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Diastereo-divergent synthesis of chiral
hindered ethers via a synergistic calcium(II)/
gold(I) catalyzed cascade hydration/1,4-
addition reaction

Xiangfeng Lin1,2, Xia Mu 3, Hongqiang Cui3,4, Qian Li1,4, Zhaochi Feng1,
Yan Liu 1 , Guohui Li 4 & Can Li 1

Hindered ethers are ubiquitous in natural products and bioactive molecules.
However, developing an efficientmethod for the stereocontrolled synthesis of
all stereoisomers of chiral hindered ethers is highly desirable but challenging.
Herewe showa strategy that utilizes in situ-generatedwater as a nucleophile in
an asymmetric cascade reaction involving two highly reactive intermediates,
3-furyl methyl cations and ortho-quinone methides (o-QMs), to synthesize
chiral hindered ethers. The Ca(II)/Au(I) synergistic catalytic system enables the
control of diastereoselectivity and enantioselectivity by selecting suitable
chiral phosphine ligands in this cascade hydration/1,4-addition reaction,
affording all four stereoisomers of a diverse range of chiral tetra-aryl sub-
stituted ethers with high diastereoselectivities (up to >20/1) and enantios-
electivities (up to 95% ee). This work provides an example of chiral Ca(II)/Au(I)
bimetallic catalytic system controlling two stereogenic centers via a cascade
reaction in a single operation.

Hindered ethers are ubiquitous in natural products and bioactive
molecules, and the development of efficient synthetic methods has
long fascinated organic chemists1,2. The traditional Williamson ether
synthesis has been widely used to prepare primary alkyl ethers via SN2
substitution (Fig. 1a)3–5. However, when secondary or tertiary alkyl
halides are used as substrates, elimination side products are often
obtained. Baran and co-workers reported a successful route to hin-
dered ethers via the reaction between alcohol donors and electro-
generated carbocation intermediates (Fig. 1b)6. However, this elegant
method lacks an asymmetric version. More recently, the Fu Group
developed a Cu-catalyzed enantioconvergent substitution reaction of
α-haloamides with oxygen nucleophiles to synthesize α-oxygenated
amides (Fig. 1c)7. Nevertheless, an efficient catalytic methodology for

the synthesis of chiral hindered ethers with dual chiral centers has yet
to be established. Furthermore, stereo-divergent asymmetric catalysis
has recently emerged as a hot research topic in organic synthesis8–26.
This approach can afford all stereoisomers of the product, which is
crucial for chemical-biological studies and the pharmaceutical indus-
try, as different stereoisomers of chiral compounds often exhibit dis-
tinct biological activities27–29. Therefore, developing an efficient
method for the stereocontrolled synthesis of all stereoisomers of
chiral hindered ethers from readily available starting materials would
be highly desirable but challenging.

Nature often utilizes water as a nucleophile in enzyme-catalyzed
hydrations to synthesize chiral key structural motifs in various natural
products. However, the development of artificial asymmetric hydra-
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tions has been limited, perhaps due to the poor nucleophilicity of
water30–32. We hypothesize that using water as the nucleophile to react
with the highly reactive intermediate (HRI) could produce an alcohol
that is subsequently trapped by the other HRI, resulting in the for-
mation of a hindered ether. Ortho-quinone methide (o-QM) immedi-
ately came tomind as suitable HRI because they can be generated and
activated by chiral phosphoric acid (CPA) or Lewis acid from o-
hydroxybenzyl alcohols through dehydration33–51. The in situ released
water may serve as a nucleophile to initiate the subsequent cascade
reaction. Additionally, we selected 3-furyl methyl cation as the other
HRI because this specie can be generated by Au(I) complex-catalyzed
intramolecular cyclization from 2-(1-alkynyl)−2-alken-1-one52–61. Thus,
an asymmetric version of this cascade reaction can be achieved
through a highly efficient chiral acid/Au(I) complex synergistic cata-
lytic system by electrophilic activation of o-QMs with chiral acid and
activation of 3-furyl methyl cations with chiral Au(I) complex62–69.

