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Anomalous dynamics of a passive droplet in
active turbulence

Chamkor Singh 1 & Abhishek Chaudhuri 2

Motion of a passive deformable object in an active environment serves as a
representative of both in-vivo systems such as intracellular particlemotion in
Acanthamoeba castellanii, or in-vitro systems such as suspension of beads
inside dense swarms of Escherichia coli. Theoretical modeling of such sys-
tems is challenging due to the requirement of well resolved hydrodynamics
which can explore the spatiotemporal correlations around the suspended
passive object in the active fluid. We address this critical lack of under-
standing using coupled hydrodynamic equations for nematic liquid crystals
with finite active stress to model the active bath, and a suspended nematic
droplet with zero activity. The droplet undergoes deformation fluctuations
and its movement shows periods of “runs” and “stays”. At relatively low
interfacial tension, the droplet begins to break and mix with the outer active
bath. We establish that the motion of the droplet is influenced by the inter-
play of spatial correlations of the flow and the size of the droplet. The mean
square displacement shows a transition from ballistic to normal diffusion
which depends on the droplet size. We discuss this transition in relation to
spatiotemporal scales associated with velocity correlations of the active bath
and the droplet.

The random motion of a passive tracer particle moving in a fluid at
equilibrium is the starting point of describing fluctuating dynamics1.
Microrheology suggests that the local and bulk mechanical properties
of complex fluids can be extracted from the dynamics of such tracer
particles2,3. Further intricacies arise if the surrounding fluid is a non-
equilibriumactive bath, like the cell cytosol,which consists of different
kinds of semiflexible filaments and motor proteins rendered active by
the hydrolysis of chemical fuel like ATP. The dynamics of passive
deformable objects in such an active environment can provide
invaluable information about the viscoelastic properties of the sur-
rounding fluid and the transport of intracellular vesicles and granules
through the cytosol4. The active cytosol belongs to the larger class of
activefluids,where chemical energy is converted intomechanicalwork
by generating stresses at the microscale5–8. Active fluids have been
shown to exhibit unusual transport properties such as enhanced dif-
fusion, accumulation near boundaries, and rectification9,10. Experi-
ments using passive particles in active fluids suggest anomalous

behavior of the passive particle at short time scales, and a dramatically
enhanced translational diffusion at long times11–15.

In an active fluid, the collective dynamics of the suspended
swimmers such as microbial suspensions, cytoskeletal suspensions,
self-propelled colloids, and cell tissues, generate spontaneous flows.
These flows are characterized by chaotic spatiotemporal patterns and
are referred to as active turbulence16,17 due to their apparent resem-
blance with classical turbulence. Experimental studies of active tur-
bulence look at the velocity fields and their statistics to characterize
hydrodynamic flows18 and show the creation, transportation, and
annihilation of topological defects by active stresses19. Theoretical
studies of passive tracers in active fluids use either the generalized
Langevin equation with different properties of the friction and fluc-
tuating force due to the fluid or use particle-based simulations of
passive and active objects20,20–35, rarely coupling the hydrodynamics of
the outer active bathwith the suspended passive components because
of the complexity involved27,36 with notable exceptions37–41. Recent
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experiments of mobile rigid inclusions in an active nematic system
have further shown the importance of the complex interplay and
feedbackbetween themotion of such inclusion and the activefluid42. A
vesicle moving in the cytosol on the other hand is deformable and
naturally one would like to understand the influence of the active
environment on its dynamics.

One of the theoretical approaches to studying active turbulence is
active liquid crystal theory, where the continuum equations of motion
are built from symmetry arguments. A particular class is active apolar
nematic systems characterized by head-tail symmetry of the con-
stituent particles–tending to align with each other. These systems
exhibit characteristics such as instability of the isotropic nematic state
in certain parameter regimes leading to intriguing pattern
formation6,16,43–45, universal scalings of the energy spectra46–48, topolo-
gical chaos49, and in general far from equilibrium dynamics50. The
continuum equations for such a system are described in detail in the
“Methods” section. The homogeneous isotropic state, in certain
parameter regimes, is unstable and goes into a sequence of
instabilities51. Once the system is in a developed state (Fig. 1a–d), the
ensemble-averaged mean kinetic energy in the system approaches a
statistically steady state52 (Supplementary Fig. 1). We study the
dynamics of a passive nematic droplet moving in this statistically sta-
tionary state of active nematic turbulence (Fig. 1a–d). Inverse to this
setup are systems consisting of active droplets immersed in passive
media which demonstrate complex behaviors, for example, self loco-
motion, spontaneous rotation and division of active nematic
droplets53–55, self-organization and division in active liquid droplets56,
dynamic defect structures in active nematic shells57, active wetting58

and emulsification in mixtures of active and passive component
media59. As an example, it is known that an isotropic liquid droplet in a
passive nematic liquid crystal under applied shear or otherwise
undergoes different modes of movement (oscillatory, breakup, or
motile) when the activity and anchoring conditions at the surface of
the droplet are changed60,61.

