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Spontaneous persistent activity and
inactivity in vivo reveals differential cortico-
entorhinal functional connectivity

Krishna Choudhary1,9, Sven Berberich2,3, Thomas T. G. Hahn4,
James M. McFarland5 & Mayank R. Mehta 1,6,7,8

Understanding the functional connectivity between brain regions and its
emergent dynamics is a central challenge. Here we present a theory-
experiment hybrid approach involving iteration between a minimal compu-
tational model and in vivo electrophysiological measurements. Ourmodel not
only predicted spontaneous persistent activity (SPA) during Up-Down-State
oscillations, but also inactivity (SPI), which has never been reported. These
were confirmed in vivo in themembrane potential of neurons, especially from
layer 3 of themedial and lateral entorhinal cortices. The data was then used to
constrain two free parameters, yielding a unique, experimentally determined
model for each neuron. Analytic and computational analysis of the model
generated a dozen quantitative predictions about network dynamics, which
were all confirmed in vivo to high accuracy. Our technique predicted func-
tional connectivity; e. g. the recurrent excitation is stronger in themedial than
lateral entorhinal cortex. This toowas confirmedwith connectomics data. This
technique uncovers how differential cortico-entorhinal dialogue generates
SPA and SPI, which could form an energetically efficient working-memory
substrate and influence the consolidation of memories during sleep. More
broadly, our procedure can reveal the functional connectivity of large net-
works and a theory of their emergent dynamics.

Cognition requires the interaction between several large neural net-
works, each network containing millions of neurons, each neuron in
turn characterized by many microscopic parameters. To study the
complex emergent properties of systems with large degrees of free-
dom, the statistical physics approach is to develop a quantitative
model, based on only the salient order parameters, and subsequently
test its predictions quantitatively, not just qualitatively, in simplified
experimental preparations that capture the essence of the emergent

principles. In line with this tradition, we develop an analytically tract-
ablemodel of spontaneous activity in interacting neural networks, and
quantitatively verify several predictions of the theory in vivo during
default, internally generated activity in the absence of external sensory
stimuli.

During quiescence, deep sleep, under anesthesia, and in vitro,
local neural networks from many brain areas, including cortex, show
nearly synchronous, rhythmic activity termed delta oscillations, non-
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REM sleep oscillations, slow wave sleep (SWS) etc1–5. The membrane
potential (Vm) of individual neurons exhibits nearly synchronous
transitions between the depolarized and more active (Up), and less
active (Down) states1,5,6. This is reflected in the local field potential
(LFP), which too shows Up-Down state oscillations (UDS) synchronous
with the membrane potential6–9. The UDS are ubiquitously found
across several species and experimental preparations and are con-
sidered the default activity of many networks10–13. Several studies have
suggested that the interactions between cortical regions during UDS
are crucial for stimulus response7,14, memory consolidation15–19.
Impairment of UDS causes learning and memory deficits, while UDS
enhancement leads to improvement14,20,21.

While most cortical areas show synchronous UDS oscillations17,
recent in vivo studies have shown that pyramidal neurons in layer 3 of
the medial (MECIII), but not lateral (LECIII), entorhinal cortex show
spontaneous persistent activity (SPA) during UDS: events where the
neuron’s Vm persists in the depolarized Up state while the afferent
neocortical areas transition to the Down state22. This definition differs
from other studies that define singular Up states, within an isolated
network, as a form of persistent activity23. Instead, it is reminiscent of
the persistent activity during working memory tasks, which shows
sustained activation after the stimulus is extinguished. Network
models show that such sustained activity during awake, working
memory tasks can be generated through reverberant excitation and
feedback inhibition, but it is unclear whether thesemodels can explain
spontaneously evoked persistent activity24,25. Depolarizing current
injections elicit sustained activity in vitro26–28 but do not elicit SPA
within MECIII neurons during UDS, implicating network rather than
intracellular mechanisms22. Currently, network models of UDS employ
an attractor frameworkwith two fixed points, one active (the Up state)
and one inactive (the Down state), with adaptation driving the
oscillation29–33. Such models, however, have not been used to under-
stand large interacting networks, and are thus agnostic about major
experimental findings, like the quantization of SPA during UDS34.
Furthermore, existing theories focus exclusively on the active state,
discarding the inactive state as simply a recovery phase for network
adaptation. However, the energy function of discrete Hopfield
networks35,36 is symmetric under activity inversion (+1 → −1), so the
physics suggests that, just like the active states, these inactive states
are themselves energyminima in the landscape and could thus also be
utilized as a memory substrate.

Here we show that a simple, mean-field model involving two
interacting networks of excitation-inhibition can capture the observed
dynamics of SPA during UDS. Our theory also exploited the symmetric
inactive attractor to predict, to our knowledge, a new phenomenon:
spontaneous persistent inactivity (SPI). To test the model quantita-
tively, we used the in vivo cortico-entorhinal circuit as our model
system. Anatomically, the neocortex serves as an afferent source of
input to several subcortical regions, including the entorhinal
cortex37,38. To measure neocortical ensemble activity during UDS, we
recorded the extracellular LFP from the parietal cortex. As the parietal
cortex receives strong inputs from most neocortical regions39–42 and
UDS is synchronous across all neocortical areas2,7,17,43, this LFP acted as
the afferent reference for neocortical UDS. Simultaneously, we did
whole-cell Vm measurements from anatomically identified pyramidal
neurons in various efferent nearby cortical areas, including frontal
(FRO) and prefrontal (PRE) cortices, and distant efferent regions in the
entorhinal cortices (EC). To establish a baseline for comparison, we
also recorded from several neurons in the parietal (PAR) cortex, close
to the LFP recording site. As the spontaneous activity of single neurons
is tightly linked to the cortical networks in which they are embedded,
this allowed us to probe the activity of localized networks within each
target region44. Within the EC, the medial (MEC) and lateral (LEC)
subdivisions are anatomically and functionally distinct: the MEC con-
tains spatially selective “grid cells”45, while the LEC is thought to

encode objects or experienced time46–51. We focused on the EC layer 3
(MECIII/LECIII) regions, since MECIII neurons are a major source of
input to the hippocampus, show SPA in vivo, and are crucial in the
generation and maintenance of UDS in the MEC22,52.

We found significant in vivo SPA in MECIII and SPI in both MECIII
and LECIII, but not in the neocortical regions FRO and PREwith respect
to PAR. We developed an iterative procedure to quantitatively match
computational simulations of our minimal model with experimental
observables, which in turn led to a general theory of network-network
interactions that made several falsifiable predictions. All predictions,
from the relative timing of state transitions to the quantized, history-
dependent nature of SPA and SPI, were confirmed with in vivo data.
Further, our results attributed the differences in SPA and SPI across
cells to differences in feed-forward excitatory connectivity from the
large neocortical network to the specific efferent subnetwork and the
recurrent excitatory connectivitywithin the efferent subnetwork itself.
This prediction too was verified using publicly available connectomics
data. The number of experimental observations explained by our
theory are far greater than the number ofmodel parameters we varied,
demonstrating its predictive power and generality. To our knowledge,
our study is the first to predict theoretically and detect experimentally
the novel phenomena of persistent inactivity, and show that both SPA
and SPI not only co-occur but are the result of common network
interaction principles and can provide an estimate of the functional
connectivity between large networks.

