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Solving conformal defects in 3D conformal
field theoryusing fuzzy sphere regularization

Liangdong Hu 1,2, Yin-Chen He 3 & W. Zhu 1

Defects in conformal field theory (CFT) are of significant theoretical and
experimental importance. The presence of defects theoretically enriches the
structure of the CFT, but at the same time, it makes it more challenging to
study, especially in dimensions higher than two.Here, wedemonstrate that the
recently-developed theoretical scheme, fuzzy (non-commutative) sphere reg-
ularization, provides a powerful lens through which one can dissect the defect
of 3D CFTs in a transparent way. As a notable example, we study the magnetic
line defect of 3D Ising CFT and clearly demonstrate that it flows to a conformal
defect fixed point. We have identified 6 low-lying defect primary operators,
including the displacement operator, and accurately extract their scaling
dimensions through the state-operator correspondence. Moreover, we also
compute one-point bulk correlators and two-point bulk-defect correlators,
which show great agreement with predictions of defect conformal symmetry,
and from which we extract various bulk-defect operator product expansion
coefficients. Our work demonstrates that the fuzzy sphere offers a powerful
tool for exploring the rich physics in 3D defect CFTs.

Defects, as well as their special case–boundaries, are fundamental
elements that inevitably exist in nearly all realistic physical systems.
Historically, research on defects has played a pivotal role in shaping
modern theoretical physics. This includes contributions to the theory
of the renormalization group (RG)1, studies of topological phases2–4,
investigations into the confinement of gauge theories5,6, explorations
of quantum gravity7, and advancements in the understanding of
quantum entanglement8,9. An important instance to study defects is in
the context of conformal field theory (CFT)10,11, where one considers
the situation of deforming a CFT with interactions living on a sub-
dimensional defect. The defect may trigger an RG flow towards a non-
trivial infrared (IR) fixed point, which can still have an emergent con-
formal symmetry defined on the space-time dimensions of the
defect12–17. The theory describing such a conformal defect is called a
defect CFT (dCFT) (see refs. 18,19 for recent discussions). Under-
standing dCFTs is an important step in comprehendingCFTs in nature,
as most experimental realizations of CFTs necessarily accompany
defects (and boundaries).Moreover, dCFTs have a non-trivial interplay

with the bulk CFTs, and knowledge of the former will advance the
understanding of the latter. For example, the two-point correlators of
bulkoperators in dCFTconstrain andencode the conformaldata of the
bulk CFT20, similar to the well-known story of four-point correlators of
a bulk CFT.

dCFTs are typically richer and more intricate than their bulk CFT
counterparts. On one hand, for a given bulk CFT, there exist multiple
(even potentially infinite) distinct dCFTs, and their classification
remains an open challenge. On the other hand, breaking of the full
conformal symmetry group into a subgroup renders the study of
dCFTs more challenging, as the space-time conformal symmetry
becomes less restrictive, making modern approaches like the con-
formal bootstrap program21 less powerful20,22–25. Notably, most of the
well-established results concerning dCFTs are confined to 2D CFTs,
including the seminal results on the boundary operator contents13 and
RG flow26, thanks to the special integrability property of 2D CFTs. In
comparison, higher-dimensional CFTs pose greater difficulties, and
the knowledge of dCFTs in dimensions beyond two is rather limited.
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Current studies of dCFTs mainly revolve around perturbative RG
computations27–34 andMonte Carlo simulations of lattice models18,35–37.
An important progress made recently is the non-perturbative proof of
RG monotonic g-theorem in 3D and higher dimensions38,39, general-
izing the original result in 2D26,40,41.