Wepresent herein a bimetallic catalytic systemconsistingof chiral
Ca(II) and Au(I) catalysts, which facilitates a cascade reaction between
in situ generated water and both 3-furyl methyl cations and o-QMs.
This transformation affords a broad range of chiral tetra-aryl sub-
stituted ethers in moderate to high yields, with impressive levels of
diastereoselectivities (up to >20/1) and enantioselectivities (up to 95%
ee) (Fig. 1d). Specifically, we have discovered that chiral BINOL-derived
calcium phosphate catalysts70–80 serve as efficient Lewis acids for the
generation and activation of o-QMs. By carefully selecting a suitable
chiral Au(I) complex in combination with the chiral calciumphosphate
catalyst, we have achieved stereodivergent cascade reactions, pro-
viding access to all four stereoisomers of the products (Fig. 1d).

Results and discussion
Initially, we selected 2-(1-alkynyl)−2-alken-1-one 2a as one of themodel
substrates and (R)-L1[(NCMe)AuSbF6] as the catalyst to generate

Fig. 1 | The synthetic methods of hindered ether. a The traditional Williamson
method for the synthesisof ethers.bBaran’s decarboxylative etherificationmethod
for the synthesisof hindered ethers. cCu-catalyzed enantioconvergent substitution

reaction of a-haloamides with oxygen nucleophiles to a-oxygenated amides. d This
work: Enantio- and diastereo-divergent Ca(II)/Au(I) synergistic catalysis for synth-
esis of chiral hindered ether.
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3-furyl methyl cations. To generate o-QMs, we chose 2-(hydro-
xylmethyl) phenol 1a and employed chiral phosphoric acids as coca-
talysts in this reaction. The cascade reaction afforded the anti-
hindered ether 3a as the major product in good yield (83%) in DCE at
−25 °C (Table 1, entry 1). However, the product’s ee was only 5%. We
attempted to identify the optimal catalyst by evaluating 3,3′-dis-
ubstituted BINOL-based chiral phosphoric acid but couldn’t improve
the ee value of 3a (see the Supplementary Table 1). Nonetheless, we
discovered that a chiral phosphoric acid (H[A]) directly purified on
silica gel without washing with aqueous HCl could offer good enan-
tioselectivity (80% ee) in an accidental experiment (Table 1, entry 2).
This serendipitous finding motivated us to investigate why the same
chiral phosphoric acids with different purification processes resulted
in distinct stereoinduction. Ishihara’s group previously found that the
chiral phosphoric acid purified on silica gel without washing with HCl
could function as a Lewis acid to catalyze a highly enantioselective
direct Mannich-type reaction in 201071. Based on FAB-LRMS analysis,
they suggested that this H[A]* was composed of calcium phosphate
and sodium phosphate. Inspired by this work, we examined the cas-
cade reaction of in situ generated o-QMs and 3-furyl methyl cations by
using a series of alkali or alkaline-earth metal phosphates as cocata-
lysts. As predicted, LiI, NaI, andMgII salts showed disappointing results
(Table 1, entries 3-5). However, the CaII salt ((S)-Ca[A]2) and SrII salt ((S)-
Sr[A]2) could smoothly promote the cascade reaction, yielding the
hindered ether 3a inmoderate yield with 79% and 60% ee, respectively
(Table 1, entries 6 and 7). Our efforts to identify the optimal catalyst by
evaluating 3,3′-disubstituted BINOL-based calcium phosphates proved
that 9-anthryl substituted calcium phosphate (S)-Ca[A]2 was the best
catalyst (see the Supplementary Table 1).

Subsequently, several Au(I) complexes were evaluated, however,
only (NCMe)Au(I)SbF6 delivered the desired product 3a in good yield
(see the Supplementary Table 1). The main optimization efforts
focused on the chiral ligands in Au(I) complexes. Initially, a series of
chiral mono phosphoramidites with different amido substituents were
screened, and (R)-L3[(NCMe)AuSbF6] provided 3a with the highest ee
values (88% ee) (Table 1, entries 6 and 8 vs entry 9). Further investi-
gations suggested that R-configured phosphoramidites resulted in
slightly higher diastereoselectivities and enantioselectivities than their
antipode (Table 1, entry 9 vs entry 10). Solvent screening showed that
DCE yielded the best yield and selectivity (Table 1, entry 9 vs entries 11
and 12). Notably, a reduction in the catalyst loading ofAu(I) complex to
5mol% increased the ee value of the product 3a to 90% (Table 1, entry
13). Consequently, the optimized conditions involved the use of (S)-
Ca[A]2 and (R)-L3[(NCMe)AuSbF6] as catalysts in DCE at −25 °C
(Table 1, entry 13).