Results
The mean field model of cortical interaction predicts both
spontaneous persistent activity (SPA) and inactivity (SPI)
A minimal mean field network supporting UDS has three biologically
well-established ingredients: excitatory neurons, inhibitory neurons,
and activity-dependent adaptation of the excitatory (but not inhibi-
tory) neurons29–31,33. We constructed amean fieldmodel of two cortical
regions, each with its own recurrently connected inhibitory and exci-
tatory populations53,54 (Fig. 1). In isolation, each network exhibits
transitions betweenUp andDownstates (Supplementary Figs. 1, 2) that
are the stable fixed points of the dynamical system of equations, much
like local minima in an energy landscape55,56. Their stability is inversely
related to their distance from the separatrix, a line which defines the
boundary between the basins of attraction. The slowly-varying,
activity-dependent adaptation translates the excitatory nullcline, thus
influencing the stability of each state. Growing adaptation governs the
transition from the Up to Down state, while external drive and a falling
adaptation governs the transition from Down to Up. Underlying
gaussiannoise gives thenetwork anon-zero “temperature,”preventing
it from stagnating in a particular state for arbitrarily long time periods.
For simplicity, quantitative falsifiability, and based on available
observations, we assumed that all internal parameters except the
recurrent excitation strengthWINT are identical across the afferent and
efferent networks.

Importantly, these two networks are connected only uni-
directionally, with the afferent network sending an excitatory projec-
tionWEXT to the excitatory population in the efferent network, with no
connection backwards from efferent to afferent (Fig. 1a). The UDS
oscillation of the afferent network rhythmically destabilizes the
endogenous UDS oscillation of the efferent network (Fig. 1b, c, Sup-
plementary Fig. 3). Larger values ofWEXT lead to phase locking (Fig. 1d),
i.e. the efferent network merely follows the afferent network. Smaller
values of WEXT, on the other hand, give rise to situations where the
efferent network does not follow the afferent UDS, resulting in tran-
sient desynchronizations between the two networks57. Under weak
drive WEXT from the afferent network, an increase in the efferent
recurrent excitatory connectivity (WINT) drives the efferent Up state
fixed point away from the separatrix, increasing the Up state stability.
This was verified using simulations, which demonstrate a novel,
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network mechanism to generate SPA: instances when the efferent
network remains in the Up state, skipping one or more afferent Down
states (Fig. 1e). These could explain the experimentally reported SPA.
Further, a decrease in the strength ofWEXT decreases the destabilizing
effect of the afferent transitions on the efferent network; the efferent
then remains in a Down state, skipping one ormore afferent Up states.
We call this phenomenon spontaneous persistent inactivity (SPI: Fig. 1f).
Themodel further predicts that SPA and SPI are relatively independent,
as increasing WINT while simultaneously decreasing WEXT gives rise to
coupled UDS sequences exhibiting both SPA and SPI (Fig. 1g). Notably,
the model predicts that WEXT is nearly ten times smaller than WINT.
Furthermore, a less than 10% change in WEXT (WINT) causes a much
larger, all or none change in the SPI (SPA) probabilities.

Detection of SPA and SPI in MECIII and LECIII in vivo
To monitor network interactions during spontaneous activity in vivo,
micewere lightly anesthetizedwithurethane to induce robust andsteady
UDS that were synchronous across the entire neocortex. A hidden Mar-
kov model was used to classify the data into a binary UDS sequence58.
Consistent with previous studies, the neocortical LFP and the Vm of
neurons in the neocortical regions PAR (N=24), FRO (N= 7), and PRE (N-
14), and the efferent regions MECIII (N= 50) and LECIII (N= 16) showed
clear bimodal UDS (Fig. 2, Supplementary Fig. 4). For subsequent ana-
lysis, the rate of SPA (SPI) was defined as the proportion of efferent Up
(Down) states which outlasted an entire afferent Down (Up) state during
an entire experiment. As a first test of the model, we computed the
relationshipbetween theneocortical LFP and theVm fromPARpyramidal
neurons, which were recorded close by (0.5mm apart), and other neo-
cortical neurons in FRO and PRE. These regions are highly connected to

other neocortical regions7,17,39–43, soWEXT is large, and themodel predicts
complete phase locking (Fig. 1c), with virtually nonexistent SPA and SPI.
This was indeed the case (Figs. 2b, 3a, Supplementary Fig. 4).

Consistent with previous studies, MECIII neurons showed clear
instances of SPA (Figs. 2c, 3a), while LECIII neurons did not22. In con-
trast, both LECIII and MECIII neurons showed clear instances of the
newly predicted SPI (Figs. 2d, 3a). Our model also predicted relative
independence of SPA and SPI; consistently, some MECIII neurons
showed both SPA and SPI, only a few seconds apart (Fig. 2e), and levels
of SPA and SPIwithin the population of LECIII andMECIII neuronswere
not significantly correlated (Supplementary Fig. 5). Finally, SPA and SPI
levels were not correlated with the duty cycle and the frequency of
neocortical UDS, indicating that they were not artifacts of differences
in brain states across experiments (Supplementary Fig. 6).

Testing the hypothesis that variation inWEXT andWINT alone can
explain most in vivo differences between and within MECIII
and LECIII
The properties of SPA and SPI not only varied across brain regions, but
even between different neurons from the same region (Fig. 3a). Fol-
lowing our dynamical systems analysis, we hypothesized that all of
these differences could arise from just two network parameters: the
strength of recurrent excitation in the efferent network (WINT) and the
strength of external excitatory input to the efferent network (WEXT). To
test this idea, we used a two-step approach. First, we simulated all
possible networks in this 2Dparameter space by varying onlyWEXT and
WINT, while leaving all other variables unchanged. Modulating just two
free parameters yielded networks with a wide range of both SPA and
SPI. Thus, we could estimate the two crucial network variables, WINT
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Fig. 1 | A simple mean-field model predicts spontaneous persistent activity and
inactivity in the efferent network. a The model consists of two networks, each
characterized by the average activity of excitatory (triangle) and inhibitory (circle)
populations, with only excitation showing activity dependent adaptation (square).
The afferent network (gray) provides excitatory input (red box: WEXT) to the
efferent (blue) network, but not vice versa. All internal parameters are identical
between the two networks, except the recurrent excitation (green box:WINT).
b Each network is described by a potential energy landscapewith two localminima,
corresponding to the Up and Down states. The activity-dependent changes in
adaptation level influences the stability of eachminima, creating theUp-Down state
(UDS) oscillation. c By modulating WINT and WEXT, the model introduces transient
desynchronizations between the two networks. There are four distinct regimes
((d–g) in the four corners of the plot): d With high WINT and low WEXT, the model
can reproduce synchronized UDS in the two networks (afferent in gray, efferent in