In the context of dCFTs, many important questions remain to be
answered, ranging from basic inquiries such as the existence of con-
formal defect fixed points to more advanced queries concerning the
infrared properties of dCFTs, including their conformal data such as
critical exponents. The central aim of this paper is to develop an effi-
cient tool for the non-perturbative analysis of 3D dCFTs. Specifically,
we extend the success of the recently proposed fuzzy sphere
regularization42 from bulk CFTs42–45 to the realm of dCFTs. As a con-
crete example, we explore the properties of the 3D Ising CFT in the
presence of a magnetic line defect32–36,46–49. We directly demonstrate
that this line defect indeed flows to anattractive conformalfixedpoint,
and we identify 6 low-lying defect primary operators with their scaling
dimensions extracted through the state-operator correspondence.
Furthermore, we study the one-point bulk primary correlators and the
two-point bulk-defect correlators, both of which are fixed by con-
formal invariance, up to a set of operator product expansion (OPE)
coefficients. As far as we know, most of conformal data of dCFT
reported here have never been studied before. In this context, our
paper not only presents a comprehensive set of results concerning the
magnetic line defect in the 3D Ising CFT, but also lays the foundation
for further exploration of 3D dCFTs using the fuzzy sphere regular-
ization technique.

Results
Conformal defect and radial quantization
We consider a 3D CFT deformed by a p-dimensional defect, described
by the Hamiltonian

HCFT +h
Z

dprOðrÞ: ð1Þ

Examples include the line defect (p = 1, see Fig. 1a) and the plane defect
(p = 2). If the defect is not screened in the IR, the systemwill flow into a
non-trivial fixed point that breaks the original conformal symmetry
SO(4, 1) of HCFT. Furthermore, if the non-trivial fixed point is still
conformal, such a defect is called a conformal defect described by a
dCFT. For such adCFT, theoriginal conformalgroup isbrokendown to
a smaller subgroup SO(p + 1, 1) × SO(3− p)17–19, where SO(p + 1, 1) is the
conformal symmetry of the defect, and SO(3 − p) is the rotation
symmetry around the defect that acts as a global symmetry on the
defect.

A dCFT possesses a richer structure compared to its bulk coun-
terpart. Firstly, there is a set of operators living on the defect, forming
representations of the defect conformal group SO(p + 1, 1). Further-
more, there are non-trivial correlators between bulk operators and
defect operators. (Hereafter, we follow the usual convention and
denote the defect operator with a hat Ô, while the bulk operator is
represented as Owithout a hat.) The simplest example is that the bulk
primaryoperator gets a non-vanishing one-point correlator,which is in
sharp contrast to the bulk CFT17–19:

hO1ðxÞi=
aO1

jx?jΔ1
: ð2Þ

Here, ∣x⊥∣ is the perpendicular distance from the bulk operator to the
defect, Δ1 is the scaling dimension of O1, and aO1

is an operator-
dependent universal number (we consider the case of O1 to be a
Lorentz scalar). Moreover, we can consider a bulk-defect two-point
(scalar-scalar) correlator defined as17–19:

hO1ðxÞÔ2ð0Þi=
bO1Ô2

jx?jΔ1�Δ̂2 jxj2Δ̂2

, ð3Þ

where bO1Ô2
is the bulk-defect OPE coefficient. Interestingly, the

bulk two-point correlator already becomes non-trivial, and its
functional form cannot be completely fixed by the conformal
symmetry.

Similar to the bulk CFT, we consider the radial quantization of a
dCFT. Specifically, we first foliate the Euclidean space R3 using
spheres S2 with their origins situated on the defect, as illustrated in
Fig. 1a. Next, we can perform a Weyl transformation to map R3 to a
cylinder S2 ×R, and the p-dimensional defect transforms into a
defect intersecting the cylinder. For instance, as shown in Fig. 1, the
Weyl transformation maps a line defect (p = 1) in R3 to 0 + 1D point
impurities located at the north and south poles of the sphere S2,
forming two continuous line cuts along the time direction from
τ = −∞ to τ =∞. Similarly, a plane defect (p = 2) inR3 will be mapped
to a 1 + 1D defect with its spatial component located on the equator
of the sphere S2.