Surprisingly, the syn-3-furyl substituted ether 3a ratio was sig-
nificantly increased to 1:1 from 1:10 when bisphosphine ligands (R)-L4
and (R)-L5 were evaluated (Table 1, entries 14 and 15) in this cascade
reaction. Encouraged by these results, we further evaluated hindered
bisphosphine ligand (R)-L6. To our delight, with (R)-L6 as the bispho-
sphine ligand, the reaction yielded mainly the syn-diastereoisomer 4j
with 4:1 d.r. and 93% ee (Table 1, entry 16). (S)-L6[(NCMe)AuSbF6]2 was
also used instead of (R)-L6[(NCMe)AuSbF6]2 as the Au(I) catalyst.
However, different from L3[(NCMe)AuSbF6] as the catalyst, (S)-
L6[(NCMe)AuSbF6]2 afforded the other enantiomer of 4j with a 1:4 d.r.
and 93% ee (Table 1, entry 17), suggesting that the enantioselectivity of
the reaction might be controlled by the Au(I) complex.

Under the optimized reaction conditions, we explored the sub-
strate scopewith various o-QMprecursors to investigate the generality
of this asymmetric cascade reaction with 2-(1-alkynyl)-2-alken-1-one 2a
as the other substrate (Fig. 2). Pleasingly, the reactions were highly
compatible with either electron-donating or electron-withdrawing
substituents at the benzene ring of o-QMs (1a-l), delivering the corre-
sponding products in consistently good yields with excellent dia-
stereo- and enantioselectivities. However, ortho-substituted aryl

groups had an detrimental effect on the ee value of this reaction, likely
due to steric hindrance effects (3f). Additionally, o-QMs with 4-
biphenyl, 2-naphthyl, and 1-naphthyl substituents were also well
accommodated, affording the desired products (3j-l) with good yields
and high enantioselectivities (91%, 90%, and 78% ee, respectively).
Substituents at the quinonemethide fragmentwere also tolerated, and
the corresponding products 3m-n were obtained in good to excellent
enantioselectivities (86-90% ee). Notably, even alkyl-substituted o-QM
was shown to be suitable acceptors for the reaction, giving rise to the
corresponding product 3o with 74% ee. When (R)-L6 was changed to
(R)-L3, a series of syn-diastereoisomers were obtained in highly enan-
tiomerically enriched form (4a-h) with excellent ee values ranging
from 88% to 95%. These results demonstrate that the current method
provides a reliable andpowerful protocol for stereodivergent access to
optically hindered ethers. Alkyl-substituted o-QM was proved una-
vailable in this catalytic system.

After exploration of the reaction scope of o-QM precursors, the
effects of 2-(1-alkynyl)-2-alken-1-ones were subsequently evaluated.
Fig. 3 demonstrates that 2-(1-alkynyl)-2-alken-1-ones, which vary in
electronic characteristics and substitution patterns on the benzene
ring, are all compatible with the reaction conditions. This broad tol-
erance leads to the production of the corresponding anti products 3p-
w in satisfactory yields, accompanied by superior diastereo- and
enantioselectivities, with enantiomeric excesses as high as 93%. In
general, electron-donating groups in two aryl groups of 2-(1-alkynyl)-2-
alken-1-ones furnished the products in higher yields and ee values than
those with electron-withdrawing substituents. In particular, with
Johnphos(NCMe)AuSbF6 as Au(I) complex instead of (R)-L3[(NCMe)
AuSbF6], electron-withdrawing chiral hindered ether 3w was isolated
in 40% yield and 67% ee. However, alkyl-substituted 2-(1-alkynyl)-2-
alken-1-ones were prove to be unavailable in this catalytic system.
Similarly, syn-diastereoisomers (4j-m) could be accessed by a combi-
nation of catalysts (R)-L6[(NCMe)AuSbF6]2 and (S)-Ca[A]2 (73-93% ee).
In addition, 2-(1-alkynyl)-2-alken-1-one with alkyl substituted at R2

position was well tolerated for the reaction, giving rise to the corre-
sponding product4nwith 86% ee. 2-(1-alkynyl)-2-alken-1-onewith alkyl
substituted at R3 position could not work in this catalytic system.

