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Maximizing carbon sequestration potential
in Chinese forests through optimal
management

Zhen Yu 1,2 , Shirong Liu 2 , Haikui Li3, Jingjing Liang4, Weiguo Liu 5,
Shilong Piao 6, Hanqin Tian 7, Guoyi Zhou 1, Chaoqun Lu 8, Weibin You9,
Pengsen Sun2, Yanli Dong1, Stephen Sitch 10 & Evgenios Agathokleous 1

Forest carbon sequestration capacity in China remains uncertain due to
underrepresented tree demographic dynamics and overlooked of harvest
impacts. In this study, we employ a process-based biogeochemical model to
make projections by using national forest inventories, covering approximately
415,000 permanent plots, revealing an expansion in biomass carbon stock by
13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation
ofwoodproduct pool (0.6-2.0 PgC) and spatiotemporal optimizationof forest
management (2.3 ± 0.03 Pg C).We find that statisticalmodelmight cause large
bias in long-term projection due to underrepresentation or neglect of wood
harvest and forest demographic changes. Remarkably, disregarding the
repercussions of harvesting on forest age can result in a premature shift in the
timing of the carbon sink peak by 1–3 decades. Our findings emphasize the
pressing necessity for the swift implementation of optimal forestmanagement
strategies for carbon sequestration enhancement.

Forests play a central role in achieving the UN Sustainable Develop-
mentGoals (SDGs), including sustainable use of terrestrial ecosystems,
combating desertification, reversing land degradation, and halting
biodiversity loss1,2. With mounting interests in forest restoration to
mitigate global climate change3, maintaining and enhancing forest
carbon sequestration have been increasingly prioritized4. China, the
top-ranked country worldwide in planted forest area5, is expected to
be a substantial and persistent carbon sink in the coming decades6.
However, reported estimates of forest carbon potential in China

remain inconsistent due to large uncertainties caused by limited long-
term reliable observational data, different accounting methods, and
varied forestmanagement plans and strategies6–14 (Fig. 1). For example,
China has pledged to expand its planted forest area by 49.5 million
hectares (Mha) from 2021 for land carbon sink enhancement15, yet the
appropriate forestation species adapting to climate change are not
identified. The timeframe for achieving the anticipated carbonbenefits
will predominantly hinge on several key factors: the judicious selection
of tree species, the evolving patterns of wood harvesting practices, the
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structural composition of forests, and the dynamics of tree demo-
graphics (i.e. forest age structure).

However, the current research gap mainly lies in the lack of col-
lective considerations of the above key factors, which further con-
strains previous assessments of China’s forests’ carbon-holding
capacity. Therefore, this study aims to: 1) address these challenges in
an integrated manner for more accurate projection of forest biomass
carbonpotential; and 2) assess the improvedmanagement practices to
enhance carbon potential. Here, we quantified forest biomass carbon
stock (excluding dead wood, litter, and soil carbon) dynamics across
China from 2020 to 2100, leveraging detailed tree-level information
derived from the National Forest Inventory (NFI) survey data encom-
passing 18 million+ tree-records collected in more than 415,000 per-
manent sample plots from 1999 to 2018 (see National forest inventory
(NFI) data in Methods, Supplementary Fig. S1). These forest inventory
data, which provided validated measures of the initial carbon stock at
the individual tree level (i.e. in 2018), enabled us to estimate forest
biomass carbon stock and sink with a greatly improved accuracy. We
employed a combination of both statistical and process-based bio-
geochemicalmodels for carbon stock and sink projection. Specifically,
in the simulations using process-based model (i.e. DLEM), forest
management (i.e. wood harvest, forest expansion) was represented for
accurate projection of carbon dynamic trajectory. Besides, the
improved management practices were further considered, including
the replacement of inappropriate tree species by indigenous species
and reductionof the harvesting intensity by postponing the harvesting
time (see Methods). Additionally, optimal managements include the
improved management practices producing the largest carbon sink.
Moreover, for DLEM simulations, we designed four groups of experi-
ments, in which the first group is to quantify the carbon dynamics

without improved management practices, and the second group is to
quantify the additional carbon stock and sink from improved forest
managements, i.e., wood harvest extension and tree replacement.
While in comparison, the third group experiments were used to
quantify the bias introduced by neglecting wood harvest, and the
fourth group was used to quantify the sink from existing and new
forests. Note that the results reported are all derived from group 1
experiments, unless otherwise indicated.

Results and discussion
We optimized wood harvest based on forest age and the dynamic
patterns of forest demography. More specifically, instead of demand-
driven carbon removal such as Land-Use Harmonization (LUH2), har-
vesting was determined internally based on tree maturity status spe-
cified by tree species and age in our simulations. Moreover, forest age
and demography were altered by harvesting practice which, in turn,
further affected the forest growth. These mechanisms improved the
carbon removal and accumulation processes in the projection of
future biomass carbon. Former studies16,17 revealed that forest demo-
graphy played a vital role in terrestrial carbon sink, and the carbon
accumulation rates were extremely divergent during forest regrowth
across the globe. Consequently, we enhance the accuracy of estimates
by improving forest growth and regrowth processes in model
simulations.

Aside from harvesting and the subsequent impacts on forest
demography and growth, future forestation species will also greatly
determine the carbon potential. In this study, the tree species selected
for future forestation were appropriately determined using observa-
tion-based, improved habitat suitability maps (see Methods). We
found that, previous studies, with initial carbon stock validated by
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Fig. 1 | Forest biomass carbon stock and sink inChina.Boxplot shows themedian
(center line), and the lower (10th) and upper (90th) quartiles; outliers shown as
individual data points. Gray box: the pooled estimations from publications; cyan
box in panel a: the reported carbon stock using models validated by historical
forest inventory data; red shaded area in panels a and b: the range of carbon stocks
and sinks derived from statistical model under the baseline (47% tree survival rate)

