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While we recognize the prognostic importance of clinicopathological mea-
sures and circulating tumor DNA (ctDNA), the independent contribution of
quantitative imagemarkers to prognosis in non-small cell lung cancer (NSCLC)
remains underexplored. In our multi-institutional study of 394 NSCLC
patients, we utilize pre-treatment computed tomography (CT) and
18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish
a habitat imaging framework for assessing regional heterogeneity within
individual tumors. This framework identifies three PET/CT subtypes, which
maintain prognostic value after adjusting for clinicopathologic risk factors
including tumor volume. Additionally, these subtypes complement ctDNA in
predicting disease recurrence. Radiogenomics analysis unveil the molecular
underpinnings of these imaging subtypes, highlighting downregulation in
interferon alpha and gamma pathways in the high-risk subtype. In summary,
our studydemonstrates that these habitat imaging subtypes effectively stratify
NSCLC patients based on their risk levels for disease recurrence after initial
curative surgery or radiotherapy, providing valuable insights for personalized
treatment approaches.

Results for treating non-small cell lung cancer (NSCLC) remain dismal
despite advancements in surgical methods, radiation treatments, and
the use of immune checkpoint inhibitors. With early-stage or locally
advanced NSCLC, between 30% and 55% of patients will experience
disease recurrence and eventually die. Epidermal growth factor tyr-
osine kinase inhibitors and immunotherapy with chemotherapy have

been approved for use in adjuvant and neoadjuvant settings,
respectively1–3. However, non-invasivemarkers that canpredict disease
relapse are urgently needed to stratify patients and direct treatment
escalation or de-escalation in the perioperative setting.

Computed tomography (CT) and 18F-fluorodeoxyglucosepositron
emission tomography (18F-FDG PET) are non-invasive tools routinely
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used for initial staging, radiation treatment planning, and response
evaluation for patients with NSCLC. Recently, radiomic features have
shownprognostic abilitywith regard toNSCLCoutcomes4–10. However,
considering that CT and PET are distinct (anatomic vs. metabolic) and
complementary, these studies predominantly captured tumor char-
acteristics using a single modality, representing a partial view of the
tumor. Another fundamental limitation is the lack of profiling of
regional variation within the gross tumor11. Although texture analysis
has been applied to measure intratumoral heterogeneity, it assumes a
homogeneousmixturewithin the tumor that has been shownuntrue at
the tissue and cellular levels12.

According to multiregional molecular profiling conducted by our
team and others13–15, the tumor is a complex ecosystem with regional
variation. Intratumor heterogeneity is a dynamic factor that promotes
tumor growth and resistance, and typically indicates poor clinical
prognosis16,17. Though the molecular heterogeneity of tumor cells has
been characterized from the view of cancer biology, it is unclear how
this heterogeneity would appear on macroscopic radiography scans17.
Given that imaging depicts spatial heterogeneity in the architecture of
individual tumors, the emerging tool ofhabitat imaging is suggested to
capture these regional distinctions, with clinical implications in dif-
ferent cancer types18,19.

Habitat Imaging is a modern approach used in cancer imaging to
identify tumor subregions or ‘habitats’ that share imaging traits that
are characterized by imaging biomarkers20. We aimed to use habitat
imaging patterns to define intrinsic radiological subtypes as mani-
fested on CT and FDG-PET, and further test their clinical relevance by
stratifying patients’ risk of recurrence after curative surgery or radio-
therapy using multi-institutional, multi-modality (imaging and geno-
mics) cohorts of resected NSCLC. We also demonstrated the added
value of circulating tumor DNA (ctDNA), an emerging bloodmarker, in
conjunction with our proposed habitat imaging subtypes. Finally,
radiogenomic analysis was done to determine the biology of these
habitat imaging subtypes.

Results
Patient characteristics of multicenter data
We retrospectively collected multimodal data (CT and PET, gene
expression, clinical characteristics) from 4 independent NSCLC
cohorts totaling 394 patients (Fig. 1). The discovery (n = 199) and
validation (n = 195) cohorts showed similar demographic distributions
(Table 1). Of the total 394 NSCLC patients included in the study, 224
(57%) were men, and the median age was 67 years. Almost 42% of
patients had stage I NSCLC. The median recurrence time was 43

Fig. 1 | Study cohorts and their characteristics. aThediscovery cohort included 75patients from the PROSPECTdatabase and 124patients from theTCIAdatabase.bThe
validation cohorts consisted of 133 patients from the ICON database and 62 patients from ACRIN database.
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months for the discovery cohort and 35 months for the internal vali-
dation cohort (P = 0.56). Average treatment period for ICON cohort is
37 days, and average treatment period for PROSPECT cohort is
36.5 days. The overall study design of the habitat imaging–based
radiomics analysis is shown in Fig. 2.

Identification of habitat subregions with distinct imaging
phenotypes
Eight tumor subregions (clusters) emerged, and we confirmed their
consistency across discovery and validation cohorts, as embedded in
UMAP (Fig. 3a, b). The annotation of individual subregions bymapping
onto the superpixel-level radiomic space revealed their distinct
radiographical patterns consistently across different cohorts (Sup-
plementary Fig. 1a). Each of these eight habitat subregions had a dis-
tinct imaging phenotype, which was shown in Fig. 3c, Supplementary

Fig. 1b and Supplementary Data 7. For clusters 3 and 4, CT Hounsfield
Units (HU) number is high, whereas PET SUV and PET entropy values
are low (L). Based on the violin plots in Supp. Fig. 1b, we observed that
theCTHounsfieldUnits (HU) numbers or the distribution of theCTHU
numbers in cluster 3 and 4 is much higher than the distribution of PET
SUV values in the same clusters. This indicates a denser tissue. For
clusters 7 and 8, CT number and PET SUV are high and CT entropy is
low, respectively. Habitat maps of six cases of patients from the dis-
covery cohort are shown in Fig. 3d, and they reveal a significant pre-
valence of clusters 7 and 8 in high-risk patients and clusters 3 and 4 in
low-risk patients.