blue), with neither SPA nor SPI. The same scale bars for amplitude (in z-score) and
time (1 s) are used for (d–f). e Increasing efferentWINT increases the stability of the
efferent Up state attractor, and leads to spontaneous persistent activity (SPA, green
box), when the efferent network gets “stuck” or persists in the Up state even when
the afferent makes a transition to the Down state. Green contours in (c) show time-
averaged SPA rates in simulations of the parameter space. f Conversely, decreasing
WEXT decreases the size of destabilizing afferent current and leads to spontaneous
persistent inactivity (SPI, red box), when the efferent network persists in the Down
state while the afferentmakes a transition to Up state. Red contours in (c) show SPI
rates. gWith lowerWEXT and higherWINT, the same network can exhibit SPA and SPI
at different times. The positions of each example in the 2D parameter plane are
shown in (c). Throughout the figures in this text, the green and red colors will
denote data/parameters related to SPA and SPI, respectively.
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and WEXT, by simply computing the amount of SPA and SPI observed
experimentally and matching those numbers with the appropriate
simulation (Fig. 3b, Supplementary Fig. 7). Crucially, even though SPA
and SPI varied by 1000-fold across different neurons, in both simula-
tions and in experimental data, this large variation in SPA and SPI rates
could be closely captured by varying only two physiological variables
in the model. Clearly, the experimental data were impacted by dozens
of additional variables too, e.g. the strength of recurrent inhibition,
inputs from other brain regions, synaptic and ionic dynamics etc., that
are not included in the model, so this strong fit was unexpected. The
robustness of this method was confirmed by using an alternate fitting
procedure, which yielded very similar fits between the simulations and
in vivo data for each neuron (Supplementary Fig. 8).

The model postulated that SPA probability should grow expo-
nentially with increasing internal recurrence WINT, and that SPI prob-
ability should diminish exponentially with increasing external input
WEXT (Fig. 3c). Not only were both of these predictions confirmed
across all brain areas, but the exponential relationship also spanned
nearly 3 orders of magnitude. Further, according to the model,
dependence of SPA onWINT (SPI on WEXT) should be stronger than on
WEXT (SPI on WINT), but still significant and similarly exponential. This
prediction toowas confirmed by the data (Fig. 3c). The tightness of the
exponential relationship, even though other parameters were not
considered, suggests that these two connectivity parameters are
indeed the key driving factors governing SPA and SPI in vivo.

While SPA and SPI prevalence across neurons was uncorrelated,
perhaps due to many other extraneous factors (e.g. depth of anes-
thesia), the fitted values of WINT and WEXT, which seem insensitive to
these variables, were significantly negatively correlated, indicating
differential properties of thenetworks (Supplementary Fig. 5). Intuitive
trends between parameters were preserved: e.g. neurons with greater
net excitatory input (WEXT +WINT) should have higher firing rate, and
thiswas confirmed in vivo, as data showed greatermeanfiring rates for
MECIII than LECIII, even at the level of individual cells (Supplementary
Fig. 9). This is unexpected since the neurons in the model are mean-
field, not spiking. Further, LECIII neurons’ Vm (Up: −67.4 ± 2.3mV,
Down: −79 ± 1.9mV) was significantly less depolarized than MECIII
neurons (Up: −52.4 ± 1.1mV, Down: −74.2 ± 0.98mV), further confirm-
ing the model predictions.

The two-parameter model, thus constrained by experiments,
made major predictions about the nature of large-scale connections
between andwithin these brain regions. Briefly, ourmodel implies that
neocortical input into ECIII is weaker than into other neocortical
regions, like parietal, frontal, andprefrontal cortices (Fig. 3f). Further, it
predicts that recurrent excitationwithinMECIII is significantly stronger
than within LECIII (Fig. 3e). These predictions too are supported by
other experiments in vivo and in vitro (see Discussion). Additionally,
several further predictions of the model could be tested using the
in vivo data from neocortical-LFP/neuron-Vm recordings and the mat-
ched simulation of an afferent/efferent connected network system.
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Fig. 2 | In vivo, simultaneouswhole-cell patch clamp andmulti-electrode array
confirms prediction of SPA and SPI in the entorhinal cortex. a Experimental
design: mice were anesthetized to induce UDS, and local field potential (LFP) from
the parietal cortex was measured using a silicon probe (black). Simultaneously,
membrane potential (Vm) was measured using whole-cell patch clamp from an
anatomically identified neuron. The parietal LFP was treated as the afferent refer-
ence representing neocortical activity (gray in b–e), and the Vm traces constituted
efferent activity (blue in b–e). b PAR neuron’s Vm was phase-locked to the neo-
cortical LFP, matching theory (Fig. 1d). Action potentials have been truncated for
clarity. The same scale bars for amplitude (z-scores) were used throughout, and

time scale bars (1 s) are shown for each individual experiment. The identified UDS
sequence is shown above the traces, with histological reconstructions (right) of
brain region and the patched cell (insets). Scale bars in histological figures corre-
spond to 100μmfor highermagnification (insets), 500μmfor lowermagnification.
cClear SPA (green box) in the Vm of anMECIII pyramidal neuron,matching (Fig. 1e).
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e Both SPA and SPI exhibited by the same MECIII pyramidal neuron, like (Fig. 1g).
f Schematic of our technique to obtain a quantitative test of the theory using the
experimental data.
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Inferred cortico-entorhinal connectivity predicts differential,
state-dependent latency to UDS transitions in MECIII vs LECIII
The latency between the up-down sequences in the afferent and
efferent networks presents another opportunity to test the model’s
validity. There are two additional observables: the Up-Down transition
delay and the Down-Up transition delay. These latencies differ across
brain regions (Fig. 4a, Supplementary Fig. 10). Since neurons behave
like leaky capacitors, the strength of afferent excitatory input should
be inversely correlated with the response latency of the efferent
neurons59,60. Therefore, the model predicts that the neurons with lar-
ger strength of afferent input WEXT should respond sooner to the
neocortical Down-Up transitions, i.e. smaller latency between neo-
cortical LFP and the neuron’s Vm (Fig. 4b–d). Consistent with this
prediction, LECIII cells with greater predicted excitatory input WEXT

showed significantly shorter Down-Up transition latency. A similar
result was found within the population of MECIII neurons. Further,
consistent with model prediction that WEXT from the neocortex to
LECIII is stronger than to MECIII, the population of LECIII neurons
showed shorter Down-Up latency than the MECIII population. While
WEXT enhances the coupling between the two networks, larger values
ofWINTmake the efferent networkmore independent of the input. The
effect of these competing inputs is state dependent, differentially
modulating the efferent Down-Up vs. Up-Down transitions. During an
afferent Down-Up transition, the efferent network is in the Down state,
where recurrent excitationWINT does not contribute. Thus, the latency

of the efferent Down-Up transition should be relatively insensitive to
WINT but depend strongly onWEXT. This prediction too was supported
across both LECIII andMECIII cell populations (Supplementary Fig. 11).

According to the theory, the situation is reversed for theUp-Down
transition: when the efferent network is in the Up state, the recurrent
excitation WINT contributes strongly and helps sustain the Up state
despite the loss of afferent input, which is in the Down state. Networks
with higher WINT have more stable Up states, thereby increasing their
“inertia.” Thus, the model predicts that ECIII neurons with greater
predictedWINT should follow the neocorticalUp-Down transitionswith
longer latency. This was confirmed for both MECIIII and LECIII across
cells (Fig. 4f, g). In contrast to Down-Up transitions, the latency of the
efferent Up-Down transition should be relatively insensitive to WEXT

compared toWINT. Thisprediction toowas supported across individual
neurons within MECIII, within LECIII, and across the MECIII vs LECIII
ensemble. The model does predict a small but significant effect, as
higherWEXT enhances coupling and decreases latency. This prediction
too was supported by our analysis (Supplementary Fig. 11).