To further demonstrate the practicality of this reaction, the cas-
cade reaction of 1b and 2a was carried out on a gram scale under
optimized reaction conditions. The corresponding product, the hin-
dered ether 4a, could be obtained with 52% yield, 4:1 d.r. and 90% ee.
3bwas obtained with 42% yield, 8:1 d.r. and 90% ee (Fig. 4a). To assess
the synthetic utility of this methodology, the predominant diaster-
eomer of compound 4j was subjected to a ring-opening reaction with
m-CPBA, delivering the compound 5with a yield of 64%. Furthermore,
protection of the hydroxy groups on 5 with p-bromobenzoic acid
readily delivered compound 6a in 55% yield and nearly without loss of
enantiopurity (Fig. 4b). Moreover, tribromo substituted product 6b
wasprepared following the sameprocedures in order to determine the
configuration of product. The absolute configurations of 3 and 4were
determined to be (R, R) and (R, S) by X-ray crystallography of 6b
coupledwith the results ofCD experimental and theory computational
spectra81–83 (see the Supplementary Fig. 2). Additionally, the hydroxyl
group of the major diastereomer of 4j was selectively shielded using
propargyl. Subsequently, a Cu-catalyzed cycloaddition was employed
to synthesize 7, incorporating a triazole skeleton, achieving a com-
mendable 76% yield and 93% ee through the application of click
chemistry. In addition, 4a can be readily triflated to facilitate sub-
sequent efficient cross-coupling, yielding biaryl8, while preserving the
benzylic stereocenter. Importantly, these transformations exhibit no
discernible degradation in enantiopurity.

To demonstrate the potential for enantio- and diastereodivergent
synthesis of the entire set of stereoisomeric products, we conducted
on a series of cascade experiments under the optimized reaction
conditions. These experiments involved the strategic combination of
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the appropriate enantiomer of the chiral calcium phosphate Ca[A]2
with two different gold catalysts, L3[(NCMe)AuSbF6] and L6[(NCMe)
AuSbF6]2. Remarkably, by utilizing the four available catalyst combi-
nations, a stereodivergent synthesis of the complete matrix of four
stereoisomeric hindered ethers 3b, 3b’, 4a, and 4a’was achieved. This
approach enabled us to access these stereoisomers in a highly dia-
stereo- and enantioselective fashion, showcasing the versatility and
efficiency of the catalytic system (Fig. 5).

In order to confirm the mechanism in this cascade reaction, we
investigated the cascade reaction between o-QMs precursor 1a and 2-(1-

alkynyl)-2-alken-1-one 2b with 1 equiv H2O
18 as additive (Fig. 6a). O18

marked hindered ether 9was detected by FTMS (see the Supplementary
Fig. 1), which suggests that water generated from o-QM precursor may
act as a key reaction intermediate in this cascade reaction. When the
reaction involving (±)-1awas run to partial conversion, 1awas recovered
without enantioenrichment,whereas3por4iwasobtained in88%or73%
ee (Fig. 6b, c). This data evokes the kinetic resolution is not operative.
Moreover, we synthesis protected o-hydroxybenzyl alcohol 10 for this
controlled experiment.Noproductwasobtained in the reactionbetween
10 and 2b, which means o-QM is the reaction intermediate. (Fig. 6d).