Imaging subtypes in the discovery and validation cohorts
From the eight clusters identified upon integrating the CT and PET
scans from the tumor region of each patient, ninety-twomultiregional
spatial interaction (MSI) features were extracted to measure intratu-
moral spatial heterogeneity (Table 2, Fig. 2b). We identified three
imaging subtypes after consensus clustering these imaging features
(Supplementary Fig. 3a), which was the optimal solution for minimiz-
ing incremental change in the area under the CDF curve while max-
imizing consensus within subtypes This was further confirmed by
consensus matrix heatmaps with k = 3, which optimally represented
the data pattern of patients in the discovery and validation cohorts.
When we visualized the matrix heatmaps and the proportion increase
of area under the CDF curve, k = 3 was the largest number of clusters
considered (Supplementary Fig. 3b, Supplementary Data 9). In the
discovery cohort (n = 199), the subtypes based on MSI features were
prognostic of RFS, with P = 1e-05 while stratifying patients into low-
risk, high-risk, and intermediate-risk subtypes (Fig. 4a). These imaging
subtypes remained prognostic of RFS in the internal validation cohort
(n = 133), with P = 0.024 (Fig. 4b). These subtypes were also prognostic
of OS in the discovery, internal (Fig. 4c, d) and external validation
cohorts (Fig. 4e).

Imaging subtypes were compared with classical radiomic
approach. Radiomic features were extracted from the entire tumor
ROI using the pyradiomics python package21. Classical radiomics
model did not achieve robust stratification of patients in predicting
RFS and OS during validation (Supplementary Fig. 4, Supplementary
Data 10), where our habitat imaging subtypes outperformed the clas-
sical radiomics approach with significant net reclassification
improvement (Supplementary Table 1, Supplementary Data 1).

By mapping the habitat imaging subtypes to the space of the
original MSI features and conventional CT and PET features across the
discovery and validation cohorts (Supplementary Fig. 5, Supplemen-
taryData 11), we observed that the high-risk population tended to have
escalated volume of cluster 7 and abundant clusters 4 and 7 on the
tumor border. The pairwise comparison of key habitat features
between different risk groups is presented in Supplementary Fig. 6
(Supplementary Data 12).

Independent prognostic value of habitat imaging subtypes
beyond conventional risk predictors
When compared with known clinicopathological risk factors, the
imaging subtypes were top-ranked predictors of RFS (Table 3). In
multivariate analysis, imaging subtypes remained prognostic of RFS
after adjustment for clinicopathological factors, including age, sex,
smoking, and conventional imaging metrics (CT: tumor volume; PET:
SUVmax, metabolic tumor volume, total lesion glycolysis) in the inte-
grated cohort. The imaging subtypes were similarly prognostic of OS
(Table 4). Univariate and multivariate analysis, after adjustment for
tumor volume, reveals the independent impact of habitat imaging
subtypes in both the discovery and validation cohorts (Supplementary
Table 2, Supplementary Table 3, Supplementary Data 2).

Weobserved 58%, 59%, and64% correlation between three habitat
subtypes and the stratification by MTV, TLG, or tumor volume,

Table 1 | Summaryof demographic andclinical characteristics
from the study cohorts

Parameter Discovery
cohort
(n = 199)

Internal vali-
dation
cohort
(n = 133)

External vali-
dation
cohort
(n = 62)

P - value

Age

Median (SD) 68.0 (10.6) 67.0 (9.5) 66.5 (9.25) 0.0341i

Gender, n (%) 0.5753ƚ

Male 122 (61%) 63 (47%) 39 (63%)

Female 77 (39%) 70 (53%) 23 (37%)

P Stage (AJCC 7th
ed.), n (%)

0.4751ƚ

0 4 (1.96%) 1 (0.73%) -

I 114 (55.88%) 50 (36.76%) -

II 41 (20.09%) 47 (35.33%) 2 (3%)

III 40 (19.60%) 34 (25%) 60 (97%)

Histology, n (%) 0.0375

Adenocarcinoma 154 (80%) 89 (67%) -

Squamous cell 39 (20%) 31 (23%) -

Other 6 (3%) 13 (10%) -

Smoking History,
n (%)

0.1056

Smoking 157 (79%) 111 (83%) -

Never 42 (21%) 22 (17%) -

RNA Sequence,
n (%)

Available 115 (58%) 93 (70%) -

ctDNA, n (%) -

At baseline prior to
surgery

- 72 (54%) -

Clearance status
after surgery

- 50 938%) -

Median Follow-up
time (months)

50 44 20 0.07ƚ

Median OS time
(months)

35 20 13 0.24ƚ

Recurrence Free
Survival, n (%)

0.5658

Recurrence (1) 73 (37%) 42 (32%) -

No Recurrence (0) 126 (63%) 91 (68%) -

Overall Survival,
n (%)

0.03751ƚ

Dead (1) 92 (46%) 30 (23%) 41 (72%)

Alive (0) 107 (54%) 103 (77%) 16 (28%)
ƚ P – value was calculated using Pearson’s Chi-square test (two-sided) comparing Discovery
cohort and Integrated validation cohorts.
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Fig. 2 | Study design of habitat imaging–based radiomic analysis of NSCLC
patients. aOverview of the data collected and pre-processing stages of the CT and
18F-FDG PET images. The pre-processing involved 18F-FDG PET to CT registration
and fusionof segmented tumor regions from 18F-FDGPETandCT images alongwith
their local entropy maps. b The habitat imaging analysis framework consisted of a
2-stage clustering process: Individual-level clustering, where tumor regions of each
patient were over-segmented into superpixels; and population-level clustering,

where clustering was performed on superpixels pooled from all patients to dis-
cover distinct tumor subregions. Themultiregional spatial interaction (MSI) matrix
summarizes the co-occurrence statistics amongdifferent tumor subregions. The 92
MSI features extracted from the MSI matrix identified patient subtypes.
c Radiogenomic analysis along with ctDNA metrics confirm the clinical and biolo-
gical relevance of the identified imaging subtypes. Created with BioRender.com.
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Table 2 | Ninety-twoquantitative imaging features extracted from themultiregional spatial interaction (MSI)matrix tomeasure
intratumoral spatial heterogeneity on PET/CT Habitat Map

Feature name Feature description

MSI 1 – MSI 4 2nd-order statistical features.