However, in our system, the suspended phase is a passive nematic
soft objectwithfinite interfacial tension, and thebath is an active liquid
crystal in a turbulent state. We demonstrate how the interaction
between the size of the inclusions and the spatial correlations of the
flow affects the mobility of passive inclusions in active turbulence as
the surface tension and droplet size are changed.We establish that the
velocities in the bath around the droplet are correlated over a certain
spatial scale which is independent of the droplet size. However, the
velocity autocorrelations of the resulting droplet trajectories exhibit
multiple temporal scales which depend on the droplet size, but not so
much on the interfacial tension. We discuss the importance of these
scales in understanding the dynamics of the droplet in the active bath.
Usually, these correlations are neglected for simplicity but we resolve
them and posit that these correlations are significant enough to alter
the dynamics of the suspended passive droplet. In general, we observe
that the droplet undergoes deformation fluctuations and shows peri-
ods of “runs" and “stays", much like a bacterium. This aspect, however,
strongly depends on the size of the object and the correlations inside
the surrounding active bath. We compute an integral length scale
associatedwith the one-time two-point velocity correlation function of
the surrounding active bath and observe that the droplets with sizes
smaller than this length scale move relatively farther. Finally, we pro-
vide a consistent Langevin framework with a random force that is
correlated in time. This description describes the simulation results
qualitatively well.

Results
To study the motion of a passive nematic droplet in an active nematic
medium, we computationally solve the continuum hydrodynamic and
nematodynamic equations for apolar active nematics. The detailed
model is described in the Methods section. The essential aspect of our

simulations is that the active stresses given as σ A = − ζQ where Q
characterizes nematic order, are non-zero in the outer bath (ζ ≠0) or in
the active nematic phase surrounding the droplet, and are set to zero
inside the droplet (ζ = 0) which is considered as a passive nematic
phase. In this work, we restrict ourselves to extensile systems only i.e.
the activity parameter is taken to be ζ≥0. Initializing from a perturbed
nematic state, and upon fine-tuning of the amount of local energy
injection (the activity) and other model parameters, the outer phase
transitions to a developed active nematic turbulent state (Fig. 1a–d)
after some initial period 0 ≤ t ≤ 300 of instability growth. Eventually
active stresses, on average, are balanced by the passive, dissipative,
frictional, and interfacial stresses and the system reaches a statistically
steady state (Supplementary Fig. 1).

To characterize the active turbulent state, we first look at
the kinetic energy spectrum EðkÞ= h 1

2π

P
k ≤ jkj<k +Δk jûðk,tÞj2i where

k is the magnitude of the wavevector or the wavenumber,
ûðk,tÞ= R uðr,tÞ expð�ik � rÞdr, u is the velocity field, and 〈〉 denotes
average over uncorrelated configurations. We find a power law scaling
E(k) ~ k−4 (Supplementary Fig. 2) which has been recently observed in a
number of active nematic single-phase studies62,63. The suspended
droplet is also setup to have certain interfacial tension which acts at
the interface between the droplet and the outermedium (seeMethods
for a detailed discussion). We characterize the dynamics of this bio-
logically relevant inverted system by analyzing the trajectories of the
droplet with varying radius and interfacial tension, spectrum analysis
of the time series of the trajectories, computing the translational and
angular step distributions, mean square displacement, time scales
associated with velocity autocorrelation function (VACF) of the tra-
jectories, and most importantly the integral length scale associated
with the one-time two-point velocity correlation function of the sur-
rounding active bath.

Statistics of droplet trajectories, time series, and spectral
analysis
Droplets of radii in the range 8 ≤ R ≤ 64 are suspended in the active
turbulent state, and for a given radius the simulations are repeated at
least 30 times to obtain an ensemble of stochastic trajectories exe-
cuted by the droplet. A typical set of trajectories of the geometric
center of thedroplet is shown in Fig. 1e, f for radiusR = 15 andR = 45. To
be precise, the position of the center of the droplet is defined as
r(t) =∑ixi(t)/N where the perimeter of the droplet is divided into N
points having positions xi – consistent with the front-tracking algo-
rithm which we use to model the interfacial dynamics64–66. As the
droplet interacts and is forced by the surrounding active bath, we
measure its distance relative to the initial position with time ∣r(t)∣;
typical cases aredepicted in Fig. 1g. Along the trajectories, the droplets
undergo periods of “runs" and “stays" as marked on the plot.

We also note that the period of undulations of droplet deforma-
tion parameter A(t), defined as the ratio of horizontal to vertical span
of the droplet, increases as we increase the radius (Figs. 1h and 2c).
With increasing size, the droplet dynamics slows down and we transit
from a “fast" process towards a “slow" process.