Fig. 2 | Substrates scope of o-QMs. All reactions were carried out on a 0.15mmol
scalewith 1 eqprecursor ofo-QMs 1, 1.05eq2a, 10mol%of (S)-Ca[A]2 and 5mol%of
(R)-L3[(NCMe)AuSbF6] or 2.5mol% of (R)-L6[(NCMe)AuSbF6]2 in DCE (1mL) at

−25 °C. Isolated yield. d.r. was determined by crude 1H-NMR and ee values were
determined by chiral HPLC.
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To probe into the mechanism of cascade reaction, we carried out
DFT calculations by using 1a and 2b as the substrates. According to the
earlier computation results78, calcium is coordinated with two chiral
phosphates. Considering the propensity of calcium ions, we have
created twodistinct calcium coordinationmodels (Fig. 7). In themodel
A, the calcium ion is hexacoordinated, and the ligands are three
methanol molecules from the synthetic solvent, two oxygen atoms on
phosphoric acid (each phosphoric acid molecule contributes one
oxygen atom), and one water molecule. This model is similar with the
transition state found by theoretical in ref. 78. The Ca ion still has the
same coordination numbers in the Bmodel, but two oxygen atoms are
used in place of two methanol molecules. This implies that the metal
receives two oxygen atoms from each phosphoric group. For studying
the selectivity by chiral Ca phosphate, we selected two models. They
are S-AuL3 + S-CaA* and R-AuL6 + S-CaA*. The whole catalysis reaction
can be divided into three stages: the first only involves the reaction of
the alkyne withAuL3, the second involves the attack of watermolecule

on thebyproduct of the frontier reactionwith thehelpofCaA*, and the
final stage involves a nucleophilic addition with the help of phosphate.
The 9-anthryl group on the CaA* molecule is full maintained in L3
system and frozen after several optimizations. However, in L6 system,
this group is reduced to a benzene ring only in the final stage that is
also frozen through several optimizations.

We used the theory study for the S-AuL3 + S-CaA* and R-AuL6 + S-
CaA* reaction process and identified the rate-limiting step for each
system to explain the enantioselectivity results from experiment. All
calculations were carried out with the Gaussian16 program package84.
Molecular geometries were optimized with the PBE0 functional85,86.
The 6-31 G* basis set was used for the C, H, O, N, and P atoms, and the
SDD effective core potential (ECP)87–90 for Ca and Au. Considering the
large system size and many aromatic rings, we added a long-range D3
version of Grimme’s dispersion with Becke-Johnson damping91 for all
computations. Frequency calculation at the same level were per-
formed to characterize the stationary points as minima or transition

Fig. 3 | Substrates scope of 2-(1-alkynyl)-2-alken-1-ones and o-QMs. All reactions
were carried out on a 0.15mmol scale with 1 eq precursor of o-QMs 1, 1.05 eq 2,
10mol% of (S)-Ca[A]2 and 5mol% of (R)-L3[(NCMe)AuSbF6] or 2.5mol% (R)-

L6[(NCMe)AuSbF6]2 in DCE (1mL) at −25 °C. Isolated yield. d.r. was determined by
crude 1H-NMR and ee values were determined by chiral HPLC. aJohnphos(NCMe)
AuSbF6 served as Au complex instead of (R)-L3[(NCMe)AuSbF6].
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state. In general, intrinsic reaction coordinate92 calculation would give
reactants and products corresponding to transition state. Single-point
energies were estimated by PBE0 with def2TZVP93,94 for all atoms
under the PCM solvation model95 with dichloroethane. The energies
given throughout the paper are Gibbs free energy computed at 298K
in kcal/mol.

The mechanism and energies of the S-AuL3 + S-CaA* reaction is
shown in Fig. 7. All the stationary state throughout the reaction is
showed, and corresponding geometries depicted in SI. The catalytic
cycle begins with the interactions between the gold-complex catalyst
and the triple bond on substrate 2b. From the transition state S-L3-
TS1, a nucleophilic attack at the oxygen and carbon neighbor the
AuL3 bonding site required a 3.3 kcal/mol activation energy and

resulted in the positive charged five-member ring products S-L3-INT1.
This intermediate complex has a lower energy than reactant of about
-16.7 kcal/mol, and this intermediate serves as the starting point for
the enantioselectivity since a big molecule CaA* is participated in
next reaction. As described before, the S-CaA* has two models, thus
Fig. 7 depicts two substrates with two configuration products and
four transition states. Only the Au complex at a mirror state in four
transitions, which results in an R or S product. With different CaA*
models and TS configurations, the energy barrier varies. The S-L3-
TS2B-R has the lowest energy barrier at 10.2 kcal/mol. Based on the
L3-TS2 structure, a certain phosphate group is necessary for water
activation, resulting a closer distance between 9-anthryl on CaA* and
L3-INT1. When L3-TS2 is R-type, the five-member ring and its methyl