and the improvedmanagement scenarios (85% tree survival rate) in this study; blue
shaded area in panels a and b: the stock and sink derived from process-based
simulations using DLEM under different tree survival rates (i.e. 47% and 85%) and
Shared Socioeconomic Pathways scenarios in this study. The improved manage-
ment practices (i.e. tree replacement and harvest rotation length extension) and
wood product pool were not considered or included.
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inventory data7,12,18,19, are less diverged in reported carbon stocks than
the results lacking validations (see cyan box and gray box in 2020 in
Fig. 1a). Studies with abnormally high initial forest carbon stock are
prone to report lower carbon accumulation potential (e.g. Ju et al.14 in
Supplementary Table S1) as the carbon saturation is ecologically and
biologically predefined inmodel simulations (Supplementary Table S1,
Supplementary Figs. S2–S5). Thus, we first calculated the biomass for
each tree species by the continuous biomass expansion factormethod
(Supplementary Table S2) and converted it to biomass carbon based
on species-specific parameters (Supplementary Table S3) using the
forest plots surveyed in the 9th NFI (2014–2018) (Supplementary
Table S4). The biomass carbon stocks of each tree species were further
used as the reference to validate the process-based model (i.e. DLEM)
simulations in 2018 (Supplementary Fig. S6). We also modeled forest
carbon stock changes in existing and new forests under different
scenarios of tree survival rates for both statistical and process-based
models from 2020 to 2100, while wood harvest, rising CO2 con-
centrations, and climate change were further considered for process-
based simulations (Method, Supplementary Table S5). For example,
unlike the vast majority of the previous studies7,9,18–20, which assumed
that all new forestations were successful, we consider forestation
failures by constraining tree survival rates between harsh conditions
(e.g. arid and semi-arid regions) and the expected criteria designed by
the State Forestry Administration. Specifically, for newplanted forests,
simulations were performed assuming a baseline tree survival rate
(47%, derived from the 9th NFI in the arid and semi-arid region of
Northwest China) and a scenario with elevated tree survival rate (85%,
the threshold above which land qualifies for forestation as set by the
State Forestry Administration of China) under improved forest man-
agement (see Future forest expansion derived from official forestation
plan in Methods). The tree species adopted for forestationwere based
on habitat suitability maps with the dual considerations of future cli-
mate and the dominant species appropriate for each province (see
Methods). Besides, the CO2 concentrations and climate change forcing
data were obtained from CMIP6 for each of the four Shared Socio-
economic Pathways (i.e. SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5).

In previous reports, projections of forest carbon stocks show
greater uncertainties in later periods (Fig. 1a). Despite these studies
calibrated and validated by NFI data help to converge the estimations
(cyan box in Fig. 1a), the carbon stock uncertainties (indicated by the
ratio of standard deviation and average) rise rapidly from 9% in 2020
to 25% in 2060 in previous studies, manifesting the importance of
reducing such divergence. Our improved estimates, by exploring car-
bon dynamics under scenarios close to realistic conditions based on
Chinese forestry plan with data-constrained by the NFI, agree well
between the two methods used (i.e. statistical and process-based
models), showing that forest biomass carbon stock will increase to
21.6–24.3 Pg C in 2100 (Fig. 1a). Specifically, the results of DLEM (i.e.
process-based model) simulations were derived from group 1 experi-
ments (see Supplementary Table S5), indicating an increase of
13.6 ± 1.5 Pg C from 2020 to 2100. This implies a sink potential of
11.2–14.8 Pg C to be sequestrated, and an additional of 1.0–1.1 Pg C that
can be further fixed if tree survival rate increases from the current
status (47%) to 85% for new planted forests. By pooling results from all
scenarios with different tree survival rates and SSPs (i.e., Supplemen-
tary Experiments S1–S8 in Supplementary Table S5), the simulated
forest biomass carbon sink will be 0.203 and 0.192 Pg C yr−1 in 2030
and 2060 (Fig. 1b), which is 2.0–15.3% higher than a former estimate at
0.176–0.189 Pg C yr−16. This will offset 5.4–7.8% and 4.6–8.5% of the
projected peak fossil fuel CO2 emission in 2030 and 2060 in China,
respectively6,21.

In this study, the conspicuous differencewas observed in biomass
carbon sinks of the period 2020–2050, in which the magnitude
derived from statistical model was 19% higher than process-based
model (i.e. DLEM, see red and blue color in Fig. 1, which was derived

from experiments of simulation group 1). We hypothesized that this
difference could be due to the impacts of wood harvest, rising CO2,
and climate change, which were not explicitly considered in the sta-
tistical model. To test the assumption, we further performed factorial
simulations usingDLEMwith exclusion of the impacts from rising CO2,
climate change, or wood harvest (experiments in simulation group 3,
see Supplementary Table S5 and Methods), respectively. The results
revealed that the exclusion of wood harvest will help narrow the car-
bon sink difference between the two approaches down to 1.2% for the
period 2020–2050 (0.001 Pg C yr−1, Supplementary Fig. S7). Yet, the
exclusion of rising CO2 and climate change further enlarges the dif-
ference. Thus, the simulations using process-based model (experi-
ments in simulation group 1, see Supplementary Table S5) are more
realistic by taking into account of wood harvest impacts. The wood
harvest was rarely considered in recent publications (since 2020), in
which the sink covering the period 2020–2060 was reported at
0.21 ± 0.034 Pg C yr−16,9,20,22,23 – i.e. about 4.5% higher than our estima-
tions. In this study, we deliberately and proactively include the wood
harvest as this allows to sustain forest regrowth associated with sink
size capacity. Moreover, this follows the routine forest management
for timber production.

Quantifying the wood product pool is challenging as the har-
vestable carbon is growth-dependent and further complicated by the
greatly varied, species-specific rotation length ranging from 11 to 101
years24. What makes the estimates more complex is that the wood
harvest will not only remove carbon from live biomass pools, but will
also alter the age structure, biomass growth, and the forest responses
to environmental changes (e.g. rising CO2, climate change)16. Here, to
improve estimates on carbon harvest impacts, we tracked the age
dynamics of each tree species by considering natural growth, wood
harvest, and tree mortality using over 50,000 forest plots surveyed in
the 9th NFI (see Methods). By doing so, we could incorporate the age-
related impacts of forest harvest on tree growth into biogeochemical
cyclemodeling. In this study, wood harvest was further constrained by
official policies (i.e. harvest performed in timber forests only) and
species-specific harvest age (see Methods, Supplementary Table S6).
The harvested wood was diverted into wood products with varying
decaying rates. The annual carbon removal by wood harvesting was at
55 Tg yr−1 in our DLEM simulations from 2000–2020, which is in the
range of 40–100 Tg yr−1 that was reported in previous studies5,25. We
estimated thatwoodproduct poolwill reach 1.9 ± 0.1 PgC in2100 if the
ratios of short-, mid-, and long-live wood products (i.e. paper/paper-
board, wood-based panels, and sawn wood, respectively) remain the
same as in 2020. In comparison, when no harvesting is implemented,
the carbon stored in live biomass will be higher, at ~5.9 Pg C in 2100
(plus 0.2 Pg C remains in wood product pool due to a lack of new
harvest wood input since 2020). This indicates a faster carbon turn-
over rate in current wood product pool than it in the live biomass in
China. Although challenging, the long-live products (e.g. sawn wood)
should be encouraged to increase carbon residence in the biosphere,
which, however, are market-dependent, policy-oriented, and pro-
moted by wood technological innovation as well for achieving carbon
neutrality.