Akin to the state-operator correspondence in bulk CFT50,51, we
have a one-to-one correspondence between the defect operators and
the eigenstates of the dCFT quantum Hamiltonian on S2 ×R, where
energy gaps of these states are proportional to the scaling dimensions
Δ̂n of the defect operators:

En � E0 =
v
R
Δ̂n: ð4Þ

(a)

(c)
Weyl transformation

Line defect (b)

Fig. 1 | Schematic plot of the defect in 3D. Through a Weyl transformation,
a Euclidean flat space-time R3 is mapped to (b) the cylinder manifold S2 ×R. The
line defect before and after theWeyl transformation are shown by the colored line.

c The 0 + 1-D impurities (cyan point) located at the north and south pole on two-
dimensional sphere S2 in the radial quantization, where the flux at the center
represents the magnetic monopole defined in the fuzzy sphere model.
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Here, E0 denotes the ground state energy of the defect Hamiltonian, R
represents the sphere radius, and v is a model-dependent non-
universal velocity that corresponds to the arbitrary normalization of
the Hamiltonian. Notably, this velocity v is identical to the velocity of
the bulk CFT Hamiltonian (further discussions see Supplementary
Note 2 in Supplementary Material).

The state-operator correspondence offers distinct advantages for
studying CFTs. Firstly, it provides direct access to information
regarding whether the conformal symmetry emerges in the IR. Sec-
ondly, it enables an efficient extraction of various conformal data, such
as scaling dimensions and OPE coefficients of primaries. The key step
involves studying a quantum Hamiltonian on the sphere geometry.
However, for 3D CFTs, this was challenging as no regular lattice could
fit S2. Recently, this fundamental obstacle was overcome through a
scheme called “fuzzy sphere regularization"42, and its superior cap-
abilities have been convincingly demonstrated42–45. Below we discuss
how to adapt the fuzzy sphere regularization scheme to solve dCFTs.
We will focus on the case of magnetic line defect of the 3D Ising CFT,
but the generalizations to other cases should be straightforward.

Magnetic line defect on the fuzzy sphere
The fuzzy sphere regularization42 considers a quantum mechanical
model describing fermions moving on a sphere with a 4πs magnetic
monopole at the center. The model is generically described by a
HamiltonianH =Hkin +Hint, whereHkin represents the kinetic energy of
fermions, and its eigenstates form quantized Landau levels described
by the monopole Harmonics Y ðsÞ

n+ s,mðθ,φÞ52. Here, n =0, 1,⋯ denotes
the Landau level index, and (θ,φ) are the spherical coordinates. We
consider the limit where Hkin is much larger than the interaction Hint,
allowing us to project the system onto the lowest Landau level (i.e.
n = 0), resulting in a fuzzy sphere53.

The 3D Ising transitionon the fuzzy sphere can be realized by two-
flavor fermions ψy = ðψy

",ψ
y
#Þ with interactions that mimic a 2+1D

transverse Ising model on the sphere,

H0 =
R
R4dΩadΩb UðΩabÞ n0ðΩaÞn0ðΩbÞ

�
�nzðΩaÞnz ðΩbÞ

�� h
R
R2dΩnxðΩÞ:

ð5Þ

Here we are using the spherical coordinate Ω = (θ,ϕ) and R is the
sphere radius. The density operators are defined as nα(Ω) =ψ†(Ω)
σaψ(Ω), where σx,y,z are the Pauli matrices and σ0 is the identity matrix.
U(Ωab) encodes the Ising density-density interaction as
UðΩabÞ= g0

R2 δðΩabÞ+ g1

R4 ∇
2δðΩabÞ. One can tune the transverse field h

to realize a phase transition which falls into the 2+1D Ising universality
class42. In the following, we set U(Ωab) and h the same as the bulk Ising
CFT that has been identified in42.

To study the magnetic line defect of 3D Ising CFT, we add 0+ 1D
point-like magnetic impurities located at sphere’s north and south
pole, modeled by a Hamiltonian term,

Hd =2πhdðnz ðθ=0,φ=0ÞÞ+nz ðθ=π,φ=0ÞÞ, ð6Þ

where hd controls the strength of themagnetic impurities. This type of
defect can be artificially realized in experiments54,55. Crucially, the
defect termHdbreaks the IsingZ2 symmetry, causing the σfield (of the
3D Ising CFT) to be turned on at the defect. This σ deformation is
relevant on the line defect (Δσ ≈0.518 < 121), driving the system to flow
to a nontrivial fixed point, conjectured to be a conformal defect. This
fixedpoint is expected to be an attractive fixedpoint32–34, implying that
regardless of the strength of hd, the defect will flow to the same con-
formal defect fixed point (see Fig. 2a). Next wewill provide compelling
numerical evidence to support this conjecture.