MSI 5 – MSI 12 absolute tumor subregions volume (SR1 – SR8).

MSI 13 – MSI 20 interaction (absolute) between tumor subregions and border.

MSI 21 – MSI 27 interaction (absolute) between SR1 and the remaining subregions, i.e., MSI 21 = SR1 \ SR2, MSI 22 = SR1 \ SR3, …, MSI 27 = SR1 \ SR8.

MSI 28 – MSI 33 interaction (absolute) between SR2 and SR3, SR4, SR5, S6, S7 and SR8, i.e., MSI 28 = SR2 \ SR3, MSI 29 = SR2 \ SR4, MSI 30 = SR2 \ SR5, MSI
31 = SR2 \ SR6, MSI 32 = SR2 \ SR7, MSI 33 = SR2 \ SR8.

MSI 34 – MSI 38 interaction (absolute) betweenSR3 andSR4, SR5, SR6, SR7 andSR8 i.e.,MSI 34 = SR3\ SR4,MSI 35 = SR3\ SR5,MSI 36 = SR3\ SR6,MSI 37 = SR3
\ SR7, MSI 38 = SR3 \ SR8.

MSI 39 – MSI 42 interaction (absolute) between SR4 and SR5, SR6, SR7 and SR8 i.e., MSI 39 = SR4 \ SR5, MSI 40 = SR4 \ SR6, MSI 41 = SR4 \ SR7, MSI 42 = SR4
\ SR8.

MSI 43 – MSI 45 interaction (absolute) between SR5 and SR6, SR7 and SR8 i.e., MSI 43 = SR5 \ SR6, MSI 44 = SR5 \ SR7, MSI 45 = SR5 \ SR8.

MSI 46 – MSI 47 interaction (absolute) between SR6 and SR7 and SR8 i.e., MSI 46 = SR6 \ SR7, MSI 47 = SR6 \ SR8.

MSI 48 interaction (absolute) between SR7 and SR8, i.e., MSI 48 = SR7 \ SR8.

MSI 49 – MSI 56 percentage of tumor subregions volume (SR1 – SR8).

MSI 57 – MSI 64 normalized interaction (percentage) between tumor subregions and border.

MSI 65 – MSI 71 normalized interaction (percentage) betweenSR1 and the remaining subregions, i.e.,MSI65 = SR1\ SR2,MSI66 = SR1\ SR3,…, MSI 71 = SR1\ SR8.

MSI 72 – MSI 77 normalized interaction (percentage) betweenSR2 andSR3, SR4, SR5,SR6, SR7andSR8 i.e.,MSI 72 = SR2\ SR3,MSI 73 = SR2\ SR4,MSI 74 = SR2\
SR5, MSI 75 = SR2 \ SR6, MSI 76 = SR2 \ SR7, MSI 77 = SR2 \ SR8.

MSI 78 – MSI 82 normalized interaction (percentage) between SR3 and SR4, SR5, SR6, SR7 and SR8 i.e., MSI 78 = SR3 \ SR4, MSI 79 = SR3 \ SR5, MSI 80 = SR3 \
SR6, MSI 81 = SR3 \ SR7, MSI 82 = SR3 \ SR8.

MSI 83 – MSI 86 normalized interaction (percentage) between SR4 and SR5, SR6, SR7 and SR8 i.e., MSI 83 = SR4 \ SR5, MSI 84 = SR4 \ SR6, MSI 85 = SR4 \ SR7,
MSI 86 = SR4 \ SR8.

MSI 87 – MSI 89 normalized interaction (percentage) between SR5 and SR6, SR7 and SR8 i.e., MSI 87 = SR5 \ SR6, MSI 88 = SR5 \ SR7, MSI 89 = SR5 \ SR8.

MSI 90 – MSI 91 normalized interaction (percentage) between SR6 and SR7 and SR8 i.e., MSI 90 = SR6 \ SR7, MSI 91 = SR6 \ SR8.

MSI 92 normalized interaction (percentage) between SR7 and SR8, i.e., MSI 92 = SR7 \ SR8.

Fig. 3 | Systematic benchmarks of unsupervised clustering analysis of tumor
region. Visualization in UMAP: a distribution of superpixels across the discovery
(PROSPECT, TCIA) and validation ICON cohorts. b the 8 clusters identified using
Louvain clustering by dimension reduction. c Imaging interpretation of the eight
cluster regions using High, Low, Intermediate levels.d Examples of habitatmaps of

patients with disease recurrence and no recurrence from the discovery set. Rows 1,
2 and 3 show habitatmaps of patients who has recurrence of disease after 5, 47 and
37.5months, respectively. They showhigh volumeof clusters 7 and 8. Rows4, 5 and
6 show habitat maps of patients who has no recurrence of disease showing high
volume of clusters 3 and 4.
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respectively (Supplementary Table 4, Supplementary Data 3), indi-
cating habitat analysis learns radiological patterns beyond these con-
ventional CT and PET metrics. Tumor volume was associated with
baseline ctDNA status, while marginal statistical difference was
observed between tumor volume and serial ctDNA clearance status
(Supplementary Fig. 2, Supplementary Data 8). When analyzing the
primary tumor location, we observed that only the right upper lobe is
prognostic inour cohorts that is independent of habitat imaging. High-

risk and intermediate-risk imaging subtypes remained prognostic of
RFS andOS in themultivariate analysis after adjustment for tumor and
lobe location information (Supplementary Tables 5 and 6, Supple-
mentary Data 4). There is no correlation between radiotherapy-related
parameters (post-operative radiotherapy and radiation dose) and
survival after adjusting them in univariate and multivariate analyzes
(Supplementary Tables 7 and 8, Supplementary Data 5). The oncogene
mutation status (i.e., EGFR mutation and ALK fusion) exhibits no