Spatial distribution of projected carbon stock and sink
The process-based model is advantageous in describing the spatial
pattern of carbon stock dynamic, which can hardly be captured in
statisticalmodeling26,27. In this study, we forced the DLEMmodel using
land use and cover change (LUCC) data intensively validated both
spatially and temporally during the historical period28,29. We further
extended the LUCC data from 2020 to 2050 assuming forestation
activities deployed in each province and by year, strictly following
official forestation plans (seeMethod).Moreover,we separated forests
into timber and non-timber, because there are harvest-free forests
(enforced by policy), such as forests in natural reserves and forest for
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sand fixation and soil conservation (i.e. non-timber forests). Thus, we
only applied forest harvesting in natural and planted timber forests.

Process-based simulations reveal that the biomass carbon stock
increment will be mainly derived from non-timber forests, including
natural and planted forests. The natural forests comprise the majority
of the carbon sink (57.7%) during the study period, followed by non-
timber planted forests (34.2%) (Fig. 2). By comparing the simulations in
group 1 and 4, we found that the existing and new forests contributed
to 70.4 ± 3% and 29.6 ± 2% of the sink during the period of 2020–2100,
respectively. It is noticeable that both natural and planted timber
forests merely contributed to a lower proportion of the carbon stock
increment (8.1%, Fig. 2). This is expected because carbon is routinely
removed from timber forests, leading to a relatively constant carbon
stock unless the traditional timber forest management are
altered (Fig. 2).

Predicted by process-based modeling, the average biomass car-
bon sink would be 0.201 and 0.143 Pg C yr−1 during the periods

2020–2060 and 2060–2100, respectively, resulting in an average sink
of 0.172 ± 0.017 Tg C yr−1 for the period 2020–2100 (Figs. 1 and 2).
Although this represents approximately 7.2% of the global forest bio-
mass sink, its size is 134.3% greater than that of the current U.S. forest
carbon sink30,31 (i.e. about 1.9 times higher by per unite of forest area),
and 4–10 times the size of the terrestrial carbon sink of Europe during
1990–2100 (0.017–0.038PgCyr−1)32. The simulated sink is 43.8% larger
than the average sink during 2020–2100 that is derived from pooled
studies regardless of the publication date (Fig. 1b), mainly due to a
smaller magnitude of reported carbon sinks after 2060. There are two
major reasons for this underestimate in carbon sink previously
reported for the post-2060 period. First, forest areas in previous
reports were either much smaller than they are in reality (e.g.
142.79–159Mha in 2020 from Zhou and Liu13,33 vs 220.45 Mha in 2018
from 9th NFI and this study) or did not account for future forest
expansion14. In comparison, our historical forest maps were rigorously
calibrated and validated, and the new forests were established

Fig. 2 | Themodeled biomass carbon stock change in China’s forests from2020
to 2100. Panels a–d indicate the accumulated changes of biomass carbon stock in
non-timber natural forest, timber natural forest, non-timber planted forest, and
timberplanted forest, respectively; unit: TgC (1Tg= 0.001 Pg). The species-specific
areas of timber forest were obtained from the China Forest Resource Report

2014–2018. Results derived from process-based simulations under different tree
survival rates (i.e. 47% and 85%) and Shared Socioeconomic Pathways scenarios.
The management practices (i.e. tree replacement and harvest rotation length
extension) and wood product pool were not considered or included.
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according to official plans with the consideration of land competition
and climate changes in forestation projections (seeMethods). Second,
the non-validated and abnormally high initial carbon stock
(20.36–21.22 Pg C in 2020 from Ju14 vs 11.2 Pg C from this study) might
limit the carbon accumulation potential due to carbon saturation
(Supplementary Table S1, Supplementary Figs. S2–S5). Thus, we argue
that former studies might underestimate the forest carbon potential
for the study period.

Similar to previous studies9,22,34, our results derived from statis-
tical modeling also reveal that the forest carbon sink will peak during
the 2020s–2040s (Fig. 1b). However, the process-based model reveals
that the sink will peak in the 2050 s (Supplementary Fig. S8). We
hypothesized that the early sink peak previously reportedwas due to 1)
neglecting harvesting impacts on forest age, and 2) biases stemming
from assuming forest age increment fixed at 1 per year. Specifically,
timber forests routinely harvested will remain relatively young to
uptake carbon, which was ignored if harvesting was not considered in
carbon stock/sink projections. Moreover, former studies often
assumed that forest annual age accrual is fixed at 1 per year due to lack
of tree demographic data. In reality, except for timber forests that are
routinely harvested with fixed rotation years, the age accrual in non-
timber forests is complex and affected bymortality, regeneration, and
natural growth (Supplementary Text; Supplementary Fig. S9). We
derived the age accrual information from the 50,000 plots, which
helps to capture the forest age changes under various disturbances. To
test the assumptions, we designed an additional simulation with
exclusion of harvesting and forced forest age increase by 1 year, which
resulted into similar carbon sink peaks in the 2020s–2040s (Supple-
mentary Fig. S10). Thus, we confirmed that the peak of forest biomass
carbon sink will be 1–3 decades later than expected, and forest har-
vesting and age increment should be interactively considered in car-
bon sink projections. Despite the later peak, forest biomass carbonwill
level off with aging trees, causing an inevitable decline in carbon sink
(Fig. 1). The plummet in sink may challenge the carbon neutral goal
since 2060 inChina (Fig. 1b). However, forest harvesting in someof the
non-timber forests might benefit from diverted carbon to wood pro-
ductpool. Nonetheless, it is crucial to rationally determinedharvesting
intensity in non-timber forests by trading the removed biomass stock,
the accrued forest product pool, and the boosted sink. Furthermore,
practices should be limited to selective cutting and should avoid
reserved forests that serve important purposes such as biodiversity
conservation, water conservation, soil erosion prevention, and sand
control.