The trajectories consist of discrete translational steps takenby the
droplet center Δr ≡ ∣r(t +Δt) − r(t)∣ in simulation time step Δt. In addi-
tion to translational steps Δr, we define angular steps
Δθ= cos�1 a � b=ab� �

where a = r(t +Δt) − r(t) andb = r(t) − r(t −Δt). The
distribution of these two quantities is shown in Fig. 1i, j, and their time
series in shown in Fig. 2a, b. The step size distribution (or equivalently
the step speed distribution) spreads upon decreasing the radius of the
droplet (Fig. 1i). Smaller droplets execute relatively larger translational
steps (Figs. 1i, 2a) which is clear from the increasing variance of Δr as
we decrease R (Fig. 3b). The change in direction of motion of the
droplet is nearly exponentially distributed for intermediate range of
angles (Δθ ≈ 25o to 65o), and exhibits some rare events of > 90o or close
to complete reversal of the direction (Figs. 1j and 2b).
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Figure 2(a–c) depicts the time series of (a) translational step size
Δr(t), (b) change in the direction of motion Δθ(t), and (c) droplet
aspect ratio A(t) respectively, while Fig. 2 (d–f) shows the corre-
sponding power spectrum of these signals. Smaller droplets “drift"
significantly more than the larger ones. The deformation time scales
also change (Fig. 2c). The corresponding spectral plots indicate that
the translational step and the change in the direction of motion
exhibit nearly 1/ω or pink noise at higher frequencies. The spectrum
of the aspect ratio or the deformation parameter A(t), however,
exhibits nearly 1/ω3 noise. Although it is known that 1/ω noise is pre-
sent in many natural, man-made, and scientific systems67,68, its
underpinnings are debated over decades69,70. Does the above 1/ω
noise have to do with self-organized states in our system, or do they
have a different origin? In addition, 1/ω3 noise in the deformation or
the droplet aspect ratio spectrum indicates that deformation
dynamics are distinct from the motion of the droplet. This type of
noise is usually observed in oscillators implying that the droplet
deformation has underlying oscillatory features. Figure 2d, e implies
that neither two consecutive droplet position increments nor two

consecutive Δθ are independent, implying that the dynamics are far
from Brownian.

Mean square displacements and spatiotemporal correlations
Assuming a functional form for the translational distribution
f ðΔrÞ=Be�λðΔrÞ2 with B a constant, the translational diffusion coeffi-
cient comes out to beD =

R1
�1 ðΔrÞ2f ðΔrÞdðΔrÞ=2τ = ffiffiffiffi

π
p

B=ð4τλ3=2Þwith
discretization time τ and a diffusive mean square displacement
(MSD) ~Dt for t≫ τ. However, our computation ofMSD shows a regime
where 〈Δr2(t)〉 ~ tδ with power exponent 1 < δ < 2, before any transition
to normal diffusion (Fig. 3a). This behavior has been observed in a
number of experiments of tracer diffusion in bacterial turbulence11,71–74.
Also, the transition time depends on R, as depicted in Fig. 3a.

To understand how the droplet of a given size interacts with the
active bath, we compute one-time two-point velocity correlation
functionCvvðrÞ= huið0ÞuiðrÞi=hðuið0ÞÞ2i of the velocity field of the active
bath, and associated integral length scale, ‘v �

R1
0 CvvðrÞdr (Fig. 3c, d).

We find that as we decrease the radius of the droplet below ℓv, the
droplet executes relatively larger Δr (Figs. 3b, 2a, and 1i). Conversely,

Fig. 1 | Droplet size dependence and deformation fluctuations. a, b Typical
absolute velocity field scaled by its root mean square value for system size
200 × 200 and 400 ×400, respectively at t = 500. The interface between the pas-
sive nematic droplet and the outer active bath is shown with a solid yellow line.
c, d Typical vorticity field for system size 200× 200 and 400× 400 respectively at
t = 500. The length and times scales are expressed in units of xo =

ffiffiffiffiffiffiffiffiffiffiffi
Ko

ΓoCoηo

q
and

to =
1

ΓoCo
respectively, where Ko is the elastic constant, Γo is themolecular relaxation

parameter, Co is a material constant, and ηo is the viscosity in the outer active
nematic phase (see Methods). e Individual trajectories of the geometric center r(t)
of passive nematic droplet of radius R = 15 and R = 45, and (f) droplet interface
during typical realizations forR = 15 andR = 45.gTypical realizationsof theposition

of the droplet center relative to the initial position, ∣r(t)∣, exhibiting periods of “run"
and “stay".hRatio of the horizontal to the vertical spanof the droplet forR = 15, 30,
and 45. The dynamics of translations as well as the aspect ratio slow down as the
radius is increased. i Probability distribution function of the translational steps
taken by the geometric center of the droplet. PDF(Δr) narrows down upon
increasing the radius of the droplet. j PDF of discrete changes in the direction of
motion of the droplet. PDF(Δθ) scales nearly exponentially for intermediate range
of angles (Δθ ≈ 25o to 65o) with heavy-tailed rare events for > 90o or close to com-
plete reversal. The quantitiesΔr and Δθ are calculated over a fixed time step of 10–3

measured in units of to.
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droplets with a size larger than ℓv undergo negligible overall dis-
placement. The variance of step size distribution drops as the size of
the droplet is increased, and if R > ℓv the variance drops to ≈ 1 (Fig. 3b).
We propose that droplets with R≪ ℓv experience relatively larger drifts
and droplets with R≫ ℓv move relatively smaller distances because in
the latter case the velocities at any twoopposite endsof thedroplet are
expected to be decorrelated – resulting in negligible net advection of
the droplet.