Fig. 4 | Imaging subtypeswereprognostic for recurrence-free survival inNSCLC
patients. Kaplan-Meier curve comparing RFS of individuals with low risk (green),
high risk (red), and intermediate risk (purple) subtypes with P = 1e-05 by log-rank
test in the discovery cohort (a) and P =0.024 by log-rank test in the validation
cohort (b). Kaplan-Meier curve comparing OS of individuals with low risk (green),

high risk (red), and intermediate risk (purple) subtypes with P =0.037 by log-rank
test in the training cohort (c) P =0.0017 by log-rank test in the internal validation
cohort (d) and P =0.0201 by log-rank test in the external validation cohort (e).
Source data are provided as a Source Data file.

Table 3 | Univariate and multivariate Cox regression analysis of recurrence-free survival (RFS) in the integrated study cohort

Variables Univariate Multivariate

P value HR (95% CI) P value HR (95% CI)

Imaging Subtypes

High – Risk Reference

Intermediate - Risk 0.002** 0.48 (0.31–0.76) 0.015* 0.52 (0.31–0.88)

Low - Risk 1.88e-07*** 0.31 (0.20–0.48) 0.001** 0.38 (0.21–0.68)

Age 0.889 1 (0.98–1) --- ---

Male vs Female 0.526 1.1 (0.78–1.6) --- ---

Non-Smoker vs Smoker 0.890 0.97 (0.62–1.5) --- ---

Histologic typea 0.075 0.69 (0.46–1) 0.203 0.75 (0.48–1.17)

Treatment typeb 3.71e-07 *** 2.6 (1.8–3.9) 0.0005*** 2.07 (1.37–3.13)

Metabolic tumor volume (MTV) 0.000216 *** 1.5 (1.2–1.8) 0.801 0.90 (0.39–2.09)

Total Lesion Glycolysis (TLG) 0.001** 1 (1–1) 0.657 1.01 (0.96–1.06)

SUV (max) 0.074 1 (1–1) 0.396 0.99 (0.97–1.01)

SUV (mean) 0.411 1 (0.97–1.1) --- ---

Tumor volume 0.000161 *** 1.2 (1.1–1.4) 0.973 0.99 (0.70–1.41)
aAdenocarcinoma vs other types (reference).
bChemotherapy vs other types (reference).
With the high-risk subtype as the baseline, the low-risk and intermediate-risk imaging subtypes remained independent predictors of RFS (hazard ratio [HR] = 0.38, P = 0.001**; HR= 0.52, P = 0.015*,
respectively), and the low-risk imaging subtype remained an independent predictor of OS (HR =0.52, P = 0.025*) in multivariate analysis. * P <0.05; ** P <0.01; *** P < 0.001. All statistical tests were
two-sided, with P < 0.05 indicative of a statistically significant difference. Source data are provided as a Source Data file.
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correlation with patient survival, as illustrated in the table (Supple-
mentary Tables 9 and 10, Supplementary Data 6), whichmay be due to
the limited sample size of patients with tumors harboring these
genomic alterations.

We then carried out a detailed subgroup analysis as stratified by
clinicopathological features (including stage, gender, smoking status,
age, histology, and treatment) and tumor volume (Supplementary
Data 13), and found that habitat imaging subtypes can further stratify
patient outcomes within individual subgroups in RFS (Supplementary
Fig. 7) and OS prediction (Supplementary Fig. 8). Also, 3 patients with
stage II adenocarcinoma could be stratified into different imaging
subtypes with distinct risk levels of cancer recurrence based on their
pre-surgery PET/CT as shown in Fig. 5. Since a considerable proportion
of early-stageNSCLC recurs after surgery, this type of risk stratification
may enable the selection of high-risk patients for peri-operative
treatment.

Imaging subtype complements ctDNA from blood in predicting
survival
We observed that the high- and intermediate-risk subtypes based on
habitat imaging had a higher percentage of patients with ctDNA
detected in blood before surgery compared to the low-risk subtype
(Fig. 6a). The presence of persistent ctDNA was observed in 67% of
high-risk patients, and by contrast, 62% of low-risk patients did not
have ctDNA detected (Fig. 6b). Interestingly, 45% of intermediate risk
patients had ctDNA cleared after curative surgery (Fig. 6b).

Pair-wise comparison of three different RFS prediction models
using different combinations of clinical features, tumor volume, ima-
ging subtypes, ctDNA detection at pre-surgery, and ctDNA clearance
status after SOC therapy is shown in Fig. 6c. We observed that the
performance of the Cox model using combinations of ctDNA status
along with clinical features, tumor volume and imaging subtypes
achieved the optimal prediction with C-index = 0.82.

Radiogenomics analysis identifies molecular pathways corre-
lated to imaging subtypes
Leveraging the available transcriptomic data from RNA sequencing,
we explore molecular features associated with the radiomics sub-
types using meta-GSEA for the combined datasets of all 3 cohorts in
the study. The top 10 Hallmark pathways differentially enriched
between high- and low-risk habitat subtypes are provided in Fig. 6d.