We further examined the spatial pattern of the year of carbon sink
peak for the period 2020–2100 (Fig. 3a). Generally, the early carbon
sink peaks were found in the east of Tibet Plateau and the southern
regions, where the forests are either older or fast-growing and more
likely to mature soon. In comparison, the later carbon sink peaks were
distributed in the north of northeast and the southwest regions.
Notably, the magnitudes of the peak sink are large and their sensitiv-
ities are high along the dividing line of humid and arid area (known as
‘Hu Huanyong Line’ or ‘Heihe-Tengchong Line’, Fig. 3c, d). This is
consistent with a former study suggesting that future forestry practice
will be emphasized in the area along the Hu Line35.

Improved management for carbon potential enhancement
Wood harvest might introduce a large carbon uptake signal in atmo-
spheric inversionmodels as the harvested carbon is likely transported
and decays far away from the producing area36. Therefore, the carbon
sink signal derived from eddy-flux and atmospheric inversion
approaches might be high in timber-producing regions37,38, which is
typical in the southern and southeast China where the Fast-Growing
and High-Yielding Timber Base Construction Program has been
implemented targeting at timber production35. We quantified the
carbon stored in thewoodproduct pool and the additional carbon that

can be sequestrated by implementing appropriate forestmanagement
practices. Despite wood product may prolong the carbon residence
out of the atmosphere, the carbon-holding capacity of this pool is
highly dependent on the residence/turnover time of the wood
products39. Thus, wood products were aggregated into three cate-
gories in this study, namely sawn wood, wood panels, and paper/
paperboard (seeMethods). The decay of carbon inwood products was
calculated by applying the Tier 2 method proposed by IPCC40. Our
estimations revealed that the carbon removed from timber forest
would be 7.8 ± 0.3 Pg C (96.6 Tg C yr−1) during the period 2020–2100
(Supplementary Fig. S11), while the wood product pool would reach
1.9 ± 0.1 Pg C in 2100, about 5.9 Pg C lower than the biomass carbon
pool if remains non-harvested. Therefore, current wood products
decay much faster than the turnover of living biomass carbon, imply-
ing that slowing down the turnover of harvested wood productsmight
help to prolong carbon residence out of atmosphere. We found that
the rapid decay of wood products was primarily attributed to the high
proportion of short-lived wood products such as paper/paperboard
(61.5% based on FAO data). We estimated that, if the ratio of long-lived
wood products (i.e. sawn wood: wood panel: paper) continues to
increase from 2020 to 2060, the wood product pool would be 75.3%
(1.4 ± 0.08 Pg C) higher compared to the scenario where it remains
unchanged from 2020, emphasizing the significance of promoting the
use of long-lived wood products.

Model simulations were designed to explore the additional car-
bon sink from forestmanagement practices (SupplementaryTable S5),
including the extension of harvest length in timber forests and the
replacement of tree species in non-timber forests (Methods). We
found that timber forests with intensive carbon removals could lead to
net carbon emission, while extending harvest cycle at the key year (i.e.
the year in which the carbon sink levels off) for a certain species or
forest type helps to reduce logging intensity and facilitates retaining
carbon in forests (Methods). Results show the carbon sink can be
enhanced by 2.5–3.3% (4.3–5.6 Tg C yr−1) for timber forests if wood
harvest age is postponed by 5 years after the key year (Table 1).
Besides, if the inappropriate tree species were replaced by local indi-
genous species in 2025 (~4.13 Mha, see Methods), an additional
0.1–0.6% (0.17–1.1 Tg C yr−1) carbon sink can be attained (in total of
43.9–166.8 Tg C accumulated from 2020–2100, Table 1). However,
delayed action of both practices will reduce the accumulated carbon
sink by 11–17 Tg C per year of delay under the four Shared Socio-
economic Pathways (SSPs, Table 1). The two management practices
barely contributed to additional carbon accumulation for the periodof
2020–2100 if implemented with 15-year delay, highlighting the
importance of immediate implementation of forest management
practices regardless of the future emission scenario.

In conclusion, China’s forests are poised to function as a sub-
stantial net carbon sink, sequestering an estimated of 172.3 ± 16.9 Tg C
yr−1 over the course of 2020–2100. Furthermore, through the adoption
of optimal management practices (i.e. implementation of both tree
replacement and wood harvest extension by 5 years after key year), an
additional sink of 28.1 ± 0.4 Tg C yr−1 (totaling 2.3 ± 0.03 Pg C) can be
achieved. Our findings underscore the distinct role played by China’s
forests in influencing carbon sink/source dynamics, which diverges
from Canada’s managed forests, predicted to act as a carbon source
ranging from 0.007 to 0.024 Pg C yr−1 between 2010 and 210041.
However, China’s impact aligns more closely with the global forest
carbon sink attributed to phosphorus (0.115 Pg C yr−1) or nitrogen
(0.233 Pg C yr−1) deposition during the period 2030–210042. Further-
more, promoting the extended use of long-live wood products emer-
ges as a promising avenue to bolster the carbon sink and enhance
carbon residence time in land. Consequently, it is imperative to
expedite the implementation of carbon sink enhancement practices.
To sum up, this study comprehensively projected carbon stock, sink,
and potential in China’s forests from 2020 to 2100. The assessment is
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advantageous in that it integrates the judicious selection of tree spe-
cies in forestation, the wood harvesting practices, the structural
composition of forests, and the dynamics of tree demographics in
simulations using a process-basedmodel (i.e. DLEM).We advocate the
pressing necessity for the swift implementation of optimal forest
management strategies to enhance carbon sequestration in China’s
forests.