These latencies weremore correlatedwith the predictedWINT and
WEXT values than with simply the levels of SPA or SPI (Supplementary
Fig. 11), further supporting the model. The model also makes quanti-
tative predictions for Down-Up and Up-Down latencies for each cell,
and these are highly correlated with the experimental value obtained
for each cell (Fig. 4e, h). While the latencies in our model can differ
from the experimental observations by a constant value due to
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probability of SPA in the model (SPA∝eWint/0.015, r =0.98). Similarly for SPI, but
weaker (r =0.54). d Results of the fitting procedure, after which each cell was
assigned a connectivity estimate (WEXT and WINT). The background contours and
shaded regions are identical to those in Fig. 1c, showing the time-averaged rates of
SPA% (green contours) and SPI% (red contours) in simulations. Each cell is repre-
sented by a point, and the example cells used in Fig. 2b–e are circled in black. e The
fitting predicted that WINT was the largest for MECIII (1.073 ± 0.01), while LECIII
(1.04 ± 0.01) and neocortical regions were significantly (p < 10−9) lower. f The fitting
revealed that WEXT from the neocortex was the largest for other neocortical areas
(0.14621 ± 0.0051), smaller for LECIII (0.14215 ± 0.012), and smallest for MECIII
(0.14 ± 0.023). WEXT to entorhinal areas was significantly smaller than to other
neocortical areas (p < 10−5). Box edges indicate the 25th and 75th percentile, and
center black bar denotes themedian. Significant differences were established using
two-sided nonparametric Wilcoxon rank-sum tests for equal medians.
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processes we did not model, e.g., the finite velocity of signal propa-
gation in brain tissue, the difference in latency across neurons should
be well matched. Further, the propagation delay could be different for
Up states vs. Down states. We estimated this delay for each neuron
using the difference between the experimentally observed transition
delay and the predicted delay fromourmodel (Supplementary Fig. 12).
We found that the Up state and Down state propagation delays were
highly correlated on a cell-by-cell basis, and that MECIII Down state
delays were longer than Up state delays. This hints at a yet-unknown
mechanism that keeps MECIII neurons in the Up-state for even longer
than the higher WINT value can explain. The predicted model para-
meters WEXT and WINT were more strongly correlated with the UDS

latencies than with the mean firing rates (Supplementary Fig. 9), fur-
ther supporting the model and ruling out nonspecific effects.

SPA and SPI are quantizedbyneocortical UDSboth in vivo and in
themodel, reflecting an underlying history-dependent Bernoulli
process
The model predicts that SPA and SPI are all-or-none events that are
initiated and terminated by state transitions in the afferent network. As
a result, even though efferent Up(Down) state and SPA(SPI) durations
form a continuous, unimodal distribution, these durations should be
quantized in integral units of the afferent UDS cycles (Fig. 5a, Sup-
plementary Fig. 13). To visualize this for SPA, segments of the
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nearby LFP, while other neocortical areas (FRO and PRE) were concurrent.
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transition delays in simulations of the model parameter space. The theory predicts
that modulating WINT and WEXT has differential effects on the Down-Up delay (red
contours) and Up-Down delay (green contours). Increasing WEXT increases the
influenceof afferent transitions on the efferent network, thus decreasing theDown-

Up delay between networks. Increasing the internal excitationWINT of the efferent
network stabilizes the efferent Up attractor, prolonging persistence in theUp state,
thus decreasing the Up-Down delay. c Examples from two experiments show the
neuron with larger WEXT had smaller Down-Up delay (red shaded area). d Each
neuron’s average Down-Up transition delay in vivo was significantly anti-correlated
with the predicted value of WEXT given by the fitted model (r = −0.66, p < 10−15).
e The in vivo Down-Up transition delay was significantly correlated with the pre-
dicted delay from thematched simulation (r =0.726, p < 10−26). f Examples from two
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Down transition delay. g Each neuron’s average Up-Down transition delay in vivo
was significantly correlated with the predicted value of WINT (r =0.823, p < 10−30).
h The in vivo Up-Down transition delay was significantly correlated with the pre-
dicted latency from the matched simulation (r =0.847, p < 10−16). Correlations and
p-values were computed using Spearman’s rank correlation coefficient.
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simulated efferent activity were extracted around each efferent Down-
Up transition, sorted according to the ensuing Up state duration, and
assembled into a single matrix, with each row corresponding to a
single efferent Down-Up transition (Fig. 5b). The underlying afferent
activity matrix for the same time points exhibited alternating bands of
UDS, with integermultiples of afferent UDS fitting inside each efferent
Up state (Fig. 5c). The samevisualizationwith in vivodatamatchedwell
with model predictions (Fig. 5d). We repeated this for efferent Down
states and SPI, yielding a similar quantitativematchbetween themodel
and experiment (Fig. 5e, f). When consolidating the quantized state
durations over all experiments and their matched simulations, the
probability distributions for both were significantly multimodal, with
peaks at half integers, indicating that ECIII state transitions were
locked to the neocortical transitions, and that the ECIII skipped entire
neocortical Up/Down states in integer quantities (Fig. 5g).

The multimodality of quantized durations was also observed for
individual experiments and their corresponding simulations (Fig. 6a,
Supplementary Fig. 14). We leveraged this distribution, unique to each
cell, to investigate the precise history-dependence of SPA and SPI,
further testing our model. One can imagine three scenarios. First, the
SPA and SPI are entirely stochastic, in which case their probability
distribution would follow a memoryless Bernoulli process, like a
sequence of fair coin flips. Second, SPA and SPI arise due to some
change in the overall state of the animal, such that all the SPA and SPI
co-occur. However, our model predicts a third possibility: it should be
rarer to have consecutive sets of SPA and SPI compared to singular
events. This is because the probability of SPA and SPI is strongly
history-dependent. If the network exhibits SPA at a given afferent
Down state, the efferent network’s recurrent excitationWINT would be
more adapted than usual, reducing the resources needed to sustain

SPA in the next Down state, thus reducing the probability of con-
secutive SPAs (Supplementary Fig. 15). Similarly, the occurrence of SPI
at a given afferent Up state would make the efferent network less
adapted and hence reduce the probability of consecutive SPIs. To test
this prediction, we used the first two modes of the quantized prob-
ability distribution (in Fig. 6a) to calculate p1, the probability of a
solitary SPA and SPI, and p2, the probability that a second SPA and SPI
occurred given the first (with probability p1) already happened. Here,
p2 = p1 for the firstmemoryless hypothesis,p2 > p1 for the secondbrain-
state dependent hypothesis, and p1 > p2 for the third hypothesis, pre-
dicted by our model. The experiments strongly corroborated our
predictions: the probability of SPA and SPI diminished after the first
such event (Fig. 6b). The two network system thus has a “memory” of
SPA and SPI due to the adaptation of the recurrent excitation WINT in
the efferent network.