Fig. 4 | Practicality of the reactions. a Scale-up reaction. b, c synthetic transformation.
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Fig. 5 | Divergent synthesis of all four isomers of chiral hindered ether 3b or4a.
All reactionswere carriedoutona0.15mmol scalewith 1 eqprecursor of 1b, 1.05eq
2a, 10mol% of (S)-Ca[A]2 and 5mol% of (R)-L3[(NCMe)AuSbF6] or 2.5mol% of (R)-

L6[(NCMe)AuSbF6]2 in DCE (1mL) at −25 °C. Isolated yield. d.r. was determined by
crude 1H-NMR and ee values were determined by chiral HPLC.

Fig. 6 | Controlled experiment. a The reaction between (±)-1a and 2bwith 1 equiv
H2O

18 as additive. b The chiral calcium phosphate Ca[A]2 and L3[(NCMe)AuSbF6]
catalyzed reaction between (±)-1a and 2bwas run to partial conversion. cThe chiral

calcium phosphate Ca[A]2 and L6[(NCMe)AuSbF6]2 catalyzed reaction between
(±)-1a and 2b was run to partial conversion. d The reactions between protected o-
hydroxybenzyl alcohol 10 and 2b under standard conditions.

Article https://doi.org/10.1038/s41467-024-47951-9

Nature Communications |         (2024) 15:3683 8



group of AuL3 can stay away from the 9-anthryl group. When L3-TS2
is in the S configuration, the distance ismuch closer. Thus, L3-TS2-R is
favorable. In addition, we founded that the Ca prefers to maintain
two coordination with phosphatic, as evidenced by the fact that each
of the two transitions from the B model-CaA* have a lower activation
energy than the Amodel-CaA*. Along the reaction, the energy barrier
is 6.7 kcal/mol for L3-TS3B-RR and 9.7 kcal/mol for L3-TS3B-RS,
respectively. Combining the L3-TS3 structure, aπ-π stacking between
five-member ring and benzene on substrate 1a is observed in R-type,
but not in S-type, which means a longer reaction distance between
C-OH. This bond is shortened from 1.93 Å in the L3-TS3-R to 1.76 Å in
L3-TS3-S, resulting a R-favorable configuration product. Besides, we
also calculated the first step of R-AuL3 react with substrate 2b, only
3.0 kcal/mol activation is obtained. In summary, the barrier for the
first stage involving AuL3 is merely 3.3 kcal/mol, whereas barrier for
the Ca/Au synergistic catalysis step is at least 6.7 kcal/mol. We con-
cluded that the Ca/Au synergistic catalysis is the rate-limiting step in
catalytic process.

The mechanism and energies of the reaction between R-AuL6 + S-
CaA* is shown in Fig. 8. Unlike inAuL3 system, the activation energy of
the Au catalysis step in AuL6 system increased to 8.4 kcal/mol, a value
that is significantly higher than that of L3 system. This finding suggests
that the larger L6 molecule’s steric effect will decrease the reaction
activity of Au and triple bonds. The subsequent nucleophilic addition
of charged products and water molecules similarly has four transition
states (R-L6-TS2A-R, R-L6-TS2B-R, R-L6-TS2B-S and R-L6-TS2A-S). The
energies revealed that theL6 systemwasmore likely to yield S-product,
whereas the A model, which had a relatively loose Ca spatial coordi-
nation and a lower activation energy, became the primary reaction