Methods
National forest inventory (NFI) data
About 415,000 permanent plots were set up in China for routine
survey every five years. Among these plots, over 50,000 surveyed

plots were covered with trees during the period of the 6th

(1999–2003) to 9th (2014–2018) NFI (Supplementary Fig. S1). Each of
these forest plots was 300–600m2 in size, and the inventory was
designed to cover mainland China with a 5-km grid. Information
including the land use type, tree species, growth status, forest origin,
disturbances, and age were recorded during each NFI. For each plot,
trees with a diameter at breast height (DBH) of ≥5 cm were labeled,
measured, and recorded. For each tree in each plot, the volume was
calculated by referring to the one-variable tree volume tables for
each species specifically developed in each province43. The stand
volumes were summarized to the plot level from all recorded trees.
The dataset used in this study is consisted of 18,116,071 tree records

Fig. 3 | The timing andmagnitude of carbon sink peak in China. Panel a: the year
of carbon sink peak derived from the average of different Shared Socioeconomic
Pathways (SSP) scenarios; Panel b: the standard deviation of the peak year; Panel c:
the average magnitude of the carbon sink peak derived from different scenarios in
g Cm−2 yr−1; Paneld: the standard deviation of the carbon sink peak. Results derived

from process-based simulations under different tree survival rates (i.e. 47% and
85%) and SSP scenarios. The management practices (i.e. tree replacement and
harvest rotation length extension) and wood product pool were not considered or
included.
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collected from over 50,000 tree plots surveyed in the 6th, 7th, 8th, and
9th NFIs covering a period from 1999 to 2018.

Forest carbon stock in the 9th NFI
Individual tree volume was first converted to individual tree biomass
using the DBH-based volume-biomass equations (Supplementary
Table S2). The tree biomass was then converted to forest carbon stock
for each plot using species-specific conversion ratios (Supplementary
Table S3). The relationship between carbon stock and stand age was
described using both logarithmic and logistic equations, and the
equation with a higher R2 was adopted (Supplementary Figs. S3–S5).
Forest carbon stock in 2018 was derived from the 9th NFI using the
equations and ratios listed above. The species-specific forest carbon
stocks in 2018 served as a reference for validation of the simulated
results from the process-based modeling (Supplementary Fig. S6).

Carbon stock/sink derived from statistical model
We established stand-level carbon stock growth models for forests
with differed origins (i.e. planted and natural forests), site classes (i.e.
3–9 site classes based on the regional distribution of species and the
number of sample plots), and regions (i.e. north or south regions),
using three theoretical growth equations (i.e. Richard, Korf, and
Hossfeld)27,44. These approaches were validated in previous studies27,44.
First, theNFI plotswere classifiedbyDBHwith 2 cm interval by species,
origins, and provinces. For each DBH class, NFI plots were further
divided into 3–9 classes according to the sample number. Second, the
three growth models were applied to each species in each region/
origin. These models were carefully validated using measured field
data. More specifically, for each tree species/species group, the forest
plots were divided into ten parts, and model parameterizations were
conducted nine times for each of the Richard, Korf, and Hossfeld
equations. Each of the ten parts was used as validation samples during
parameterization, and the one demonstrating the highest perfor-
mance from each of the Richard, Korf, and Hossfeld groups was
selected for prediction of future carbon stock. Third, the predictions
from the three best equations were averaged using R2 as the weighting
factors. This approach incorporates crucial factors such as forest age,
stand class, and tree densities. Details of the equations can be found in
the supplemental Excel file (Supplementary Data 1).

Climatic and atmospheric chemical condition datasets
The DLEM is a highly-integrated, process-based ecosystem model
driven by multiple factors including climate, atmospheric composi-
tions (CO2, nitrogen (N) deposition), land use and cover change
(LUCC), and land management practices (harvest, fertilization etc). In
this study, historical climate data were obtained from meteorological
stations andpublisheddatasets available for theperiod 1900–201929,45,
while future climate data were obtained from CMIP6. To force DLEM
model, daily climate variables were resampled at 0.5° × 0.5°, including

the maximum/minimum/average air temperature, and the precipita-
tion data. Specifically, four Shared Socioeconomic Pathways (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5) outputs from Australian Community
Climate andEarth SystemSimulator (ACCESS-CM2)were considered in
model simulations. Other atmospheric chemical components, includ-
ing atmospheric CO2 concentration, and N deposition data, were
retrieved from IPCC historical CO2 data and the North American Car-
bon Program Multi-scale synthesis and Terrestrial Model Inter-
comparison Project (https://daac.ornl.gov/NACP). The historical N
deposition maps from 1996 to 2015 were provided by Jia et al.46, which
were used as the baseline to extrapolate the N deposition of the period
1900–1995. Specifically, the N deposition was set to a fixed level since
2015 because a former study revealed that overall N deposition has
been stabilized due to improved agricultural and environmental
policies47.

Experimental design for DLEM simulations
DLEM simulations were set up to quantify the biomass carbon storage
and sink in China’s forests. The impacts of forestation, climate change,
rising CO2, N deposition, and forest management were considered. To
capture the impacts of historical LUCC, we set up the initial simulation
year in 1900. The carbon storage and changes during the historical
period of 1900–2020 were intensively calibrated and validated before
performing the future projection. The historical carbon stock and sink
validations can be found in Yu et al.29, and the validations of a more
recent periodduring the 9th NFI can be found in Supplementary Fig. S6.
Similar to a previous study, we first obtained the initial condition of
each biome in each grid cell (equilibrium state), which is defined as the
interannual variation of a 20-year net flux of C, N, and water less than
1 g Cm-2 year−1, 1 g Nm-2 year−1, and 1mmm-2 year−1, respectively48,49. To
avoid abrupt changes resulting frommode transition, we applied a 10-
year spin-up run before the transient run (1900–2100) using initial
state information obtained from the equilibrium run.