The top-ranked pathways downregulated in high-risk but not low-risk
groups include interferon α and interferon γ responses, with angio-
genesis and epithelial-mesenchymal transition consistently up-
regulated in high-risk tumors of the studied cohorts (Supplemen-
tary Fig. 9a, b).

Discussion
In this multi-cohort study, we developed a habitat imaging framework
to identify phenotypically distinct intratumoral subregions (habitats)
through integrated analysis of CT and 18F-FDG PET. The imaging sig-
natures extracted from these intratumoral subregions showed robust
performance in stratifying lung cancer patients into 3 clinically
meaningful subtypes with distinct prognoses. These imaging subtypes
offer independent prognostic information beyond established clin-
icopathological risk factors and blood ctDNA. Furthermore, we pin-
pointed molecular features underlying these imaging subtypes via
radiogenomics analyzes. Altogether, we have clinically and biologically
validated the habitat imaging subtypes in multiple independent
cohorts, including prospective trial and retrospective cohorts. How-
ever, our study is a proof-of-concept study, which lays the groundwork
for future investigation to establish the robustness and clinical
applicability of these identified subtypes.

While clinical, pathologic, and lifestyle factors can inform the risk
of recurrence, they fail to account for patient-level dynamic evolution
and inter-individual variations.We have demonstrated that the habitat
radiomicsmodel canpotentially serve as anupfront earlier indicator of
recurrence than standard clinical examination or follow-up scans. So,
patients at an elevated risk of recurrence may be identified for
potential treatment intensification, closer post-treatment monitoring,
and potential enrollment in experimental protocols for more aggres-
sive systemic management.

This is amulti-center PET/CT habitat radiomic study, emphasizing
intratumor heterogeneity by dividing the gross tumor into subregions
and analyzing their spatial interactions, whichwe performed in NSCLC
patientswith early-stage disease. Prior studies captured image features
from the entire tumor volume but failed to account for intratumoral
heterogeneity10,22–24. Our study has several strengths. One key aspectof
our study is the integrated analyzes of CT and 18F-FDG PET built on our
previous pipeline19, whereas most prior studies focused on a single
modality. In contrast to conventional radiomic studies that extract
hundreds of radiomic features with feature selection to build a

Table 4 | Univariate and multivariate Cox regression analysis of overall survival (OS) in the integrated study cohort

Variables Univariate Multivariate

P value HR (95% CI) P value HR (95% CI)

Imaging Subtypes

High – Risk Reference

Intermediate - Risk 0.015* 0.58 (0.37–0.90) 0.136 0.68 (0.41–1.13)

Low - Risk 0.000123 *** 0.43 (0.27–0.66) 0.025* 0.52 (0.29–0.92)

Age 0.009* 1 (1–1) --- ---

Male vs Female 0.005** 1.7 (1.2–2.5) --- ---

Non-Smoker vs Smoker 0.104 1.5 (0.92–2.5) --- ---

Histologic type a 0.000693 *** 0.52 (0.36–0.76) 0.005** 0.55 (0.36–0.83)

Treatment type b 0.023* 1.6 (1.1–2.3) 0.33 1.24 (0.81–1.90)

Metabolic tumor volume (MTV) 0.001** 1.4 (1.1–1.7) 0.175 1.88 (0.75–4.75)

Total Lesion Glycolysis (TLG) 0.019* 1 (1–1) 0.476 0.97 (0.91–1.05)

SUV (max) 0.116 1 (1–1) 0.364 0.99 (0.96–1.01)

SUV (mean) 0.092 1 (0.99–1.1) --- ---

Tumor volume 0.004** 1.2 (1.1–1.3) 0.262 0.81 (0.56–1.17)
a Adenocarcinoma vs other types (reference).
b Chemotherapy vs other types (reference).
* P < 0.05; ** P < 0.01; *** P < 0.001. All statistical tests were two-sided, with P <0.05 indicative of a statistically significant difference. Source data are provided as a Source Data file.
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parsimonious model, we applied unsupervised clustering to define
imaging subtypes based on the features extracted from tumor sub-
regions. Technically speaking, the clustering approach capturing inner
data structure is less prone to overfitting and more robust to small-
scale and heterogenous cancer populations, similar to previous
studies10,25,26. CT and PET scans were collected from different centers,
with different scanners, imaging protocols, and reconstruction plat-
forms. Image standardization and radiomic feature harmonization
were performed to ensure more generalizable modeling. The con-
sistent clinical performance in the external validation cohort from
multi-center trial corroborated the robustness of proposed habitat
imaging pipeline.

The availability of in-house gene expression data, blood-derived
ctDNA, and high-quality metadata enabled us to identify the biology
behind the high-risk imaging subtype, reinforcing why this subtype
was associated with a higher rate of recurrence. Intriguingly, a syner-
gistic effect was observed between ctDNA and habitat imaging sub-
types, supporting the orthogonal information offered by imaging
similar to our previous study27. If prospectively validated, these pre-
dictors can be combined to stratify NSCLC patients non-invasively,
potentially identifying high-risk patients whomight benefit frommore
intensive therapy and monitoring, while allowing for de-escalation of
treatment in low-risk patients.

EMT, one of topdysregulatedpathways in the high-risk subtype, is
known to be correlatedwith lung cancer progression,metastasis, drug
resistance and immune evasion28. Activation of EMT involves a set of
molecular processes related to tumor heterogeneity. These processes
include remodeling of extracellular matrix, lost adhesion of tumor
cells to extracellular matrix and to each other, their mobility, and

differentiation and activation of the stemness phenotype29. Significant
negative correlation between EMT and IFN-γ signaling revealed in the
high risk tumor group have been demonstrated in lung cancer
experimentally and were linked to impaired immunosurveillance in
lung cancer cells30. It was shown that a combined treatment with IFN-γ
and an SHP2 inhibitor induced enhanced anticancer activities in cell
line-derived xenograft models. According to the present study, lung
tumors classified ashigh risk by the proposedhabitat imagingwill have
most active EMT phenotype and significant downregulation of IFN-γ
signaling thatmake themmost suitable for a combined treatment with
IFN-γ and an SHP2 inhibitor.