To further understand the droplet dynamics, we compute the
normalized VACF C~v~vðτÞ= h~viðtÞ~viðt + τÞi=hð~viðtÞÞ2i, where ~vi is the ith

component of the droplet velocity (Fig. 3e, f). As the droplet radius
increases,C~v~vðτÞ decays slowerwith lag time τ indicating a dependance
on the size of the droplet, as we note in Fig. 3 (e, f). We also note the
existence of multiple time scales (Fig. 3f), which again distinguish the
present droplet dynamics from standard Brownian VACF. It is also to
be noted that although the change in radius alters the time scale
associated with the VACF (Fig. 3e, f), it has negligible influence on ℓv
(Fig. 3c, inset) implying that suspending a droplet has negligible effect
on the velocity characteristics of the surrounding active bath.

Effect of interfacial tension
We compute the MSD and the VACF with varying ratios of the inter-
facial tension to the viscous force given as ReI (see Methods). In

Figs. 4a–h, we show the droplet shape for two different ReI as time
progresses. For relatively lower surface tension, the droplet begins to
break and mix with the outer active bath (Fig. 4e–h). The MSD
exhibits a prolonged ballistic regime and transitions to a regime
with MSD ~ tδ with 1 < δ < 2 (Fig. 4i). The exception occurs for very
small values of ReI. The MSD for this mixing case does not become
diffusive and reaches to a plateau, indicating that the center of mass
of the mixed sub-droplets remains almost stationary after the initial
ballistic regime. Contrary to the size effect in Fig. 3, varying ReI does
not give rise to appreciably different time scales for VACF (Fig. 4j).
The effect of ReI and R on droplet trajectories is also explored
with the help of ensemble-averaged total length l of trajectory
divided by the time period of the trajectory T i.e. 〈l/T〉 (Supple-
mentary Figs. 3 and 4). Although 〈l/T〉 comes out to be inversely
proportional to radius R, which endorses our postulate that the
smaller droplets travel longer in a given time period, ReI has a
negligible effect on 〈l/T〉, except in cases where droplet breaks
and mixes.

Effective Langevin dynamics
Our observations suggest that the random forces due to the active
bath on the droplet are correlated and depend on the droplet
size. Therefore, we assume the following form of a random

Fig. 2 | Spectral analysis of droplet variables. The time series of (a) translational
step size Δr, (b) change in direction of motion Δθ, and (c) droplet aspect ratio or
deformation parameter A, respectively. d–f Corresponding power spectrum of the
time series shown in (a–c). The spectrum in panel (d) implies that two consecutive
droplet position increments are not independent and thus the case is different from

standard Brownian increments because Brownian increments are known to be
independent. Similarly, panel (e) implies that two consecutive Δθ are not inde-
pendent. The spectrumof the time series of aspect ratioA indicates that thedroplet
deformations have underlying oscillatory features. The solid black lines in (d–f) are
a guide to the eye.
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force acting on the droplet with a memory which decays exponen-
tially in time,

hFðt0ÞFðt00Þi =Λ exp½�jt0 � t00j=τF �, hFðtÞi=0, ð1Þ

where τF is a characteristic time scale, Λ ≡Dα2/τF, where D is the dif-
fusion coefficient and α is the coefficient of friction from the Langevin
equation for the athermal casem€rðtÞ= � α _rðtÞ+ FðtÞ (see Methods for
details with the thermalnoise). TheMSD 〈r(t)2〉 then canbeobtainedby
integrating the Langevin equation with exponentially correlated ran-
dom force and is depicted in (Fig. 3b, inset). The crossover from a
ballistic 〈r(t)2〉 ~ t2 to diffusive 〈r(t)2〉 ~ t is observed. In the limit τF≫ τm,
the steady-state velocity autocorrelation is given as

hvðtÞ � vð0Þi = 2D
τF

exp½�t=τF �: ð2Þ

where τm ≡m/α is the inertial time scale. A comparison of this with the
VACF obtained from our simulations suggests that τF should increase
with R shown in simulations in Fig. 3e, f. In the previous section,
〈l/T〉 ~ 1/R suggests that the average velocity of the droplet decreases
approximately linearly with the droplet size (Supplementary Fig. 3).
From the effective Langevin approach, we note that the mean squared
velocity in the long time limit for the athermal case can be obtained as
hv2i=u2

0= 1 +m=ατF
� �

, where u0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=τF

p
is a characteristic active

velocity of the particle (see Methods for details). Therefore, we can
conclude that larger particles will have smaller absolute velocities.