We designed four groups of experiments using DLEM simulations
to delineate the carbon stock changes in China from 2020 to 2100. For
all experiments, the simulation of the period from 1900 to 2019 was
forced by the same historical forcing data (e.g. climate, LUCC), while
the future period from 2020 to 2100 was driven by different forcing
data depending on the designed scenarios. In this study, thefirst group
of experiments were designed to be driven by forcing close to realistic
conditions. Specifically, we assumed a tree survival rate of planned
planted forest at 47% or 85% and that forest expansion and wood
harvest follow the plans and regulations of the National Forestry and
Grassland Administration with environmental factors (i.e. climate and
CO2) varying under different SSPs (Supplementary Table S5). The
second group of experiments was designed to account for the impacts
of improved forestmanagement practices (i.e. extended forest harvest
age, tree species replacement), which were either implemented alone
or in combination (Supplementary Table S5). The third group of

Table 1 | Forest biomass carbon sink under different management scenarios

SSP scenarioa Carbon sink of 2020–2100 (Tg
C yr−1)

Additional sink after implementa-
tion of forest practice (Tg C yr−1)b

Carbon stock loss due to delayed implementation of both
practices (Tg C)c

Tree Rep Rota Ext N + 5 N + 10 N+ 15

SSP1 145–159 0.23–1.0 4.3–4.7 47.9–56.6 106.7–113.1 130.3–140.8

SSP2 158–173 0.17–1.0 4.5–5.0 44.3–62.5 113.4–131.6 136.3–152.6

SSP3 172–188 0.28–1.1 4.8–5.3 45.9–66.9 116.1–132.4 147.0–162.8

SSP5 183–200 0.17–1.1 5.2–5.6 43.9–54.7 124.1–134.5 149.1–166.2
aSSP1-SSP5 indicate the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively.
bTree Rep: tree replacement; Rota Ext: harvest rotation length extended by 5 years after key year.
cCarbon loss of delayed implementation ofmanagement practices was derived from the difference of carbon stock in 2100 between implementation scenarios, N indicate the implementation year
and “N+ 5”, “N+ 10”, and “N+ 15” indicate the postponing implementation of both management practices by 5, 10, and 15 years, respectively.
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experiments was designed without wood harvest impact, in which the
environmental factors were fixed at the 2020 level and no improved
forest management practices were implemented (Supplementary
Table S5). The fourth group of experiments was designed to keep
LUCCfixed at 2020 (i.e. no forest expansion). Thegroup 3 experiments
were designed to be compared with the results from statistical model
to quantify the impacts ofwoodharveston carbon stock/sink.While by
comparing the simulated results in groups 1 and4, the contributions of
existing and new forests to carbon stock/sink were quantified. All the
simulations were performed at a resolution of 0.5° × 0.5°. The spatial
distributions and changes of the forest biomass carbon stock pro-
jected from the process-based biogeochemicalmodel are illustrated in
Supplementary Figs. S12 and S13.

Age-cohort dataset for DLEM model
Forest growth was simulated for each species in each of the 0.5 degree
grids (~50 km× 50 km). In the original version of the process-based
model (i.e. DLEM), the forest age was assumed to be uniform within
each grid. Leveraging the NFI dataset, we improved the model by
incorporating the diverse range of forest ages within each grid,
achieving by considering the effects of tree growth, mortality, harvest,
and planting. Specifically, we defined the smallest (basic) unit of each
tree species at 1 km2, and the tree demographical dynamics were per-
formed at the basic unit and summarized to each 0.5 degree grids.
Specifically, the area of each tree species in each grid was divided into
multiple age-cohorts, with each unit of area set to 1 km2. The demo-
graphic information was obtained from the 9th NFI. For example, for
Pinus massoniana, there were a total of 1878 plots, with age ranging
from 1 to 79 years old, recorded in the 9th NFI. We first interpolated to
create the Pinus massoniana forest age map at a resolution of 1 km×
1 km. The 1878 plots were then allocated to the Pinus massoniana
forest coverage map using the age map information as reference,
during which the number of plots in each 0.5 degree grids was
determined by the area in the forest coverage map. This creates forest
age data with demographic informationmatching the 9th NFI, in which
the subsequent harvesting, planting, growth, and mortality will be
implemented on the age-cohort.

Age impacts on forest carbon uptake in DLEM model
In previous studies, an adjustment factorwas applied to process-based
model (i.e. DLEM) to capture age impacts on forest growth50,51. How-
ever, the parameters were developed for forest group types, and
species-specific parameters are not available. Besides, the adjustment

factor was derived from the average stand age and might cause biases
(see below explanation). Therefore, in this study, we developed a
logistic relationship to describe age impacts on forest growth for each
species/species group in each 0.5 degree grid52,53. For each of the basic
unit of 1 km2 age-cohort, the age determines the production capacity
of the cohort (Fig. 4a). The total photosynthesis capability of the
species/species group in the 0.5-degree grid is the sum of all the age-
cohorts. It should be noted that the average impacts of different age
cohorts do not equal to the age impacts of the average age of the
cohorts [e.g. the average of age factor of cohort 1 (F1) and cohort 2 (F2)
vs the age factor of the average age of cohort 1 and 2 (Fage) showed in
the Fig. 4a], signifying the importance of tracking the age dynamics of
tree cohorts (i.e. averaged stand age might cause biases in simula-
tions). In this study, when planting and harvesting occurred, the
photosynthesis capability of the grids is adjusted based on the
demographic information tracked at cohort-level. Generally, there are
two key parameters in the logistic equation of tree growth, namely the
age that the tree matures and the age that the largest growth rate is
attained (Fig. 4b) (refers to Fig. 2 in Salas-Eljatib et al.54). As trees grow,
forest biomass gradually reaches a relative equilibrium, while the
instantaneous growth rate (the first-order derivative) will increase and
decrease (blue line in the Fig. 4b). To achieve the largest profit, the
wood harvest (Age2 in Fig. 4b) will be performed few years after the
peak of the instantaneous growth rate (Age1 in Fig. 4b) because the
biomass accumulation can bemaintained at a relatively high level even
after the peak (red line in Fig. 4b). According to China’s forest har-
vesting policy, the harvest age is defined as the age that the peakof the
average accumulated growth rate (the average of instantaneous
growth rate, i.e., Age2 in Fig. 4b) is attained. The harvest age (i.e., the
peak of the average accumulated growth rate) is also the intersection
point of the average accumulated growth rate curve and the instan-
taneous growth curve (Fig. 4b). Based on this information, we identify
Age1 (i.e. the age of the instantaneous growth peak) usingAge2 (i.e. the
harvest age, which is also the peak of the average of instantaneous
growth rate) for each tree species (Supplementary Table S6). The
forest harvesting age (i.e. Age2) were officially released by the State
Forestry Administration of China (i.e., Regulations for age-class and
age-group division of main tree-species, obtained from: https://www.
forestry.gov.cn) (Supplementary Table S6). The age factor on forest
growth is defined in the logistic equation:
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Fig. 4 | Conceptual diagramof forest age impact on growth. Panel a: changes of
growth rate and instantaneous growth rate; panel b: relation of the peaks of the
instantaneous and accumulatedgrowth rates. F1, F2, and Fave indicate the age factor

of cohort 1, cohort 2, and the average age of cohort 1 and cohort 2. Panel b adapted
from ref. 54, reproduced with permission from SNCSC.
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where Fage is the age factor derived from all the cohorts (1 km2) of a
species in a 0.5-degree grid, which ranges from (1-a) to 1; a is the
parameter related to the initial age factor; b is the cohort age; Age1 is
the peak of the instantaneous growth rate. Since the Fage varies
between (1-a) to 1, a higher/lower a indicate the initial growth rate is
lower/higher. The a was initially set to 0.05 assuming the lowest age
factor for newly planted/regenerated forest, and further adjusted by
referring the carbon sink of process-based model to statistical model
in 2020 for each species (Supplementary Fig. S14, Supplementary
Table S7).