Emergent conformal symmetry and operator spectrum
The energy spectrum of the defect Hamiltonian (H0 +Hd) is expected
to be proportional to the defect operators’ scaling dimensions, up to a
non-universal velocity in Eq. (4). Here we determine the velocity using
the bulk CFT Hamiltonian (H0) by setting the σ state to have
Δσ = 0.51814921. The defect term Hd breaks the sphere rotation SO(3)
down to SO(2), so each eigenstate has a well defined SO(2) quantum
number Lz. Akin to the stress tensor of the bulk CFT, there exists a
special primary operator in dCFT due to the broken of translation
symmetry, dubbed the displacement operator D̂17–19, which has Lz = ± 1
and a protected scaling dimension ΔD̂ =2. Fig. 2b, c depicts ΔD̂ via the
state-operator correspondence (Eq. (4)) for various defect strength hd
and system sizes. It clearly shows that the obtainedΔD̂ are very close to
2, for different defect strengths hd, which indicates an attractive con-
formal fixed point at hd =∞ (see Supplementary Note 3 and 6 in Sup-
plementary Material). In what follows, we present the representative
results for hd = 300 and we ensure the conclusions are insensitive to
the choice of hd.

We further establish the emergent conformal symmetry by con-
firming that the excitation spectra form representations of SO(2, 1).
The generators of SO(2, 1) are the dilation D, translation P, and special
conformal transformation K. It is important to note that P and K do not
have any Lorentz index due to the triviality of the Lorentz symmetry,

(a)

(b) (c)

Fig. 2 | Defect induced attractivefixedpoint. a Schematic plot of the RGdiagram.
b The scaling dimension of displacement operator ΔD̂ as a function of defect
strength hd. Different colored symbols represent the results based on various
system sizes. c Finite-size extrapolation of ΔD̂ for various hd (see Supplementary

Note 2 and 3 in SupplementaryMaterial). A sufficient largehd gives almost identical
ΔD̂≈2, supporting an attractive RG fixed point at hd =∞. Different colored symbols
represent the results based on various defect strength hd.
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i.e., SO(1). For each primary operator, we have descendants generated
by the translation, PnÔ, whose scaling dimension is ΔPnÔ =ΔÔ +n, and
its SO(2) quantumnumber Lz remains unchanged. Figure3displays our
numerical data of the low-lying energy spectrum, clearly exhibiting the
emergent conformal symmetry, i.e., approximate integer spacing
between each primary and its descendants. These observations firmly
establish that the magnetic line defect of the 3D Ising CFT flows to a
conformal defect with a conformal symmetry of SO(2, 1).

From our numerical data, we can identify five low-lying defect
primary operators in addition to D̂, as listed in Table 1. Notably, all
these operators are found to be irrelevant (i.e., Δ > 1), which is con-
sistent with the observation of an attractive defect fixed point. Our
lowest-lying operator ϕ̂ has Lz =0 andΔϕ̂≈1:63ð6Þ. This value is in good
agreement with Monte Carlo simulations, e.g. 1.60(5)36, 1.52(6)36, and
1.40(3)35, as well as with the perturbative ε-expansion computation
of ~ 1.55(14) ref. 34. The second low-lying operator in the Lz =0 sector
has Δϕ̂0 = 3:12ð10Þ, which significantly deviates from the ε-expansion
value ofΔ ≈ 4.33 +O(ε2) (it was called ŝ + in34). This suggests a large sub-
leading correction in the ε-expansion. All other primary operators
identified in our study have not been computed by any othermethods.
It is essential to mention that the scaling dimensions in Table 1 are
obtained by the finite-size extrapolating (see details in Supplementary
Note 2 in Supplementary Material), and the data at finite N is already
very close to the extrapolated value (The finite-size extrapolation
improve the results by around 2%). One can also improve the accuracy
by making use of conformal perturbation56.

