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Correcting the corrections for charged defects in crystals
Aron Walsh 1,2,3✉

While the theory of imperfections in solids is firmly established, procedures for first-principles calculations of defect quantities
continue to evolve. A plethora of ad hoc correction schemes is being replaced by sophisticated self-consistent procedures that will
enable more quantitative predictions of the formation energies of defect species and their spectroscopic signatures.
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The formation of defects in crystals is a natural consequence of
chemical thermodynamics—the balance between the enthalpic
cost of perturbing the atomic bonding environments and the
entropic gain of introducing an ensemble of imperfections.
The key quantity that determines, in equilibrium, if a particular

defect species will be abundant or rare is the free energy of
formation, ΔGf. The concentration (nd) can be decomposed into
contributions from enthalpy and vibrational entropy

nd ¼ Nsiteg exp �ΔHf

kBT

� �
exp

ΔSf
kB

� �
; (1)

where Nsite and g denote the number and degeneracy of available
sites in the host crystal. The enthalpy change dominates under
standard conditions, so the more burdensome vibrational term1 is
most often neglected.
The first objective in defect modelling is to calculate ΔHf as

accurately as possible, which can be achieved in a number of
ways, as illustrated in Fig. 1. Due to the exponential factor in
Eq. (1), the prediction of defect concentrations is sensitive to the
quality of the underlying energy terms. My brief perspective on
major developments in this field is given below. I apologise in
advance to the many contributions that are overlooked in this
synopsis (e.g. see ref. 2 for a more thorough overview).

EARLY 20TH CENTURY—THEORETICAL FOUNDATIONS
The theory of lattice dynamics developed by Born and others
described the motion of atoms around their equilibrium crystal-
lographic positions. However, what if atoms left its ideal position
and wandered into an interstitial position? A classical numerical
procedure for calculating the formation energy of such point
defects in ionic solids was proposed by Frenkel in 19263. The semi-
classical (continuum) Mott–Littleton method for charged defects
energetics was reported in 19384, which was later expanded into a
more general framework for multi-region embedded crystal
calculations5. The extensive theoretical infrastructure subse-
quently developed for describing the electronic structure of
donor and acceptor levels in semiconductors was reviewed by
Pantelides in 19786.

LATE 20TH CENTURY—PRACTICAL SOLUTIONS
The combination of efficient algorithms to solve the Kohn–Sham
equations and massively parallel computing enabled the modern

era of computational materials science. Two types of approaches
were developed for modelling charged point defects in crystals.
Those based on embedding potentials (a dilute defect in a host

matrix as shown in Fig. 1c) offer some advantages, but remain
technically challenging to set up and analyse7. A self-consistent
Green’s function procedure for treating defect perturbations was
already reported in 19798 and quickly adapted to describe the
deep states associated with transition metal impurities in Si using
a local density functional9.
The alternative, and more widely employed, supercell approach

benefits from the robust infrastructure for calculation of crystals
within periodic boundary conditions (Fig. 1d). The principal issue
in describing charged defects is the electrostatic interaction
between repeating centres. The long-range Coulomb interaction
depends on the defect charge q, their spatial arrangement, and
the dielectric response of the host ϵ(r). The standard solution is to
introduce a homogeneous ‘jellium’ background charge to enforce
charge neutrality in each repeat unit and ensure convergent
Coulomb energy. This fix results in a shift in the average
electrostatic potential and total energy of the defective supercell
that must be corrected to become useful (Fig. 2).
Leslie and Gillan10 showed how to properly account for a point

charge q interacting with its periodic images through an isotropic
dielectric medium. The approach was expanded by Makov and
Payne11 to include the quadrupole moment (Q). In practice, Q
cannot be determined from the defect charge distribution.
Defects come in many forms and their wavefunctions may be
localised or delocalised and are invariably coupled to the
screening host charge. In addition, the limitations of a given
density functional can require further correction terms, such as
valence and conduction band edge shifts, to reduce the divide
between modelling and measurement12.
Exciting results and insights were gained using these methods,

especially in the area of metal oxides. There were problems,
however. Research groups performing similar simulations would
obtain different conclusions depending on the flavour of
corrections that were employed; the curious reader can look into
the case of defects in ZnO. In my opinion, the absolute defect
energetics reported during this era should be taken with a pinch
of salt.

EARLY 21ST CENTURY—ROBUST PREDICTIONS
To tackle these issues, a new set of correction schemes emerged
for supercell calculations. Freysoldt et al.13 modelled the defect
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charge as a Gaussian distribution in an isotropic medium. There
were other efforts to include anistropic dielectric screening14,15.
Kumagai and Oba16 refined these approaches with a more
practical alignment procedure, based on atomic site potentials,
that accounts for the full anisotropic low-frequency dielectric
response.
More recent developments have moved away from a posteriori

corrections of the total energy to direct modification of the
underlying self-consistent calculation. The advantages are that the
total energy and electronic eigenvalues can be corrected directly and
more physical long-range dielectric screening can be incorporated.
A self-consistent potential correction was proposed by da Silva

et al. in 202117. The change in potential, from either a reference
pristine supercell or neutral defect, is used to correct for the
difference between the periodic and isolated charged defect. One

limitation in the current formalism is the use of an isotropic dielectric
constant; however, spatial variation is allowed in one direction for the
case of slabs. In contrast, the image charge correction proposed by
Suo et al.18 avoids the input of a dielectric constant at all and is
instead based on the self-consistent charge density difference
between charged and neutral defects, which already contains the
relevant screening information. Both approaches show promising
behaviour for a series of test cases including NaCl and MgO.
An issue not addressed in these two recent works is how to

incorporate the low-frequency dielectric response involving ion
displacements. This is critical for accurately describing defect
transitions, which may be excited optically or thermally19. Suo
et al.18 suggest introducing a Gaussian broadening scheme to
capture ion displacements, but this remains to be implemented and
tested.

Fig. 1 Defect modelling. Illustration of a a perfect crystal and b a crystal containing a balanced concentration of charged vacancies. The
properties of such point defects could be modelled as c an isolated or d a periodic array of charged centres in a host crystal.
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An entirely different approach has been taken by Xiao et al.20 in a
move away from the standard jellium model to consider charge
compensation by realistic valence or conduction band edge states of
the host crystal. Their self-consistent correction scheme, which avoids
the artificial jellium background, is intuitive for traditional semi-
conductors where charged defects are compensated by electrons/
holes, but less so for cases where ionic compensation dominates21,22.
The approach gives good agreement with conventional methods
and can also describe defects in low dimensional structures.
This new wave of research and development in the field is

exciting and will further increase the predictive power of first-
principles calculations of materials. A family of reliable and general
correction schemes for charged defects will allow us to
confidently tackle important scientific challenges such as equili-
brium defect distributions, defect vibrations, and non-equilibrium
charge transitions. They will also support more robust workflows
for defect automation that can be used to identify new behaviour
and physical trends in imperfect crystals.
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Fig. 2 Defect correction schemes. Illustration of the variety of
correction procedures for the calculation of charged defects under
periodic boundary conditions.
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