frame and scope of multiple
databases, ensuring all relevant studies identified. Clearly defined
inclusion and exclusion criteria established to select studies. Criteria
applied consistently to reduce selection bias. Standardized data
extraction forms and protocols to collect relevant information from
each included study. To assess the riskof biaswithin individual studies,
quality assessment tools mentioned above. Evaluation in all studies on
PHR security checking on study design, data collection methods, and
reporting quality. Assessment of heterogeneity controlled with a
random-effects model Meta-Analysis methods with pooled effect
estimates. Sensitivity with reanalysis. Robustness assurance. Reporting
with PRISMA for transparent and complete reporting of methods and
results, reducing reporting bias. The blinded screening and selection
onRayyanmadeby two reviewers and arbitration by a third. All unclear
articles discussed, reaching consensus. For missing data, the respec-
tive article authors contacted for completion. No imputation neces-
sary. Non-retrieved articles were 36. Their exact numeral contents
unknown. Considered separately and deemed not meta-analysable.
The results detailed in the RobVis tool in Fig. 5, visualising the risk-of-
bias domains for each included study, see results. See further search
strategy details in Supplementary S1, PRISMA checklist in S3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Supplementary
Information. Source data are provided with this paper. Source data and
raw data generated in this study, have been deposited in the article
repository on Figshare, https://doi.org/10.6084/m9.figshare.c.7066553.
All data are available on the repository without restrictions. The time-
frame for response to requests is immediate. All data are free to use.
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