Additionally, to verify the physics of dCFT presented here is
independent of the specific value hd, we directly study the spectrum at
hd =∞ (see Supplementary Note 6 in Supplementary Material). Com-
paring it with the results at hd = 300, we found them to be consistent
with each other. This result indicates that the large hd regime shares
the same dCFT and also supports that the fixed point of dCFT indeed
resides at hd =∞.

Correlators and OPE coefficients
Using Weyl transformation, we can map the bulk-defect correlators in
Eq. (2), Eq. (3) in R3 to the correlators on cylinder S2 ×R (see Sup-
plementary Note 1 in Supplementary Material),

GO1Ô2
� h1̂jO1ðτ =0,θÞjÔ2i

h1jO1ðτ =0,θÞjO1i
=

bO1Ô2

ðsinθÞΔ1�Δ̂2

: ð7Þ

The bulk operator O1 is positioned at a point that has an angle θ with
respect to the north pole. In the denominator, we use the states of the
bulk CFT, while in the numerator, we use the states of the dCFT. The
one-point bulk correlator corresponds to taking ∣Ô2

E
to be the ground

state of the defect, i.e., ∣̂1
E
.

In the fuzzy spheremodel, we can use the spin operators nz and nx

to approximate the bulk CFT primary operators σ and ϵ43,44. For
example, the correlator between the bulk primary σ and a defect pri-
mary operator Ô2 is computed by,

GσÔ2
� h1̂jnzðτ =0,θÞjÔ2i

h1jnzðτ =0,θÞjσi =
bσÔ2

ðsinθÞΔσ�Δ̂2

+OðN�1=2Þ: ð8Þ

Here, Δσ ≈0.518149, and the first-order correctionO(N−1/2) comes from
the descendant operator ∂μσ contained in nz. Figure 4 illustrates the
one-point bulk correlator Gσ(θ) and bulk-defect correlator Gσϕ̂ðθÞ for
different system sizes N = 12–36. Both correlators agree perfectly with
the CFT prediction Eq.(7), except for the small θ regime. It is worth
noting that the one-point correlator Gσ(θ) is divergent at θ =0,π and
reaches a minimum at θ =π/2. In contrast, the bulk-defect correlator
Gσϕ̂ðθÞ has an opposite behavior (because Δσ � Δϕ̂<0); it vanishes at
θ =0,π and reaches a maximum at θ =π/2. These behaviors are nicely
reproduced in our data, which is highly nontrivial because computa-
tionally the only difference for the two correlators is the choice of ∣Ô2

E
in Eq. (8).

We can further extract the bulk-defect OPE coefficients from
GO1Ô2

ðθ=π=2Þ=bO1Ô2
, and the results are summarized in Table 2.

None of these OPE coefficients was computed non-perturbatively
before. There are perturbative computations for aσ and aϵ34 from ε
expansion, giving a2

σ ≈ 3:476+Oðε2Þ (i.e. aσ ≈ 1.86) and
aϵ ≈ 1.83 +O(ε2). Our estimates are aσ = 1.37(1) and aϵ = 1.31(19), it will
be interesting to compute higher order corrections in the ε-expan-
sion. Moreover, using the Ward identity of any bulk operator (O)19,

(a) (b)

Fig. 3 | Conformal tower of defect primaries. Defect primary fields and their
descendants with global symmetry (a) Lz =0 and (b) Lz = 1. The gray horizon lines
stand for extrapolated values for primaries and their integer-spaced descendants.
Different colored symbols represent the results based on various system sizes. By

increasing system size N all of the scaling dimensions approach the theoretical
values consistently, supporting an emergent conformal symmetry in the thermo-
dynamic limit.

Table 1 | Scaling dimensions of primary operators in the
magnetic line defect of 3D Ising CFT, determined through the
state-operator correspondence on the fuzzy sphere

Lz = 0 Lz = 1

ϕ̂ ϕ̂
0

ϕ̂
00

D̂ ϕ̂1 ϕ̂
0
1

1.63(6) 3.12(10) 4.06(18) 2.05(7) 3.58(7) 4.64(14)

Please see a detailed analysis of errors and finite-size extrapolation in Supplementary Note
2 and 3 in Supplementary Material.
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we can extract Zamolodchikov norm

ffiffiffiffiffiffi
CD̂

q
=
2
π
ΔOGOðθ=π=2Þ
GOD̂ðθ=π=2Þ

: ð9Þ

The estimates using σ and ϵ gives CD̂ =0:53ð3Þ and CD̂ =0:59ð18Þ,
respectively.