Effective Langevin descriptions of tracers in active baths have been
used in the past11,75–79. For instance, Wu and Libchaber11 used similar
approach to relate the tracer dynamics with standard Brownianmotion
but concluded that the presence of collective effects in the outer bath
are also important. It is important to note that the effective Langevin
description can only qualitatively reproduce some aspects of the

droplet motion. Our numerical simulations have shown how collective
effects in the bath affect the dynamics of inclusions with the help of
computations of spatial correlations of the velocity field of the active
bath relative to inclusion size, VACF, MSD, and spectral analysis. These
results need to be integrated into a more detailed theoretical study.

Discussion
The study of active fluids and their interaction with inclusions can
provide us with possibilities to harness the inherently chaotic
dynamics of active fluids to perform useful functions42. Motile bacteria
is known to interact with inclusions generating asymmetric forces,
while rigid inclusions in active nematic fluid made using biofilaments
such as microtubules, can rotate milli-meter sized propellers and
pinwheels. However, intracellular objects in biologically active fluids
are deformable in nature. To this end in this work, we resolved to
understand the interaction between active fluids and motile and
deformable inclusions.

We have studied the stochastic dynamics of a passive nematic
droplet suspended in a statistically steady state of active nematic
turbulence. The transition from superdiffusive mean square displace-
ment regime to normal diffusion depends on the size of the suspen-
sion and the properties of the active bath. We find that the integral
length scale associated with the two-point velocity correlation func-
tion in an active biological medium can be used to determine whether
a passive object with a particular size will remain almost positionally
localized or will experience considerable “drift". The motion comes
out to be far from the equilibrium standard Brownian motion. Few
aspects of the dynamics can be qualitatively described by a Langevin
model with exponentially correlated random force, however, for full
understanding one needs to resolve the spatiotemporal correlations in
the surrounding active bath.

Our results can be experimentally tested, for example, using a
setup of quasi-two-dimensional suspension of beads and bacteria on a

Fig. 3 | Dynamics and spatiotemporal scales. aMean square displacement (MSD)
of droplets of different radii Rwith to = 300. b Variance of discrete step sizes taken
by droplets of different radii. The variance decreases as the droplet radius increa-
ses. (b, inset) An analytical calculation of theMSD shows crossover from ballistic to
diffusive regime for a particle under exponentially correlated random force.MSD is
shown for different values of themassm, which is varied by choosing five different
inertial times τm( =m/α), in the limit τm≪ τF (seeMethods fordetails). The crossover

depends on τF and also on the droplet size R. c Time averaged one-time two-point
velocity correlation function Cvv(r) of the velocity field in the active nematic bath.
The integral length scale ‘v �

R1
0 CvvðrÞdr is marked with a vertical dashed line;

(c, inset) ℓv in the active bath changes negligibly upon changing the droplet radius.
d Integral length scale with time during typical realizations. e VACF C~v~vðτÞ of the
droplet trajectories with varying R, and (f) the same on a Semi-logarithmic scale
resolving the presence of multiple time scales.
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soap film11 or inside thin fluid films71. Experiments on self-diffusion of
the tagged bacterium in dense swarms grown on agar plates72, or of
ameboid cells73, already confirm the existence of a superdiffusive
regimewhere it is hard to reach a normal diffusive regime. For example,
multi-potent progenitor cells exhibit superdiffusive regime which can
be persistent even for hours74. Similar observations have been made in
setup of quasi-two-dimensional suspension of beads and bacteria on a
soap film11 or inside thin fluid films71. These experimental observations
of superdiffusion and delayed transition to normal diffusion of sus-
pensions inside active swarms lack a concrete theoretical explanation.
Here we have pinpointed how the size of the droplet and the properties
of the active bath change the spatial and temporal scales. Our numerical
study will establish a better understanding of proposed analytical the-
ories of diffusion of bodies in active systems12,20,30–35.

Methods
Active nematohydrodynamics simulations
Apolar active systems in the continuum limit can bemodeled using the
passive nematic liquid crystal theory with added active stresses, com-
bined with momentum hydrodynamics. The orientation of nematics is

described by a director field n, with n ≡ −n for apolar nematics. The
symmetric traceless second rank tensor Q =q d

d�1 ðnn� I=dÞ char-
acterizes the nematic order, where q is the strength of the nematic
order, I is the identity tensor and d denotes the spatial dimension. In
our simulations, d = 2. The evolution of Q is described by the nema-
todynamic equation43,45

∂tQ +u � ∇Q = S+ ΓH ð3Þ

where S = (λE +Ω) ⋅ (Q + I/d) + (Q + I/d) ⋅ (λE −Ω) − 2λ(Q + I/d)(Q :∇u) is
co-moving tensorwith E = [∇u + (∇u)T]/2 andΩ = [∇u − (∇u)T]/2 being
the strain rate and vorticity tensors respectively. The tensor H
describes the relaxation of Q towards the minimum of a free energy
and can be written as H =K∇2Q +CQ/3 +C(QQ −Q :Q I/d) −CQ(Q :Q),
where K is the elastic constant and C is a material constant43. The Q-
tensor field is coupled to the velocity field u via the momentum
equation