Note that the daily tree growth was simulated in the process-
based model (i.e. DLEM) involving biophysics (e.g. energy and nutri-
ents exchanges within and between ecosystems, such as soil physics,
radiative transfer, water and energy flow,momentummovement etc.),
physiological (e.g. plant phenology, C and N assimilation, respiration,
allocation, and turnover etc.), and biogeochemistry processes (e.g. soil
microbe’s activities, mineralization/immobilization, nitrification/deni-
trification, decomposition etc.). The age impacts were applied on the
daily growth of tree.

Forest harvest
China shifted the primary purpose of forest management from timber
production to forest sustainability in the late 1990s, and the Com-
mercial Harvest Exclusion policy was further implemented in 201455.
Thus, in reality, forest harvest has been and will continue to be limited
to a specific area of China’s forest, i.e. there are forests free from
harvest enforced by policy. Accordingly, we separated each tree spe-
cies into timber forest and non-timber forest for both natural and
planted forests. Harvesting was only performed on mature timber
forest in simulations. The harvest age for each tree species was
obtained from the State Forestry Administration of China (Supple-
mentary Table S6)24. The areas of timber forest for each species were
obtained from theChina ForestResourceReport 2014–201856. Besides,
to ensure that forests were not overexploited, the total harvested
forestwas limited to the average annual allowable cut during a rotation
period. For example, the mature age of the planted Pinus massoniana
timber forest is 36 years, and we therefore limited the harvested area
of the forest to not exceed 1/36 of the total area each year for a certain
gridcell. This was done to align the simulation with the real-world
situation where not all timbers are harvested immediately upon
reaching maturity. This is also in alignment with the regulations for-
mulated by China’s government, according towhich timber forests are
stringently managed to avoid over-harvesting by the National Forestry
and Grassland Administration.

Tree mortality
Carbon loss due to tree die-off has been considered in this study. The
national annual treemortalitywas at0.084%derived from the 9th NFI56.
Inmodel simulations, themortality ratewas randomly applied spatially
to trigger treemortality for each species. Thus, for each tree species in
each 0.5-degree grid cell, there is a chance of mortality occurring in a
1-km2 stand (e.g. an age cohort), whichwill trigger biomass carbon loss
into the atmosphere in model simulations. After a die-off event, trees
will naturally regenerate or be planted for non-timber and timber
forests, with species remaining unchanged. As reported that tree
mortality might increase due to higher climatic stresses and more
frequent climatic extremes (e.g. pests, fires)57,58, we designed model
simulations with annual tree mortalities at 2-, 3-, 4- and 5-time of the
rate in the 9th NFI (0.084%) under SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5.

Forest age increment
Due to lack of tree demographic data, past studies often assumed that
forest age increased by 1 each year. For example, a forest plot with an
age of 20 years in 2020will be 60 years old in 2060. This assumption is

more applicable to monoculture timber forests such as Pinus timber
forest, which are routinely harvested with fixed rotation years. How-
ever, this might be unsuitable for non-timber forests since the age
distribution will depend on factors such as mortality, regeneration,
and natural growth (Supplementary Fig. S9). We examined the age
changes in 50,000fixedplots and found that the age increment largely
deviated from 1 year per year in mixed non-timber forests (Supple-
mentary Table S8). Thus, in this study, the age increments of mixed
non-timber forests were derived from the surveyed plots (Supple-
mentary Table S8), whichwere used in projections of carbon dynamics
using process-based model simulations. Specifically, the annual age
increments (I) of N mixed non-timber forest plots were assumed to
follow a normal distribution centered at “Age accrual per year” (Iave):
I ∼N Iave,σ

2
� �

; where the Iave is the average accrual per year of the
species, σ is the standarddeviation of the Iave. Both the Iave and sdwere
species-specific and derived from the NFI plots to represent the
impacts of disturbances on age increment inmixednon-timber forests.

Wood product residence time
The harvested carbon enters the wood product pool, in which the
carbon residence times were product-dependent. The wood products
were aggregated into three categories, namely sawn wood, wood-
based panels, and paper/paperboard. Based on the quantity of wood
products of China from FAOSTAT and the carbon conversion factors
and density of wood products (IPCC, 2014), the percentages of carbon
in the wood product pools of sawn wood, wood panels, and paper/
paperboard during the period of 1961–2020 were calculated. For the
period of 1900–1961, the ratio was linearly interpolated based on the
trends of 1961–1980. For the period from 2021 to 2100, we assumed
that the three wood product ratios remain the same as in 2020. When
the wood products reach the end users, the wood products would
gradually decay and emit carbon into the atmosphere. The decay of
carbon inwoodproductswas calculated by applying theTier 2method
proposed by IPCC40. The first-order decay function used was:

C i+ 1ð Þ=
X3

j

Cjði+ 1Þ=
X3

j

e�kj � Cj ið Þ+
1� e�kj

kj
� Inf lowjðiÞ ð2Þ

kj =
lnð2Þ
HLj

ð3Þ

where, i = years after the wood product reached the end users;
j = {sawn wood, wood-based panels, paper/paperboard};
kj = decay constant of first-order decay for category j;
C(i + 1) = the total carbon stock in wood products in year i+1;
Cj (i) = the carbon stock in wood product category j in year i;
Inf lowjðiÞ = the inflow of wood product category j in year i;
HLj = the number of years to lose a half of the wood product

category j (35 years for sawn wood, 25 years for wood-based panels, 2
years for paper/paperboard, IPCC, 2006)