Discussion
We have outlined a systematic procedure to study defect conformal
field theory (dCFT) using the recently proposed fuzzy sphere reg-
ularization scheme. As a concrete application, we investigated the
magnetic line defect of 3D Ising CFT and provided clear evidence that
it flows to a conformal defect. Crucially, we accurately computed a
number of conformal data of this dCFT, including defect primaries’
scaling dimensions and bulk-defect OPE coefficients. As far as we
know, most of the conformal data of dCFT reported here have never
been studied in a microscopic model before, thus this conformal
information paves the way for exploring the rich physics in 3D
Ising CFTs.

Looking forward, the current setup can be readily applied to the
study of various types of defects in distinct 3D CFTs, potentially
resolving numerous open questions and offering insights into defects
in CFTs. For example, the plane defect (p = 2 in Eq. (1)), which may
resemble surface critical phenomena, is interesting to investigate. It is
also highly desired to study 3D dCFTs in a broad universality class (e.g.
Wilson–Fisher O(N) critical point). Moreover, the results of current
work provide a necessary input in the study of infrared data for the
dCFT within the numerical conformal bootstrap20–22. Taking it further
would potentially be very interesting to study the dCFT in holography
and string theory.

Methods
The model H0 +Hd for the magnetic line defect of 3D Ising CFT is a
continuous model with fully local interaction in the spatial space. In
practice, we consider the second quantization form of this model by
the projectingH0 +Hd to the lowest Landau level (fuzzy sphere), using
ψaðΩÞ= 1ffiffiffi

N
p

Ps
m=�s cm,aY

ðsÞ
s,mðΩÞ (we are using a slightly different con-

vention compared to ref. 42). HereN = 2s + 1 playing the role of system
size N ~R2, and we simply replace R2 with N during the projection. This
lowest Landau level projection leads to a second quantized Hamilto-
nian definedby fermionicoperators cm,a, and similarmodels have been
extensively studied in the context of the quantum Hall effect57.
Numerically, this model can be simulated using various techniques
such as exact diagonalization and density matrix renormalization
group (DMRG)58,59. We perform DMRG calculations with bond dimen-
sions up to D = 5000, and for the largest system size N = 36, the max-
imum truncation errors for the ground state and the tenth excited
state are 1.37 × 10−9 and 1.96 × 10−8, respectively. We explicitly impose
two U(1) symmetries, i.e., fermion number and SO(2) angular
momentum.

Data availability
All data are included in this published article and Supplementary
Information files.

Code availability
The codes used to generate data and plots are available from the
corresponding author upon request. The DMRG data are generated
using the software “ITensor 3(C++ Version)”60.

References
1. Wilson, K. G. The renormalization group: Critical phenomena and

the kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).
2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S.

Non-abelian anyons and topological quantum computation. Rev.
Mod. Phys. 80, 1083–1159 (2008).

3. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev.
Mod. Phys. 82, 3045–3067 (2010).

4. Qi, X.-L. & Zhang, S.-C. Topological insulators and super-
conductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

5. Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445–2459
(1974).

Table 2 | Bulk-to-defectOPE coefficientsmagnetic line defect
of 3D Ising CFT

aσ bσϕ̂ aϵ bϵϕ̂ CD̂ by σ CD̂ by ϵ

1.37(1) 0.68(1) 1.31(19) 1.63(4) 0.53(3) 0.59(18)

CD̂ is computed by Eq. (9) using σ and ϵ.

(a) (b)

Fig. 4 | Correlators involving defect.The angle dependenceof (a) correlatorGσ(θ)
and (b) Gσϕ̂ðθÞ, for system sizes ranging from N = 12–36. The dashed lines corre-
spond to theoretical correlator in Eq. (7) with bσÔ2
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