Our study has several limitations. First, though habitat imaging
has demonstrated clinical and biological value in retrospective sets,
the findings need to be prospectively validated in large datasets31

before they can transition to inform risk stratification of early-stage
NSCLC. More importantly, future mechanistic studies are needed to
validate these radiogenomics correlates. In addition, the habitat ima-
ging requires both PET and CT scans that can limit its clinical appli-
cation especially in screening setting. Also, we only focused on the
primary tumor, and future radiomics study can also consider involved
lymph nodes with demonstrated clinical values7,32. Second, we per-
formed the habitat analysis by mixing different histologic subtypes
(adenocarcinoma and squamous cell carcinoma) to increase the sta-
tistical power. Future studies are needed to optimize the analysis in
each subtype. Third, though our habitat analysis is biology-relevant, it
relies on hand-crafted pipelines, especially for the features to quantify
intratumor heterogeneity. Deep-learning approaches to automate the
tumor profiling will be implemented in large-size cohorts in the future
to integrate multimodal data9,33–37.

Age range: 50 to 60 years

Sex: Male

CT tumor volume: 15.18 cc

RFS: 63.6 months (0)

Pathologic stage: Stage II

Histology: Adenocarcinoma

Treatment type: Chemotherapy

Imaging subtype: Low-Risk

Age range: 65 to 75 years

Sex: Female

CT tumor volume: 43.4 cc

RFS: 43.1 months (1)

Pathologic stage: Stage II

Histology: Adenocarcinoma

Treatment type: Chemotherapy

Imaging subtype: Intermediate-Risk

High-risk patient

Age range: 60 to 70 years

Sex: Male

CT tumor size: 43.7mm

RFS: 5.23 months (1)

Pathologic stage: Stage II

Histology: Adenocarcinoma

Treatment type: Chemotherapy

Imaging subtype: High-Risk

Intermediate-risk

 patient

Low-risk  patient

 1         2      3      4      5       6     7        8

Cluster numbers

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 5 | Workflow of habitat imaging–based intratumor partitioning on chest
CT and PET images. Example patients with similar baseline clinical characteristics
in the low-risk, intermediate-risk, and high-risk subtype groups. a CT and b PET

scans. c, d are the fused 3D tumor volume oversegmented to superpixels and
integratedby clustering using the Louvain algorithm to identify the habitat regions.
Created with BioRender.com.
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In conclusion,wehave developed and validated a preoperative CT
and 18F-FDG PET–based signature that serves as a prognostic bio-
marker for patients with NSCLC. If prospectively validated, the pro-
posed imaging signature could be used to refine individualized
therapeutic selection in lung cancer.

Methods
Patient cohorts
This study was approved by the Institutional Review Board and com-
pliant with the Health Insurance Portability and Accountability Act.
Patient consent is waived for this retrospective study. The study
cohorts are shown in Fig. 1. The first cohort was selected from the
PROSPECT cohort (Profiling of Resistance Patterns and Oncogenic
Pathways in Evaluation of Cancers of the Thorax) from The University
of Texas MD Anderson Cancer Center38–40. From this group, we inclu-
ded 75 patients with available pre-surgery CT and PET scans. The
second cohort was selected from TCIA (The Cancer Imaging
Archive)41,42. Out of 211 patients with histologically or cytologically
confirmed stage I to IIIB NSCLC with surgical treatment at Stanford
Medical Center, we included 124 patients with pre-surgery CT and PET
scans. The third cohort was the ICON (ImmunogenomiC prOfiling of
Non-small cell lung cancer Project)43. From this group of prospectively
enrolled patients with clinical stage IA–IIIA NSCLC prior to resection,
we included 133 patients with available pre-surgery CT and PET scans.
The fourth cohort was from the multi-center ACRIN 6668/RTOG 0235

trial44,45. After image and clinical data collection, 62 patients were
included in our study for quantification using habitat imaging analysis.
PROSPECT and TCIA cohorts were used for model discovery, with
ICON and ACRIN sets for internal and external validation. The demo-
graphic and clinical characteristics of the study population are pre-
sented in Table 1.

Study design
The threemain stages of the habitat imaging–based radiomics analysis
are shown in Fig. 2’s overall study design: data acquisition and pre-
processing, habitat imaging analysis, and clinical and biological value
of imaging subtypes. In brief, we collected and quality-controlled the
multicenter CT and PET scans at baseline. Habitat imaging was used to
define the tumor subregions and subsequently to profile the archi-
tecture and interaction of these subregions. Then, using an unsu-
pervised clustering approach, patients were stratified into habitat
imaging subtypes. Finally, we assessed the clinical value of the imaging
subtype in relation to conventional CT/PETmarkers, clinicopathologic
factors, and blood ctDNA for predicting RFS and OS. Furthermore, we
investigated the molecular pathway level correlates of imaging sub-
type through radiogenomics46.

Image acquisition
Firstly, PROSPECT images were obtained using a dedicated CT/PET
system (Discovery ST, STe, or RX; GE Medical Systems and GE

Fig. 6 | Circulating tumor DNA (ctDNA) and gene set enrichment analysis. a Bar
plot showing the percentage of patients with ctDNA detected before surgery,
stratifiedacross different risk groups.bBarplot showing thepercentageofpatients
with ctDNA clearance status (Persistent, Cleared, Never Detected) after SOC ther-
apy, stratified across different risk groups. c C-index comparison of three different

RFS prediction models using combinations of clinical features, tumor volume,
imaging subtypes, and serial ctDNA (ctDNA detection at pre-surgery and ctDNA
clearance status after SOC therapy). d Top 10 Hallmark Pathways differentially
active in high- versus low-risk group according to the meta-analysis of the studied
cohorts. Source data are provided as a Source Data file.
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Healthcare) with slice thickness 2.5 to 10mm (median: 5mm). After
fasting for a minimum of 6 h and undergoing confirmation of a blood
glucose level less than 200mg/dL, patients received an intravenous
infusion of 259–740 MBq 18F-FDG. A CT scan was performed for ana-
tomic correlation and attenuation correction; PET images were sub-
sequently obtained 60–90min after 18F-FDG infusion47.