Discussion
Persistent activity has been hypothesized tomediate workingmemory
via reverberating activity35,61, and has been studied extensively
in vivo62–64, in vitro26,27,65,66, and in silica24,25. Its ubiquity and diversity in
different cell types, brain regions, brain states, and behavior supports
the hypothesis that a common mechanism could apply, and a low
dimensional theory could be appropriate. Hence, we developed a
mean field model to explain the recent discovery of spontaneous
persistent activity in MECIII during sleep22, as existing models focus
only on stimulus evoked persistent activity during awake behavior.
Using two networks of excitation-inhibition neurons and adapting
excitation, with an afferent network providing excitatory input to an
efferent one, our model reproduced phase locked Up-Down state
(UDS) oscillations and the reported spontaneous persistent activity.
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Further, the model exploited the symmetry of the discrete
attractor landscape to make a surprising prediction, namely the exis-
tence of persistent inactivity. In contrast to persistent activity, which
involves the efferent network sustaining activity while afferent inputs
have shut off, persistent inactivity involves the efferent network sus-
taining inactivity while afferent input turns on. This has not been
reported before in any experimental or theoretical studies, though
there are hints67,68. Computational studies have found coexisting Up
and Down states in different neurons within the same spiking
network69,70, but these results are usually achieved when the network
UDS is highly irregular and asynchronous. To test our model, we
focused on the cortico-entorhinal interaction during UDS oscillations,
using simultaneous LFP from the neocortex that served as a common
afferent reference, along with the membrane potentials measured
from anatomically identified neurons in the parietal, frontal, pre-
frontal, and entorhinal cortices.

The experiments confirmed the presence of both persistent
activity and inactivity; we were then able to leverage these two

observables to probe the underlying network architecture and con-
clusively test several predictions (see Table 1 for a summary). Our
framework models different brain regions by varying only two biolo-
gically relevant parameters: the strength of internal connections WINT

within the efferent network and the strength of external input WEXT

from the neocortex, while leaving all the other parameters unchanged.
Dynamical systems analysis55,56 showed that SPA increases with WINT,
while SPI decreases withWEXT; thus, each cell, and the local network in
which it is embedded44, could be mapped to theWINT -WEXT parameter
space. Our results predicted that neocortical input onto the entorhinal
region should be weaker than to other regions within the neocortex,
like parietal, frontal, and prefrontal cortex. This is consistent with
anatomical observations of strong intra-neocortical connections and
weaker neocortical-entorhinal connections38,39,41,71,72. Within the
entorhinal region, LECIII exhibited significantly less SPI compared to
MECIII, hinting that the latter received less neocortical input. This is
consistentwith classic anatomical studies73,74, which show that a higher
proportion of LEC afferents originate in cortical areas compared to
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Table 1 | Summary of our predictions and their experimental verification

Prediction and Verification Figures/Tables

1 Presence of SPA and SPI in EC Figs. 1, 2, Supplementary Fig. 4

2 MECIII has higher WINT than LECIII Fig. 3e, Supplementary Tab. 2

3 MECIII and LECIII have lower WEXT from neocortex compared with PAR, FRO, PRE Fig. 3d, Supplementary Tab. 2

4 Down-Up delay is inversely proportional to WEXT Fig. 4 b, d

5 Down-Up delay has weaker dependence on WINT than WEXT Supplementary Fig. 11a

6 Up-Down delay is proportional to WINT Fig. 4b, g

7 Up-Down delay has weaker dependence on WEXT than WINT Supplementary Fig. 11b

8 Predicted Up-Down delay vs in vivo Up-Down delay Fig. 4e

9 Predicted Down-Up delay vs in vivo Down-Up delay Fig. 4h

10 Distribution of SPA durations in model vs in vivo Fig. 5a-d

11 Distributions of SPI durations in model vs in vivo Fig. 5e-f

12 ECIII SPA and SPI are quantized by neocortical UDS Figs. 5g, 6a, Supplementary Fig. 14

13 SPA and SPI are history dependent Bernoulli process Fig. 6b

14 Firing rate is nonlinear function of total excitation WEXT +WINT Supplementary Fig 9

The relevant figures/tables for each prediction are shown on the right column. Gray-colored rows indicate a quantitative match, while white-colored rows indicate a qualitative match.
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MEC afferents, andmore recent work48,75 showing stronger projections
from the orbitofrontal cortex, part of the prefrontal cortex, to LEC
compared with MEC.

Our analysis foundgreater amountsofpersistent activity inMECIII
than in LECIII, and the model predicted that this is because the
recurrent connectionsWINT should be larger within MECIII than within
LECIII. This is indirectly supported by recent experiments showing
greater recurrent connectivity between principal neurons within
MECIII thanwithin otherMEC layers, and thatMECIII network is crucial
in the initiation andmaintenance of the Up state during UDS in vitro in
isolated EC slices52,76. Furthermore, excitatory cholinergic receptors
are crucial for MECIII persistent activity77, and the application of
acetylcholine to MEC slice preparations in vitro causes prolonged Up
states in individual cells due to increased overall excitation and more
frequent and rhythmic population-wide events, consistent with our
hypothesis that persistent Up states are the result of networks having
increased internal excitation WINT

78. Finally, our results are in direct
agreementwith excitatory and inhibitory cell densities foundby EPFL’s
Blue Brain Initiative79 (Supplementary Table 2), which shows that
MECIII has almost twice as many excitatory neurons per cubic milli-
meter compared to LECIII. Ourmodelwasnot able to find a statistically
significant difference between internal excitation in LECIII vs neocor-
tical areas, and this is also supported by similar values for excitation-
inhibition ratio between these areas, and a significantly higher E-I ratio
in MECIII.

The model with above network connectivity not only predicted
the prevalence of SPA and SPI in the efferent neurons but also pre-
dicted their relative timing to afferent neocortical activity59, at both
population-wide and single-cell resolution. Cells with higher predicted
WEXT, and thus stronger coupling, exhibited significantly shorter state
transition lags, while larger recurrent excitation WINT, and thus stron-
ger “inertia,” had longer lags, as expected. The latency patterns were
quite different for Down-Up vs. Up-Down transitions: the former was
more dependent onWEXT, and the lattermoreonWINT. Our results thus
support the hypothesis that the Up state is terminated by internal
network mechanisms but is initiated by external input29,80. Taken
together, these resulted in systematic differences in the response
latencies of MECIII and LECIII neurons during Up and Down states,
which would influence the information processing in downstream
hippocampal neurons17,22 and hence the memory consolidation pro-
cess via spike timing-dependent plasticity mechanisms19.

As a direct consequence of the underlying physics of the model,
we predicted that both SPA and SPI durations, while showing con-
tinuous, long-tailed distributions, should also showquantization in the
units of afferent neocortical UDS cycles. This too was verified experi-
mentally, with not just qualitative but a quantitative match between
themodel and experiment. Ourmodel went further to predict that SPA
and SPI were highly history-dependent, reducing the probability of
consecutive SPA and SPI, and this too was confirmed in vivo. This long
time-scale memory is an emergent property of the adaptation in the
efferent EC network, which has been implicated in the formation and
maintenance of periodic spatial firing of grid cells in MEC81.