Future forest expansion from official forestation plan
The historical, gridded land-use datasets were developed in our pre-
vious study using multiple sources of data, including gridded images
from 1887 to 2019, vector maps in the 1980s, and tabular data from
1949 to 201828,29. The database has been corrected for tremendous
biases found in existing LUCC data products29, which serves as a reli-
able basis for future forestation plan to be implemented. The future
forestationwasdeployed ineachprovinceandby year. Specifically, the
provincial areas of future plantations were provided by the National
Forest Management Plan 2016–2050 released by the State Forestry
and Grassland Administration of China (i.e. former National Forestry
Administration). According to the forestation plan, new plantations
will be established at 15Mha from 2016 to 2020 and at an additional
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49.5Mha from 2021–2050. The afforestation rate was assumed same
as the rate during the 9th NFI in each province. Planted forests might
not always survive after planting as forestation failure happens.
Therefore, we assumed that tree survival will be positioned between
the harsh condition (e.g. arid and semi-arid regions) and the expected
criteria designed by the State Forestry Administration. For the period
from 2021 onward, two scenarios were considered for forestation, in
which the survival rates of the trees were 47% and 85%, respectively.
The 47% tree survival rate was derived from the 9th NFI in the arid and
semi-arid region of Northwest China, while 85% is the scenario
assuming that the survival rate was improved by forest management
and land meets the criteria set by the State Forestry Administration59.
Since China restricts further conversion of croplands and wetland to
forestland for food security and biodiversity conservation, we
assumed that the futureplantationswereonly allowed to be converted
from grassland and shrubland. The newly established forest planta-
tionswere divided into timber and non-timber forests according to the
timber:nontimber ratio derived from the China Forest Resource
Report 2014–201857. Besides, the natural forest area was assumed to
increase according to the “Mid- and long-termprotection and recovery
plan of natural forest in China (2022–2035)” released by the National
Forestry and Grassland Administration of China. Specifically, the nat-
ural forest will increase from 126.06Mha in 2020 to 156.2Mha in 2050
through natural regeneration, conservancy, and protection. See forest
distributions in Supplementary Fig. S15.

Tree species for future forestation
The climate change impacts on the choice of tree specieswere also less
considered in earlier studies. Habitats of tree species will be shaped by
climate change, resulting in shifts of land suitability, and the choice of
tree species should therefore be identified. Thus, species-specific land
suitability should be evaluated before accurate projection of carbon
accumulation in planning new plantations can be obtained. None-
theless, mapping land suitability for tree species is challenging due to
limited samples of observational distribution for each species, espe-
cially when natural and planted forests need to be separated. In this
study, species distribution models (SDMs) were applied to determine
the suitability of each tree species in each gridcell. Specifically, the
state-of-art ensemble machine learner–random forests (RFs) were
implemented to delineate forest distribution for the baseline period of
2010–2020 (baseline) and to project future (2090–2100) distributions
under an ensemble forecasting framework. Similar to previous
studies35, the classification tree algorithm was used to develop RF
models using the R package “randomForest” by linking forest dis-
tribution with climate data. The tree distribution information from the
NFIs were used to train the SDMs, and future climate data of the four
Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5) derived from CMIP6 were adopted to project the land suit-
ability index for each tree species at a 1 km× 1 km resolution. Examples
of the habitat distributions of Pinus massoniana, Pinus sylvestris, and
Picea spp. were provided in Supplementary Fig. S16. The grid-cell with
higher suitability index for a specific species was given priority to be
planted with the tree species. This approach ensures that the appro-
priate tree species were selected for future plantations by considering
climate change impacts. Specifically, the number of samples used in
developing the land suitability index for each species is listed in Sup-
plementary Table S4.

Forest management practices for carbon stock enhancement
Two major management practices were considered for carbon
sequestration enhancement. The first practice is to postpone har-
vesting time to help retain carbon in ecosystem in timber forests. Since
carbon removed persistently from timber forests, gridcells with
intensive carbon removals could be net carbon sources. Therefore, we
identified the year of carbon source for each tree species and reduced

the harvesting intensity by postponing the harvesting time by 5 years.
The year that the harvesting extension is implemented is hereby
defined as the key year, which indicates the year of plummeted carbon
sink if free from the practice. Thus, we designed simulations by
extending the wood harvesting age by 5 years after the key year for
timber forests. The second practice is to replace inappropriate tree
species by indigenous species. We examined the species in each forest
management zone (see Supplementary Fig. S17) and located the spe-
cies that are alien and inappropriate according to the forest manage-
ment guidance released by the State Forestry Administration15. A total
of 4.13Mha of forests were spotted to be replaced in 2025. Simulation
experiments were designed to replace the inappropriate species with
indigenous species with similar habitat requirements (Supplementary
Table S9). Specifically, the species replacements are listed in Supple-
mentary Table S9. Based on these criteria, the spatial distribution of
the implementation of tree replacement practice is illustrated in
Supplementary Fig. S18, in which the value indicated the forest per-
centage to be replaced.

LUCC data and model validation
The historical LUCC dataset has been intensively validated in former
studies both spatially and temporally28,29. This study further parti-
tioned forests into different species based on the presence of harvest
(i.e. timber forest and non-timber forest). For biomass and soil carbon
stock simulations during the historical period (1900–2019), rigorous
calibration and validation have also been conducted using measure-
ment data collected from a nationwide field campaign in China29. In
this study, we further compared the estimates of species-level carbon
stock fromprocess-basedmodel and the statistical model using the 9th

NFI data (Supplementary Fig. S6).

Data availability
The projected forest coverage data generated in this study is avail-
able from https://doi.org/10.6084/m9.figshare.25323175.v1. Grass-
land and shrubland maps used were the China Land Use and Cover
Change dataset, which can be obtained from the Data Center for
Resources and Environmental Sciences, Chinese Academy of Sci-
ences: http://www.resdc.cn. The climate data is available from
https://cds.climate.copernicus.eu. The atmospheric CO2 concentra-
tion and nitrogen deposition data were retrieved from IPCC histor-
ical CO2 data and the North American Carbon Program Multi-scale
synthesis and Terrestrial Model Intercomparison Project at: https://
daac.ornl.gov/NACP. The nitrogen deposition during 1996–2015
were updated using data provided at: http://www.nesdc.org.cn/sdo/
detail?id=5fa53685042ebb70d0c83403.
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