Secondly, images, gene expression, and clinical information were
publicly available at TCIA. TCIA dataset has CT images in DICOM for-
mat retrospectively collected using different scanners, scanning pro-
tocols and parameters: slice thickness of 0.625-3mm(median:1.5mm).
Fasting Fluorodeoxyglucose 18F-FDG PET/CT data were collected using
GE Discovery PET/CT scanner. FDG Dose and uptake time were
138.90–572.25 MBq (mean 309.26 MBq) and 23.08–128.90min (mean
66.58minutes), respectively.

Thirdly, ICONCT scans were acquired in amultidetector scanner
following IV contrast administration unless contraindicated. Multi-
planar CT image series were reconstructed with 2.5mm slice thick-
ness using standard and high spatial reconstruction algorithms. FDG-
PET/CT imaging was performed using Discovery STE PET/ CT scanner
(GE Healthcare,Waukesha,WI, USA). All patients fasted for 6 h before
the FDG injection and had confirmed normal fasting blood glucose
level of less than 200mg/dL. PET was performed in three-
dimensional mode at 3–5min per bed station depending on patient
BMI. The acquired PET data were corrected for scatter coincidences,
random coincidences, deadtime, and attenuation and reconstructed
using OSEM on standard vendor-provided workstations. Non-
contrast-enhanced CT images from the base of the skull to the
mid-thigh were acquired in helical mode (speed, 13.5mm per rota-
tion) during shallow breathing at a 3.75mm slice thickness, a tube
voltage of 120 kVp, and 0.5 s rotationwith tube currentmodulation48.

Harmonization of multi-site CT and PET scans
Given the variations of imaging scanners and protocols, we crafted an
image pre-processing pipeline (Fig. 2a) to harmonize these scans. We
normalized the CT scans with lung windowing to highlight anatomical
structures.We alsonormalizedPET scans by bodyweight (SUVbw) into
standardized uptake value (SUV) map to quantify FDG uptake and
remove variability. We then spatially aligned the PET images and the
CT using the affine registration in Elastix software (version 5.0.1).
Moreover, the quality of the registration was visually inspected for
alignment across the tumor region, ipsilateral lung, and other tissues.
Manual alignment using 3D Slicer (version 4.11) was performed for
cases that needed the registration outcome fine-tuned. We then
computed the local entropy of the normalized CT and PET scans and
ensure that the multimodal images are normalized to identical pixel
resolution of 1mm². The identification and segmentation of target
tumor regions were meticulously conducted by our experienced
clinical radiologists, drawing upon their expertize and the available
clinical datasets. The precise annotation of tumor regions was exe-
cuted usingMIM software, employing amanual segmentation process.
In order to guarantee accuracy and consistency, the segmented results
underwent a comprehensive cross-checking process conducted by
three independent and expert radiologists. This rigorous approach
was taken to ensure the reliability and precision of our tumor region
annotations.

Habitat imaging framework
To distinguish spatially distinct subregions within the tumor region,
we proposed a habitat imaging framework (Fig. 2b) by extending our
previous computational habitat framework19,49–51. For further analysis,
the spatially aligned tumor regions created fromCT and PET data were
used. In addition, the complexity of the local texture was calculated
using local entropymaps of the tumor. Entropy is a statistical measure
of randomness or uncertainty that can be used to characterize the
texture of an image. A greater entropy value denotes deeper features,

and an entropymap is a representation of the entropy values shown as
a grayscale image. The CT, CT entropy, PET, and PET entropy images
were fused to integrate the anatomic, metabolic, intensity, and texture
information to define tumor heterogeneity. By image fusion, wemeant
adding the corresponding pixel values of the different image mod-
alities (CT, CT entropy, PET, and PET entropy) to generate texture rich
composite images used for habitat detection. Two steps of clustering
were used to split the tumor region. First, the featuremaps were over-
segmented into superpixels at the patient level using the k-means
clustering algorithm with Euclidean distance as the similarity metric.
Based on gray-level frequency distribution from the histogram analy-
sis, first-order features (n = 40) were extracted for individual super-
pixel, including skewness, kurtosis, mean, median, first quartile,
second quartile, interquartile range, standard deviation, variance, and
energy, calculated separately on 4 different maps. Second, using the
Louvain algorithm in Seurat (version 4.0), we clustered the 3 cohorts
separately. After confirming the consistency of clustering results
across different cohorts, we aggregated superpixels from the entire
population level to identify the unified habitat regions.

Quantification of intratumor heterogeneity
To quantify the intra-tumor heterogeneity on the habitat maps, we
used the multiregional spatial interaction (MSI) matrix49,50, which
summarizes the spatial co-occurrence statistics among different
habitat regions (Fig. 2b). In detail, for every tumor voxel, the co-
occurring pairs of its neighbors were scanned and added to the cor-
responding cells in the MSI matrix. By co-occurring pairs, we meant
that we checked each pixel and find its immediate nearest neighbors in
the 3D. Pixels are connected if their edges or corners touch. After this
process was iterated through all tumor voxels, the spatial distribution
and interaction of the intratumoral habitats were abstracted in theMSI
matrix. In order to quantify intratumoral spatial heterogeneity, quan-
titative features were then extracted from the MSI matrix. These fea-
tures included 1) the first-order statistical features for the absolute
volume of each subregion, the proportion of each subregion, and
borders of 2 interacting subregions; and 2) the second-order statistical
features of contrast, homogeneity, correlation, and energy computed
on the normalizedMSImatrix. After constructing theMSImatrix based
on the pixel connectivity, we consider the MSI matrix as input to the
graycoprops function in MATLAB to calculate 4 second-order statis-
tical properties of the MSI matrix including contrast, homogeneity,
correlation, and energy.