While persistent activity has been studied extensively as the
mechanism underlying working memory, it is far more energetically
expensive than persistent inactivity. Furthermore, the models invol-
ving only persistent activity have a limited storage capacity, especially
when dealing with memories that require overlapping
representations82–84. Persistent inactivity introduces a newmechanism
toovercome this difficulty. Froman information theoretic perspective,
a 0 is just as informative as a 1. Hence, a combination of persistent
activity and inactivity would be an energy and information-efficient
scheme for storing overlapping memories by multiplexing the
representation85,86. Related, ourmodel predicted that the sameneuron
can show SPA and SPI, and this was experimentally confirmed. Recent
theories investigated “activity-silent” mechanisms for working

memory and hypothesized that the information is stored in facilitated
synapses87–89. One prediction is that non-specific inputs can reawaken
the memory ensemble after the inactive period. Our model predicts,
and experiments confirm, something similar: that the efferent network
is more susceptible to inputs after SPI due to falling adaptation. These
dynamics between adaptation and activity could drive the production
of sequences of memories in neural networks with discrete90 and
continuous phase spaces91.

The long duration of UDS under anesthesia allowed unequivocal
detection of both SPA and SPI. But, since SPA and SPI remained
unchanged across a range of anesthesia depths, and SPA has been
shown in MECIII during drug-free sleep, these results should be
broadly applicable22. On the other hand, many biological factors that
we did not consider could modulate our system wide findings. For
example, in addition to the direct inputs from the parietal cortex to EC,
there is substantial indirect input via the perirhinal and postrhinal
cortices that we did not consider92. Recent studies show some cortical
inhibitory neurons that remain activeduring the down state, which can
alter the nature of cortical UDS93. Including these effects could help
explain the discrepancy between the predicted value of the transition
delays between the neocortex and EC neurons and the experimental
observations. Finally, the hippocampus receives EC input and projects
back to EC, and EC projects back to the frontal cortices; these con-
nections were not included in our model, but could be studied in the
future94.

Despite this, the simple model was able to predict and match a
large number of experimental observations in a quantitative, cell-by-
cell manner. This may be because neural systems undergoing UDS
oscillations live in a very low dimensional space, and thus our simple
model has just the right complexity to describe it. The differences
between brain regions and in the connectivity between brain regions
could become important during other behavioral states, such as
working memory. Future studies can build on our approach to study
SPA and SPI in such scenarios.

Direct and indirect pathways link the entorhinal region to the
hippocampus48,94, and recent experiments have confirmed the parti-
cularly crucial role of UDS oscillations in the temporoammonic path-
way, which monosynaptically projects from MECIII and LECIII to CA1,
in the consolidation of newly encoded memories95. Further, MECIII
inputs play a crucial role in driving CA1 spatial selectivity96 during
exploration, sharp-wave ripples during awake immobility97, and hip-
pocampal replay during rest/sleep98. The ripple rates are comparable
to the SPA rates, and CA1 is most excited during SPA22, suggesting that
SPA could play a role in ripple generation and replay. The contribution
of SPI on hippocampal activity is not yet known, but our data suggests
that this would coincide with CA1 hypoactivation. The selective
decoupling of medial but not lateral entorhinal activity from neocor-
tical inputs during SPA and SPI could contribute to the selective
pruning and strengthening of memory traces from the hippocampus
during slow-wave sleep, thus improving the signal to noise ratio in the
space ofmemories, thereby improving experimentally observed, post-
sleep task-related performance15. Our model is sufficiently general and
could equally apply to other networks, e.g. parietal-prefrontal net-
work, where persistent activity is seen during working memory
tasks63,99. Indeed, recent studies of brain activity in humanshave shown
that functional network connectivity during spontaneous epochs is
highly dynamic100, and that persistent activity during workingmemory
gates the propagation of activity, and thus information, into the pre-
frontal network101.

In sum, these results demonstrate that during UDS, the rich
dynamics of the entire cortico-entorhinal circuit can be captured in a
quantitatively precise fashion by a dynamic attractor landscape
involving just two biologically important variables: the cortico-
entorhinal excitation and the recurrent excitation within the entorh-
inal cortex. Our model is simple enough to be analytically tractable.
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With just two parameters, we were able to reproduce nearly a dozen
different experimental observations in a quantitatively precise fashion.
This strong, quantitative match between a simple model and in vivo
data thus yields a general theory of interactionbetween large networks
during spontaneous activity and reveals several novel emergent
properties such as spontaneous persistent activity as well as inactivity
that provides energy efficient memory and that could explain ‘activity
silent’ working memory82,86,92. Further, this reveals the nature of
cortico-entorhinal functional connectivity during slow oscillations
in vivo, and the differential nature of this connectivity between MECIII
vs LECIII. Given the strong, quantitative match between theory and
data, we hypothesize that similar differential functional connectivity
will hold in other brain states too, such as active exploration. This
approach provides a powerful technique to understand the functional
connectivity between large networks of neurons in vivo.

Methods
A single E/I Mean field model
We constructed a, mean-field network53,54 that can support UDS
oscillations29–31,33, which modeled the average activity of two popula-
tions of neurons: one excitatory and one inhibitory (Supplementary
Fig. 1). This average activity level is a dimensionless number whose
value ranged between 0 and 1. Since UDS are slow and synchronous
oscillations, this level of granularity is sufficient and one does not need
to include faster variables like spikes. This greatly reduces the number
of free parameters and keeps the equations of motion analytically
tractable, with high predictive power. The time evolution of the aver-
age excitatory EðtÞ and inhibitory IðtÞ activity is governed by:

τE
dE
dt

= � E +ΩE WEEE �WEI I �WEAA+ ξ+ iE
� � ð1Þ

τI
dI
dt

= � I +ΩI W IEE �WII I + ξ
� � ð2Þ

Where τE=I is the time constant of each network (τE = 10ms, τI = 5ms),
consistent with experimental data on the membrane time constants.
We first consider the case where there is no external input, so iE =0:
TheΩE=I response function is a standard threshold-linear functionwith
saturation:

ΩE=I xð Þ=
0

gE=I ðx �ΘE=I Þ
1

8
><

>:

if x <θ

if θ< x <θ+ 1=gE=I

if x >θ+ 1=gE=I

ð3Þ

where gE=I is the slope of the input-output relationship for each neural
population (gE = 6, gI = 30) and θE/I is the threshold input needed for
each population (θE = 0.0517, θI =0.2778). For both populations, the
inputs are simply the sum of currents from neural populations in the
network, given by synaptic weight WXY , from population Y to
population X, multiplied by the source activity E=I (WEE= 1,WII= 0.083,
WEI =0.166,WIE = 1.66). There is additional noise current ξ, drawn from
a gaussian distribution (mean of 0, std. 0.03) to simulate random
fluctuations within the network activity. In all simulations and
theoretical analysis, the input remained in the linear regime and never
reached saturation. The excitatory population has an additional term
to describe its internal, activity-dependent adaptation A, with weight
WEA = 0.166:

τA
dA
dt

= � A+WAEE ð4Þ

Where the time constant τA = 300ms is much larger than the time
constants of excitation and inhibition, and the modulation due to
excitation isWAE = 1.1. This time constant is in linewithmostmeanfield

models ofUDS, and is thought to arise in thedendrites102. E =0,I =0 is a
steady state of this network, and corresponds to the Down state
observed during UDS. Since the adaptation parameter is so slow-
varying, we can consider a snapshot of the network at a fixed adap-
tation A* and consider the state space of all possible realizations of
activity E=I. We can solve for the nullclines of each population by
setting the derivative of the activity in each population to zero, and
solving for E:

E =
gEWEI I + gE WEAA

* +ΘE

� �

gEWEE � 1
ð5Þ

E =
1 + gIW II

� �
I + gIΘI

gIW IE
ð6Þ

These are plotted in Fig. 1b and Supplementary Figs. 1–3. In order
to have a stable Up state, these two nullclines must intersect at non-
zero values for E and I, which is possible under the condition that

ΘI >
gEWIE

gEWEE � gEWEAWAE � 1
ΘE ð7Þ

gE <
1 + gIWII

WEE 1 + gIW II

� �� gIWEIW IE
ð8Þ

These conditions are satisfied by our choice of parameters, and
ensure that the excitation nullcline is steeper than the inhibition null-
cline but has a smaller E-intercept, thus ensuring an intersection. We
identify this intersection with the neurological Up state, where both
excitatory and inhibitory populations exhibit sustained firing. Its
coordinates are

E =
WEIΘI � WII +

1
gI

h i
*ΘE

WEIWIE � WEE � 1
gE

�WEAWAE

h i
* WII +

1
gI

h i ð9Þ

I =
WEE � 1

gE
�WEAWAE

h i
*ΘI �WIEΘE

WEIW IE � WEE � 1
gE

�WEAWAE

h i
* WII +

1
gI

h i ð10Þ

A third fixed point is found at E =0 and I =
gE WEAA

* +ΘEð Þ
gEWEE�1 : This point

is unstable and lies on the separatrix, which marks the boundary
between two regions of stability. Thus, one can imagine that the net-
work sits in a potential landscape with two minima and one energy
barrier in the middle103.

The local stability of the Up state can be found by linearizing the
differential Eqs. 1–2 about the Up state fixed point, and ensuring that
the eigenvalues of the matrix of coefficients have a negative real part,
signifying that fluctuations will exponentially decrease30,56. For our 2D
matrix, this is equivalent to imposing that the determinant of the
coefficients matrix is positive and the trace is negative. These condi-
tions yield the following relations between connectivity, time-scale,
and gain:

WII +
1
gI

� �
* WEE +

1
gE

� �
<WEI*WIE ð11Þ

τI � ðgEWEE + 1Þ< τE � ðgIW II + 1Þ ð12Þ
These conditions are satisfied by our choice of parameters.
The global stability of each fixed point is inversely related to the

distance of the fixed point from the unstable separatrix. The closer
each stable fixed point (the Up or Down state) is to the separatrix, the
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less relatively stable that fixed point becomes, since random noise has
a higher chance of kicking thenetwork over theboundary. Notably, the
variableA* is simply an additive constant to the excitation nullcline, the
dynamics of which determines the positions of intersection for both
the stable Up state as well as the separatrix. As the network remains in
the Up state, the adaptation variable increases, effectively shifting the
excitation nullcline up. This not only decreases the overall firing rate in
the Up state by shifting the fixed point, it also stabilizes the Up state by
bringing the separatrix closer to the Up state. A kick from random
noise eventually forces the network to transition into the down state.
Here, adaptation recoversback to zero, shifting the excitationnullcline
down, thereby bringing the separatrix closer to the Down state fixed
point; eventually, a noisy kick forces the network into the Up state,
where the cycle repeats.

Coupled networks: persistent activity/inactivity
To model spontaneous persistent activity, we consider two identical
networks, each described by the above equations. Further, the afferent
network provides a weak excitatory input WEXT into the excitatory
population of the efferent network. We use WEXT to refer to this
synaptic weight from the afferent to the efferent network andWINT to
refer to the internal excitatory-excitatory weight in the efferent net-
work (WEE in Eqs. 1–12). Effectively, this means that for the efferent
network there is an external input into the excitatory population
iE tð Þ=WEXT � EA tð Þ, where EAðtÞ is the activity of the excitatory popu-
lation in the afferent network. If the connection strength WEXT

between the afferent and efferent excitatory populations is sufficiently
strong, the twonetworksUDSoscillations phase lock, as the transitions
between states in the efferent network are no longer due to indepen-
dent noise but the timed increase and decrease in input coming from
the afferent network. Similar to previous results, the connection
strengthWEXT must be about an order of magnitude smaller than the
internal connections WINT in order to show desynchronization30.

What happens when both networks are in the Up state and the
afferent input transitions into the Down state? This cuts off afferent
input WEXT , immediately shifting the efferent excitation nullcline to
the left, thereby destabilizing the efferent Up state. The efferent net-
work can either remain in the Up state through its own recurrent
excitation or follow the afferent and transition into the Down state.
Instances when the efferent remains in the Up state are termed
“spontaneous persistent activity (SPA).” It follows from the stability
arguments outlined earlier that by increasing the distancebetween the
Up state fixed point and the separatrix, one can increase the stability of
the Up state, thereby increasing the probability that the network will
display SPA. If we refer to the excitation nullcline equation [Eq. 5], we
see that increasing WINT (WEE in Eqs. 1–12) results in the downward
scaling of the nullcline: the Up state fixed point shifts to the right, and
the unstable fixed point shifts downward. Combined, this has the
effect of increasing the stability of the Up state, thus leading to higher
probability of SPA.

The converse scenario applies for the Down state, where both
networks are in the Down state and the afferent transitions into the Up
state. This suddenly increases the input, shifting the excitationnullcline
down, destabilizing the Down state. The efferent network can either
follow into the Up state or remain in the Down state; the latter case we
term “spontaneous persistent inactivity” (SPI). The size of downward
shift due to the incoming current from the WEXT synapse has a direct
consequence on the stability of the Down state: the larger the weight,
the more the shift, and thus the more destabilized the DOWN state
becomes. Thus, decreasing the synaptic weight WEXT increases the
probability of SPI. Indeed, simulations where wemodulated bothWINT

and WEXT confirmed our hypothesis on the dependence of persistent
activity and inactivity on these two variables (Fig. 1b). All simulations
were performed using MATLAB on the UCLA Hoffman2 Computing
Cluster with time-step 0.2ms using the Runge-Kutta method.

Animals, surgery, and histology
Methodswere similar to those described previously22. Briefly, datawere
obtained from136C57BL6male and femalemice agedpostnatal day (p)
25-43 (p32 ± 1) weighing 12–21 g (17.5 ± 0.4 g). All mice were housed
under a 12 h light, 12 h dark cycle (7AM to 7PM light) at 23 ± 2 °C and a
relative humidity of 55 ± 5% with ad-libitum access to food and water.
Micewere anesthetizedwith urethane (1.64 ±0.03 g urethane / kg body
weight intraperitoneal). Body temperaturewasmaintained at 37 °Cwith
the help of a heating blanket. The animals were head-fixed in a ste-
reotaxic apparatus and the skulls exposed. A metal plate was attached
to the skull and a chamber formed with dental acrylic, which was filled
with warm cerebrospinal fluid. Two 1mm diameter holes, one for the
LFP recordings and one for the whole-cell recordings, were drilled over
the left hemisphere and the underlying dura mater was removed.