ρð∂tu+u � ∇uÞ=∇ � ð�pI+ 2ηE +σP +σAÞ � μu+ f I, ð4Þ

Fig. 4 | Effect of interfacial tension. The droplet is viewed at different time points
using the activityfield ζ for (a–d) ReI = 15 and (e–h) ReI = 1. At the lower value of ReI,
we show a break up of the droplet and subsequent mixing in the outer active bath.
The color bar shows the strength of the activity field ζ. iMSD with varying droplet
interfacial tension ReI showing the initial ballistic regime and the transition towards

a diffusive regime. The dashed lines are a guide to the eye. At very low ReI = 1, MSD
reaches a plateau, indicating that the center of mass of the mixed sub-droplets
remains almost stationary after the initial ballistic regime. j The VACF with varying
ReI indicates that varying the surface tension does not give rise to different time
scales in the VACF for a given droplet size. In all the plots, R = 16.

Article https://doi.org/10.1038/s41467-024-47727-1

Nature Communications |         (2024) 15:3704 6



where the passive elastic stress tensor σP = 2λ(Q + I/d)(Q : H) −
λH ⋅ (Q + I/d) − λ(Q + I/d) ⋅H +Q ⋅H −H ⋅Q −K∂iQkl∂jQkl

43. The stress
tensor σ A = − ζQ gives rise to an activity ormotility in the system in the
regions where ζ ≠0 (outside the droplet) and remains zero in the
region occupied by the droplet. We restrict ourselves to extensile
systems only i.e. the activity parameter is taken to be ζ ≥0. The
term− μumimics substrate friction or drag, and p is the pressure. The
fluid is considered incompressible so that∇ ⋅u =0. The stability of the
system of equations around the state Q =0 and u =0 depends upon
the activity and alignment parameter strengths, the size of the system,
aswell as othermodel parameters.We select the parameters such that
the systementers a turbulent state as timeprogresses. The trajectories
of the passive nematic droplet are then studied in this statistically
stationary active turbulent state. f I in Eq. (4) is the interfacial force
term which we discuss in detail in a later subsection.

Rescaling of governing equations and simulation parameters
If we consider the following reduced or rescaled variables/fields/
properties/operators:

ρ0 = ρ=ρo, t
0 = t=to, ∂

0
t = to∂t , u

0 =u=uo, ∇
0 = xo∇, p

0 =p=po, η
0 =

η=ηo, E
0 =E=Eo, σ

P 0 =σP=σP
o, ζ

0 = ζ=ζ o, Q
0 =Q=q, μ0 =μ=μo, f

I 0 = f I=f Io,
Γ0 = Γ=Γo, H

0 =H=Ho, S
0 =S=So, K

0 =K=Ko, C
0 =C=Co, and fix the fol-

lowing scales: xo =
ffiffiffiffiffiffiffiffiffiffiffi

Ko
ΓoCoηo

q
, to =

1
ΓoCo

, ρo =
ηoto
x2o

, po =
ηo
to
, uo =

xo
to
, So =

uo
xo
, Ho =Co = σ

P
o =

Ko
x2
o
, q= 1, then the dimensional form of

the governing equations can be rescaled into the following non-
dimensional form

Re ρ0ð∂0tu0 +u0 � ∇0u0Þ=∇0 � ð�p0I+2η0E0 +σP 0

�Rea ζ 0Q0Þ � Ref μ
0u0 +ReI f

I 0,
ð5Þ

∂0tQ
0 +u0 � ∇0Q0 = S0 + Γ0H0 ð6Þ

E0 = ½∇0u0 + ð∇0u0ÞT �=2 ð7Þ

Ω0 = ½∇0u0 � ð∇0u0ÞT �=2 ð8Þ

S0 = ðλE0 +Ω0Þ � ðQ0 + I=dÞ+ ðQ0 + I=dÞ � ðλE0 �Ω0Þ
� 2λðQ0 + I=dÞðQ0 : ∇0u0Þ ð9Þ

H0 =K 0∇02Q0 +C0Q0=3 +C0ðQ0Q0 �Q0 : Q0 I=dÞ
� C0Q0ðQ0 : Q0Þ ð10Þ

σP 0 =2λðQ0 + I=dÞðQ0 : H0Þ � λH0 � ðQ0 + I=dÞ
� λðQ0 + I=dÞ �H0 +Q0 �H0 �H0 �Q0 � K 0∂0iQ

0
kl∂

0
jQ

0
kl :

ð11Þ

Here 0 denotes a non-dimensional variable/field/property/opera-
tor, and

Re =
ρouoxo

ηo
, Rea =

toζ o
ηo

, Ref =
μox

2
o

ηo
, ReI =

xotof
I
o

ηo
, ð12Þ

are non-dimensional groups signifying the ratio of inertial force to
viscous force, active force to viscous force, friction force to viscous
force, and interfacial tension force to viscous force, respectively.
Numerical values of the non-dimensional parameters and their
properties in the active and passive phases are summarized in Table 1.
In addition to fluid properties in the active and passive phases, the
table also summarizes other simulation parameters namely the system
size, grid size, time step, and droplet radius.