Imaging subtype identification and validation
Given theMSI features, we applied a consensus clustering algorithm to
identify the optimal number of imaging subtypes in the discovery and
validation cohorts separately. Compared to the one-time clustering of
conventional algorithms, consensus clustering repeats clustering on
subsampled patients and features and is more robust for detecting
intrinsic clusters.We selected the partition-around-medoids clustering
algorithm with the Spearman distance metric. The cluster number
varied from 2 to 5, and an optimal cluster number that produced
optimal consensus was chosen. The consensus matrix from k= 2 to
k = 5 was tested using the cumulative distribution function (CDF)
curve. A perfect consensus matrix would be filled with 0 and 1 only,
thus showing an ideal step function of the CDF curve.

Clinical evaluation of imaging subtypes for prognostic
significance
We evaluated the prognostic capacity of the identified imaging sub-
types (Fig. 2c). In univariate analysis, we compared imaging subtype
with established clinicopathological risk factors (including age, sex,
clinical T category, smoking status, histology, and neoadjuvant che-
motherapy) and conventional CT/PET metrics (tumor volume deli-
neated on the CT scan, metabolic tumor volume [MTV], total lesion
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glycolysis [TLG], and SUVmax). Then, we tested the added clinical
value of the imaging subtypes over that of these known risk factors
using multivariate analysis. Tumor volume stands out as a pivotal
predictor in lung cancer prognosis, exerting a substantial influence on
disease recurrence and overall survival52–54. Acknowledging its critical
role, we systematically address the potential impact of tumor volume
on the significance of our proposed habitat imaging subtypes53.

Integrated analysis of ctDNA and imaging subtypes
The presence of ctDNA at pre-surgery and after definitive standard-of-
care (SOC) therapy indicates residual micro-metastatic disease, which
is associated with poor RFS, whereas its absence predicts a low risk of
recurrence for NSCLC after surgery55–57. After definitive standard-of-
care (SOC) therapy is defined as surgery and neoadjuvant or adjuvant
chemotherapy, and/or post-operative radiotherapy (PORT) if admi-
nistered. Based on ctDNA clearance status, three categories were
defined: without detectable circulating tumor (ctDNA) throughout the
study (Never Detected group), patients who cleared ctDNA during
treatment (Cleared group), and patients with persistent ctDNA
detectable (Persistent group). Given ctDNA presence/clearance status,
we evaluated the prognostic significance of ctDNA combined with our
proposed imaging subtypes in the validation cohort and explored
whether they can be complementary to each other.

Identifying molecular pathways correlated with imaging
subtypes
We performed molecular pathway analyzes using paired tran-
scriptomic data from three studied cohorts of patients to explore
biological mechanisms underlying the habitat imaging subtyping.
Gene set enrichment analysis was applied for each individual cohort
and meta–gene set enrichment analysis for the combined cohorts
using R package QuSAGE. We focused on the hallmark gene set (ver-
sion 2022.1) from theMolecular SignaturesDatabase (MSigDB).A false-
discovery-rate of <0.2 was used to select significantly activated and
suppressed pathways.

Statistical analysis
Kaplan-Meier analysis and the log-rank test were used to evaluate
patient stratification into different risk groups in terms of the end-
points (RFS andOS). Univariate andmultivariate analysis using theCox
proportional hazards model was performed to correlate different risk
predictors and endpoints. The hazard ratio was used to measure the
degree of survival differences. All statistical tests were 2-sided, with
P < 0.05 indicative of a statistically significant difference. All statistical
analyzes were performed in R (version 4.1.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data for Figs. 3, 4, 6 and Tables 1, 3, 4 are providedwith this
paper. The supplementary data for Supplementary Figs. 1-9 and Sup-
plementary Tables 1-10 are also provided. The FDG-PET/CT and clinical
data of TCIA cohort are publicly available on The Cancer Imaging
Archive https://wiki.cancerimagingarchive.net/display/Public/NSCLC
+Radiogenomics#28672347d6e83195f69f438ca0d1a3d20fbc450d.
The raw FDG-PET/CT and clinical data of ACRIN 6668/RTOG 0235
cohort are publicly available on The Cancer Imaging Archive https://
wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=
39879162#398791626e061ab3228446d59c8ce2ac2d1aa117. The raw
FDG-PET/CT of ICON and PROSPECT are not publicly shared to protect
patient privacy, but are available for research use from the corre-
sponding author. MTA is required to be approved by MD Anderson
committees by providing the research plan and is restricted to non-

commercial academic research purposes. Request can be submitted to
J.W. and will receive an internal review response within 30 days. In
addition, anonymized data and the input for the predictive models are
available at Zenodo https://doi.org/10.5281/zenodo.1061153658. Dei-
dentified ctDNA data for patients in the internal validation cohort are
available in Source data for Fig. 6. The genomics data of PROSPECT
cohort are available atGEO repositoryGSE42127. The genomicsdata of
TCIA cohort are available at GEO repository GSE103584. The genomics
data of ICON cohort is hosted by The European Bioinformatics Insti-
tute (EBI) and the Centre for Genomic Regulation (CRG) under the
accession code: EGAD50000000361. Source data are provided with
this paper.

Code availability
The code in this study has been deposited in the repository available at
https://doi.org/10.5281/zenodo.1061153658. The Habitat Imaging code
is available at https://github.com/WuLabMDA/Habitat-Analysis.
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