After electrophysiological recordings, mice were euthanized by
transcardial perfusion with 0.1M phosphate buffer, followed by 4%
Paraformaldehyde solution, and 150–200μmthick brain sectionswere
processed with the avidin-biotin-peroxidase method. Sometimes, a
subsequent Nissl stain was applied before embedding. Visualization of
biocytin filled neurons allowed for the determination of cell type and
recording site. Unidentified neurons were excluded from analysis. All
experimental procedures were carried out according to the animal
welfare guidelines of the Max-Plank-Society.

Electrophysiology and data acquisition
Local field potentials (LFPs) were recorded with an 8 site single-shank
multisite probe (NeuroNexus Technologies). LFP from layer 2/3 of
posterior parietal cortex (2mm posterior to bregma, 1.5mm lateral)
was used to characterize neocortical Up-Down states. In vivo intra-
cellular membrane potential (Vm) was recorded in whole-cell config-
uration by using borosilicate glass patch pipettes with DC resistances
of 4–8MΩ and filled with a solution containing 135mM Potassium
Gluconate, 10mM HEPES, 4mM Potassium Chloride, 10mM Phos-
phocreatine, 4mM MgATP, 0.3mM Na3GTP (adjusted to pH 7.2 with
KOH), and 0.2% biocytin for subsequent histological identification.
Whole-cell recording configuration was achieved as described
previously104. Relative to bregma, the anteroposterior (AP), medio-
lateral (ML) and dorsoventral (DV) coordinates of the craniotomies for
the Vm recordings were made around −4.5mm AP and 4mmML for
MEC; −3.5 to −4mm AP, 4.5mmML and 4mm DV for LEC; −1.5 to
−2mm AP and 1mmML for parietal cortex; 1 to 1.5mm AP and 1mm
ML for frontal cortex; 2 to 3mmAP and 0.5 to 1mmML for prefrontal
cortex.

The average initial series resistance was 46MΩ, and Vm values
were corrected for the estimated junction potential of
approximately +7mV.

The Vmwas acquired by Axoclamp-2B (Axon Instruments) and fed
into a Lynx-8 amplifier (Neuralynx). The Vm and LFP were recorded by
an HS16 preamplifier (Neuralynx) for about 20–40minutes. The
complete recording was used for subsequent statistical analysis. The
LFP were sampled at 2 kHz, low-pass filtered below 475Hz, and
amplified 1000–5000 times. The membrane potential was low-pass
filtered below 9 kHz, sampled at 32 kHz, and amplified 50–150 times.
Simultaneously, the DC value of Vmwas recorded by an ITC18 interface
(Instrutech) under the control of Pulse software (Heka) or by a
Micro1401with Spike2 software (CED). Someof these DC-coupled data
were recorded in discontinuous sweeps of 7 or 10 s, separated by 5 or
2 s, respectively. Data from previous work22 was supplemented with
additional recordings fromMECIII and LECIII. The parietal, frontal, and
prefrontal Vm measurements are entirely new.

Data preprocessing
All analysis was restricted to subthreshold fluctuations in the mem-
brane potential by removing spikes as follows. The temporal derivative
of the bandpass-filtered (100Hz–8 kHz) membrane potential signal
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was computed, and times when this derivative exceeded 10 standard
deviations above themeanwere taken as spike times. Spikewaveforms
were then removed by replacing 3ms of data following the onset of
each spike by linear interpolation of adjacent values. To remove the
50Hzmains humand itsmany harmonics, 8-pole bandstop filterswere
used at 45–55Hz, 95–105Hz, 145–155 Hz, 195–205Hz, 245–255Hz, and
295–305Hz.

Explicit-duration Hidden Markov model detection of Up and
Down states
Synchronized epochs, wherein the LFP and cortical Vm undergoes
synchronous transitions of Up and Down states (UDS), were selected
by locating and eliminating periods of data with desynchronized
activity where UDS are absent. Previously outlined methods58 were
closely followed. Briefly, the spectrogram of the signal was computed
in 15 s overlapping windows using multi-taper methods (Chronux
Matlab toolbox)with a time-bandwidth product of 4, and seven tapers.
The maximum log power in the range of 0.05–2Hz and the integral of
the log power in the 4–40Hz rangewe then used to locate and remove
desynchronized epochs in the data.

The remaining data exhibited UDS. UDS of both membrane
potential and neocortical LFP were classified using two state explicit-
duration hiddenMarkovmodels (EDHMMs). The Vm and LFP were first
filtered in the low frequency (0.05–2Hz) range, and a gaussian
observation EDHMMwas fit to thefiltered signal, with inverseGaussian
models of the state duration distributions. The means of the state-
conditional gaussians were slowly varying functions of time, where the
parameters were estimated over a 50 s window length. We found the
maximum likelihood parameter estimates of the EDHMM, and com-
puted the resulting “Viterbi” sequence, which was used to define UDS
oscillations.

Assignment of corresponding neocortical-entorhinal state
transitions
Given two UDS sequences, one for the neocortical LFP (the afferent
network in the simulation) and one for the entorhinal Vm (efferent
network), the fine temporal relationships and quantized duration was
calculated by first assigning each Up/Down state in the Vm to its cor-
responding set of trigger states in the LFP. This was done through a
greedy search algorithm, where in each iteration of the algorithm, the
Up/Down state initiations were linked to the closest Up/Down state
initiations in the corresponding LFP. Note that this does not guarantee
a one-to-one mapping from Vm states to LFP states; those Vm states
which map onto more than one LFP state are termed “persistent.” The
quantized duration of a Vm state was calculated as the number of total
LFP states (both Up and Down) that would fit inside a particular Vm

state, with each Up and Down state in the cycle contributing to 0.5
units of time (Supplementary Fig 10).

Model fitting
TheWEXT -WINT parameter spacewas divided into a 100-100 grid, and
each point was taken as the input into 5 independent simulations of
length 1000 s. For each experiment, we calculated the “distance”
between the experimental data SPA/SPI level and each simulated
SPA/SPI level (Supplementary Fig. 7). Let ϕSPA=SPI denote the propor-
tion of efferent states which were classified as SPA/SPI (see above) in
the experiment, and ξSPA=SPI denote the proportion in a given simula-
tion. The distance between the experiment and any particular simu-
lation is then given by d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕSPA�ξSPAð Þ2 + ϕSPI�ξSPIð Þ2

p
. The simulation with

the minimum distance to the experiment was chosen as the best fit
(Fig. 3a). One could also take ϕ and ξ to denote the proportion of
afferent LFP states which were classified as ‘skipped’ by the efferent
network, and use this for the distance metric. Results of this fit are
shown in Supplementary Fig. 8, and are virtually identical to the pro-
cedure used in Fig. 3a of the main text.

Statistics and hypothesis testing
Central tendencies and variability is reported as mean plus/minus
standard deviation, unless otherwise noted. All hypothesis tests were
performed using two-sided nonparametric Wilcoxon rank-sum tests
for equal medians. Wilcoxon signed rank tests were used for paired
comparisons or one-sample tests. Correlations were computed using
Spearman’s rank correlation coefficient. A p-value of less than0.05was
used for statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data is available upon request, please contact the corresponding
author. Source data are provided with this paper.

Code availability
Code to simulate the coupled network is available on github.com/
krishnizzle/Coupled_UDS_Networks.
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