The grid and time steps are taken such that the advective, as well
as viscous time step conditions, are well satisfied, namely64

Δt <C1
Δ

umax
, Δt <C2

2ηmin

ρmaxu2
max

, Δt <C3
ρminΔ

2

4ηmax
, ð13Þ

where Δ is the grid size Lx/M = Ly/N, and subscripts max, min denote
the maximum and minimum values of the respective properties from
the two phases. For simulation to remain stable, the factors C1, C2, and
C3 have to be < 1, and to be conservative, we choose time and grid size
combination such that these conditions are always satisfied.

Numerical scheme
The coupled set of nematodynamic,momentum, and incompressibility
equations are integrated computationally, utilizing a finite-volume

Table 1 | Numerical values of parameters and fluid properties adopted in the simulations

Non-dimensional parameter/property

Re 0.1

Rea 0.5

Ref 0.00075

ReI � Ca�1 1, 3, 7, 11, 15, 19

System size Lx × Ly 200 × 200, 400 × 400, 450 × 450

Grid size M ×N 256 × 256, 512 × 512, 576 × 576

Droplet radius R 8, 15, 16, 30, 32, 45, 48, 64

Time step Δt 1.0 × 10−3

Phase 1: active nematic fluid Phase 2: passive nematic droplet

Density ρ0 ρ0
1 = 1:0 ρ0

2 = 2:0

Viscosity η0 η0
1 = 1:0 η0

2 = 2:0

Activity ζ 0 ζ 01 = 1:0 ζ 02 =0:0

Friction μ0 μ0
1 = 1:0 μ0

2 = 1:0

Alignment λ λ1 = 0.8 λ2 = 0.8

Elastic constant K0 K0
1 =0:25 K0

2 =0:25

Material constant C0 C0
1 =0:4 C0

2 =0:4

Relaxation Γ0 Γ01 = 1:0 Γ02 = 1:0

The above set of parameters are close to, for instance, the studies carried out by43,52.
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based pressure projection algorithm under an Eulerian one-fluid
approach64,66,80. In this, although the form of the governing equations
is same for both the phases, the properties and parameters such as
density, viscosity, activity, alignment, friction, etc. are considered as
fields and take different values in the two phases i.e. the values of
ζ 0,η0,ρ0, λ0,μ0 etc. at any given instant of time are set by the location of
the interface.

In addition, the interface exerts a stress of magnitude γκ in a
direction n normal to the interface where γ is the (constant) interfacial
tension and κ is the magnitude of the curvature. In 2D we use the
normal curvature κn ≡ dt/ds where t is the unit tangent and s is a
coordinate along the interface, measured positive in the direction of t.
The stress can be integrated over a surface area in 3D or over an
interface segment in 2D, around a given point xs(t) = (xs(t), ys(t)) on the
interface, to obtain a local representation of the interfacial force term

f Iðx,tÞ= lim
js2�s1 j!0

Z s2

s1

ds γ
dt
ds

δ½x� xsðtÞ�, ð14Þ

where δ[x − xs] = δ[x − xs]δ[y − ys] is the Dirac delta function in 2D. The
segment from s1 to s2 is centered at the point xs(t) on the interface.
However, the above representation is not quite useful for numerical
implementation. For that the continuous interface is replaced by lin-
early connected discrete points i and an average value of the “point"
force fI in an Eulerian control volume V =ΔxΔy, on which the u and Q
equations are solved, is taken as

1
V

Z
dV f I =

1
V

Z
dxdy

Z s2

s1

ds γ
dt
ds

δ½x� xsðtÞ�≈
γ

ΔxΔy

XNf

i= 1

Δti, ð15Þ

where Nf are the number of front points enclosed in the Eulerian
control volume V =ΔxΔy and Δti is the difference between the unit
tangent pointing from i to i + 1 and the unit tangent pointing from i − 1
to i. The interfacial force is obviously zero for control volumes
away from the interface or in which Nf = 0. Overall, the above force
gives rise to a jump in stress across the interface. For detailed
descriptions of the algorithm, the reader is referred to64–66. Also, the
non-dimensionalization of Eq. (15) results in

f Iof
I 0 ∼

γ

x2o

1
Δx0Δy0

XNf

i = 1

Δti, ð16Þ

which provides a scale for the interfacial force term f Io = γ=x
2
o and

therefore the non-dimensional parameter ReI in Eq. (12) turns out to be

ReI =
xotof

I
o

ηo
=

γ
ηouo

=
1
Ca

, ð17Þ

the inverse of the capillary number Ca. Once all the terms are calcu-
lated, the equations for u and Q are integrated in time in a coupled
manner using the pressure projection algorithm. The interface is then
advected using the velocity field solution, and the algorithm moves
to the next time step64–66. A feature of the present one-fluid
formulation is that the anchoring conditions at the interface need
not be input by hand. The advective fluxes in the continuum equations
are reconstructed using a sixth-order weighted essentially non-
oscillatory scheme81,82 which in present simulations has proven to
reduce numerical diffusion and help conserve the droplet mass or
area in 2D.