path. R-L6-TS2A-S has the lowest activation among the four transition
states, which is roughly 5.2 kcal/mol. Similarly, R-L6-INT2A-S was the
lowest energy intermediate. According the L6-TS2 structure, a larger
distance between the L6-INT1 and CaA* than L3-TS2 is founded due to
the steric hindrance of the large group L6. As a result, the repulsion
between the 9-anthryl group on phosphoric acid which is not partici-
pated in water activation and L6-INT1 becomes the major interaction
for chiral selectivity. S-type is the favorable configuration. At the final
stage, the -OH group on the INT2 would assault the double bond by
aiding with a phosphatic oxygen. The energy barriers for the INT2A-S
complexes are 6.3 kcal/mol for R-L6-TS3A-SR and 15.7 kcal/mol for R-
L6-TS3A-SS. RR-type is energetic favorable. Unlike L3-TS3 system, the
π-π stacking is not observed in L6-TS3 structure. But a same loose
transition structure for R-configuration is located. The C-OH distance
changes from 1.89Å in L6-TS3A-SR to 1.74 Å in L6-TS3A-SS. We sup-
posed that the selectivity of L6-TS3 may be a comprehensive result
from the L6 group. Similar calculations were made for the reaction
involving S-AuL6 and substrate 2b, and an energy barrier about
8.4 kcal/mol was found. The DFT studies suggested that the initial Au
catalysis step has the highest activation energy and is the rate-limiting
step, which is consistent with experimental data.

In summary, we developed an asymmetric cascade reaction of in
situ generatedH2Owith 3-furylmethyl cations and o-QMs catalyzed by
a highly efficient chiral BINOL-derived calcium phosphate/chiral Au(I)
complex bimetallic catalytic system. Importantly, these two chiral
catalysts allow for full control over the configuration of the stereo-
centers, affording all four stereoisomers of a diversity of chiral tetra-
aryl substituted ethers in moderate to high yields and with high levels
of diastereoselectivities (up to > 20/1) and enantioselectivities (up to

Fig. 7 | The DFT studies of S-AuL3 + S-CaA* model. This figure depicts reaction
paths in (R)-L3[(NCMe)AuSbF6] catalytic system. TS1 means transition state 1. INT1
means intermediate 1. TS2A-S, TS2A-R, TS2B-S and TS2B-Rmeans transition state 2
in two model with different absolute configurations. INT2A-R, INT2A-S, INT2B-R

and INT2B-S means intermediate 2 in two model with different absolute config-
urations. TS3B-RS and TS3B-RRmeans transition state 3 in B model with different
absolute configurations. INT3B-RS and INT3B-RR means intermediate 3 in
B model with different absolute configurations.
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95% ee). The mechanism studies indicated that H2O generated from o-
QM precursor is a key reaction intermediate, and calcium phosphate
acts as a shuttle, absorbing and activating the in situ-generated H2O,
which then attacks the 3-furyl methyl Au(I) complex. The current work
not only develops an asymmetric catalytic reaction for the synthesis all
stereoisomers of hindered ethers but also provides a rare example of
chiral Ca(II)/Au(I) bimetallic catalytic system controlling two stereo-
genic centers via a cascade reaction in a single operation.

Methods
General experimental procedure of asymmetric cascade
reaction
To a 10-mL test tube were sequentially added (R)-L3[(NCMe)AuSbF6]
(0.0075mmol, 7.5mg) or (R)-L6[(NCMe)AuSbF6]2 (0.00375mmol,
8.0mg), Ca[A]2 (0.015mmol, 21.6mg) and DCE (2.0mL). Substrate 2
(0.16mmol, 1.05 eq) and o-QM precursor 1 (0.15mmol) were added in
turn to the solution at −25 °C. The reaction mixture was monitored by
TLC. Upon completion, the residual was purified by silica gel flash
chromatography (petroleum ether: ethyl acetate, 20: 1) to afford the
desired product 3 or 4. The racemic examples were prepared by the
catalysis of JohnphosAu(NCMe)SbF6 andSc(OTf)3 in roomtemperature.

Data availability
Crystallographic data has been deposited in the Cambridge Crystal-
lographic Data. Center under accession number CCDC: 2125710. These
data can be obtained free of charge from The Cambridge Crystal-
lographic Data Centre via https://www.ccdc.cam.ac.uk/structures/
Search?access=referee&ccdc=2125710&Author=Xiangfeng+Lin+xflin.

Source data are present. All data are available from the corresponding
author upon request. Source data are provided with this paper.
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