The extension of this method to flows with rigid bodies is not
generally well posed in the rigid limit83. A different forcing term with

coefficients to enforce the boundary conditions has been found to be
effective in simulating flow past solid objects at moderate Reynold’s
number and low Reynolds number turbulent flows84.

Mean square displacement and VACF
To incorporate the memory effect in the stochastic force in the Lan-
gevin equation, let us start from an exponentially correlated random
force

hFðt0ÞFðt00Þi=Λ exp½�jt0 � t00j=τF �, hFðtÞi =0, ð18Þ

where τF is the time scalewhich tells us the extent of the forcememory,
and Λ ≡Dα2/τFwith D and α being diffusion constant and coefficient of
friction respectively. This effective Langevin description is equivalent
to earlier approaches to describe passive tracers in active baths via
generalized Langevin equations with instantaneous friction and noise
with memory kernel11,75–79.

The equation of motion for a passive particle in such an active
bath for the underdamped case can be written as

_r= v, _v= � α

m
v +

1
m

FðtÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αkBT

p
m

ηðtÞ= � Γv+
1
m

FðtÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓkBT

m

r
ηðtÞ,

ð19Þ

where Γ ≡ α/m, T is the temperature and η is a white noise with zero
mean, unit variance, and flat power spectrum. For simplicity of the
argument, we present results for two dimensions although the for-
mulation can readily be extended to higher dimensions. The cross-
correlation function 〈v(t) ⋅ F(t)〉 is in general non-zero and carries
information about the balance between the energy supplied by the
active bath to the droplet and the energy dissipated by the droplet due
to the drag offered by the bath – the fluctuation-dissipation
mechanism. This correlation function can be readily obtained from
the expression for the velocity

vðtÞ= v0e�Γt + e�Γt
Z t

0
eΓt

0 Fðt0Þ
m

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓkBT

m

r
ηðt0Þ

 !
dt0: ð20Þ

Using this we obtain in the steady state limit,

hvðtÞ � FðtÞi= 2ΛτFΓ
mΓð1 + τFΓÞ

: ð21Þ

For τF Γ≫ 1, i.e. τF≫ 1/Γ =m/α = τm, we have

hvðtÞ � FðtÞi = 2Λ
mΓ : ð22Þ

For the athermal case, i.e. when T ! 0, the steady state velocity auto-
correlation function (VACF) can also be calculated as

hvðtÞ � vð0Þi= 2ΛτF
α2

τme
�t=τm�τF e

�t=τF

τm2�τF 2

h i
=2D τme

�t=τm�τF e
�t=τF

τm2�τF 2

h i
ð23Þ

Therefore, we have two competing time scales: the persistence time τF
and the inertial time τm. For τF≪ τm,

hvðtÞ � vð0Þi= 2D
τm

exp½�t=τm� ð24Þ

while for τF≫ τm,

hvðtÞ � vð0Þi = 2D
τF
exp½�t=τF �: ð25Þ

The mean squared displacement (MSD) can be calculated from the
VACF as hjrðtÞ � r0j2i=2

R t
0 dt1

R t1
0 dt2hvðt1Þ � vðt2Þi. In the limit of

τF≫ τm and for a zero initial velocity of the particle, the approximate
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form of the mean square displacement becomes

hjrðtÞ � r0j2i≈4DτF e�
t
τF � 1 + t

τF

� �
� 8Dτm e�

t
τm � 1

� �
e�

t
τF � 1

� �
:

ð26Þ

This solution is shown in Fig. 3 (b, inset).
Tomake the connection to the effect of size on the velocity of the

droplet, we note that the mean squared velocity in the long time limit
for the athermal case can be obtained as

hv2i= 2Λ
α2

τFΓ
1 + τFΓ

= 2D
τm + τF

= 2D=τF
1 +m=ατF

: ð27Þ

If we identify 2D=τF = u
2
0 where u0 is some active velocity of the par-

ticle, then it is clear that particles with larger radius ( ≡m) will have
smaller velocities than the smaller particles. In Supplementary Fig. 4,
we show that the ensemble averaged trajectory length of the particle
over a timeperiod, which gives the average velocity, decreases as ~ 1/R.

Data availability
The raw simulation data will be available upon request in a hard drive
because of its large size (TB). The processed data of the plots are
available as Source Data files in the Figshare database [https://doi.org/
10.6084/m9.figshare.25417522].

Code availability
The custom computer codes used for the simulations are available
from the authors upon request.
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