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Predicting lattice thermal conductivity via machine learning:
a mini review
Yufeng Luo1, Mengke Li1, Hongmei Yuan1, Huijun Liu 1✉ and Ying Fang2✉

Over the past few decades, molecular dynamics simulations and first-principles calculations have become two major approaches to
predict the lattice thermal conductivity (κL), which are however limited by insufficient accuracy and high computational cost,
respectively. To overcome such inherent disadvantages, machine learning (ML) has been successfully used to accurately predict κL
in a high-throughput style. In this review, we give some introductions of recent ML works on the direct and indirect prediction of κL,
where the derivations and applications of data-driven models are discussed in details. A brief summary of current works and future
perspectives are given in the end.
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INTRODUCTION
The lattice thermal conductivity (κL) is a key design parameter for
various technological applications. For example, heat sinks in the
electronic devices require higher κL to dissipate the excessive thermal
energy1, while reducing κL is an effective approach to improve the
efficiency of thermoelectric (TE) conversion2. It is thus quite necessary
to discover/design particular systems with desired κL. On
the theoretical side, the most reliable approach for predicting κL is
the solution of phonon Boltzmann transport equation (BTE) within
the framework of density functional theory (DFT)3,4. However, the
required calculations of the interatomic force constants (IFCs) are
time-consuming, especially for those with large unit cell and low
symmetry. As an alternative, the classic molecular dynamics (MD)
simulations can be utilized to predict the κL of systems with complex
crystal structure5. Nevertheless, the accuracy of MD significantly
depends on the choice of interatomic potentials, which also limits its
wide application. In a word, there remains some challenges or
difficulties to accurately predict the κL, especially in a high-
throughput way.
As an important technique of artificial intelligence, machine

learning (ML) can efficiently determine the underlying connectivity
among enormous data at extremely low cost6–9. During the past few
decades, many efforts have been devoted to evaluate the κL of
various systems, both theoretically and experimentally10–14. Based on
these available data, ML can establish a mapping between the target
property (κL) and the input features (such as the atomic mass, the
phonon frequency, and the volume of unit cell8,15). Compared with
first-principles calculations and MD simulations, the data-driven ML
models enable high-throughput evaluation of κL, which exhibit
strong predictive power for systems both inside and beyond the
training set15,16. In addition to such direct prediction of κL, ML has
been successfully used to build accurate interatomic potentials for
MD simulations. Generally speaking, the machine learning potential
(MLP) employs regression algorithm to determine the ab-initio
potential energy surface (PES), and the atomic configurations are
usually adopted as input features17,18. Recently, the MLPs have been
utilized to accurately predict the κL of systems with complex crystal
structures and chemical compositions, such as the alloys19, the
heterostructures20, and the molten salts21. On the other hand, as the

derivative of total energy with respect to the atomic displacement,
IFCs can be obtained from the Taylor expansion of the PES4,22. The
MLPs determine the accurate PES and thus can derive the IFCs at
almost negligible computational cost, which enable accelerated
solution of phonon BTE for the evaluation of κL

22,23. Collectively
speaking, ML can overcome the inherent disadvantages of MD
simulations and first-principles calculations to accurately and readily
predict κL.
The remainder of this review is organized as follows. In the

section of “Direct prediction”, we give a brief introduction of the
dataset construction, the feature selection, and the training
algorithms, which are then combined to obtain the high-
throughput models for predicting κL. In the section of “Indirect
approach”, we focus on the construction of MLPs, and highlight
their first-principles level accuracy as well as advantages over
general approaches in predicting κL. The review is concluded with
a summary of current works and future perspectives.

DIRECT PREDICTION
Dataset construction and related features
As a data-driven technique, ML requires a dataset that contains
the κL for a substantial number of systems to derive reliable
prediction model. In general, the κL can be collected from first-
principles calculations, MD simulations, and experimental mea-
surements. As an addition, one can also obtain the κL from some
materials databases. For example, thousands of entries in the
Automatic FLOW (AFLOW) database have included the κL values
calculated by the so-called Automatic Gibbs Library (AGL)
method12,24. Here, the GIBBS quasiharmonic Debye model25 is
employed to evaluate the Debye temperature and the Grüneisen
parameter based on the computationally feasible adiabatic bulk
modulus, which are then inserted into the well-known Slack
model for the determination of κL26. We should emphasize that it
would be better to collect all the κL obtained using the same
approach, for example, either first-principles or MD. However, if
there is not enough data available for ML, one can also consider
both of them, as long as the interatomic potentials adopted in MD
are well-tested and the results exhibit sufficient accuracy. Figure 1
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is a schematic illustration of ML for the high-throughput
prediction of κL, where the dataset is usually divided into two
subsets including the training and testing sets. To avoid random
selection of training data, the principal component analysis (PCA)
can be used to identify systems that possess distinct features in
the dataset. For example, Tranås et al. demonstrated that a model
based on a semi-random pool of half-Heusler (HH) compounds (i.e.
assumed “bad luck” in the training set) was unable to correctly
predict the small κL values of those systems in the testing set from
the rest27. As an alternative, they used active sample selection
based on PCA, where three compounds with extremely low κL
were included in the training process. Such an approach can
significantly improve the model performance, in particular the
ability to identify the low κL compounds in the testing set.
As mentioned in the introduction, ML is implemented to

establish a mapping between the κL and some related input
features, which usually contains the information about: (1) the
structural properties, such as the lattice constant, the volume of
unit cell, the number of atoms, and the bond length; (2) the
elemental properties of the constituent atoms, including the
atomic number, the atomic mass, and the Pauli electronegativ-
ity; (3) the phonon properties, such as the phonon frequency,
the group velocity, the heat capacity, and the Grüneisen
parameter. To be compatible with most ML algorithms, systems
with different size needs to be represented by feature vectors
with a fixed length. Such a problem can be solved by adopting
statistical values of the elemental properties, such as the
maximum, the minimum, the composition-weighted (CW) value,
and the standard deviation28. Obviously, it is quite important to
screen out features that are closely related to the target
property. For instance, Juneja et al. revealed high Pearson
correlation between κL and several fundamental properties,

including the maximum phonon frequency, the average atomic
mass, the volume of the unit cell, and the integrated Grüneisen
parameter up to 3 THz15. Using these input features, they
developed a Gaussian process regression-based ML model by
training the κL of 120 dynamically stable and nonmetallic
compounds. To keep only those features that are highly related
to κL, Chen et al. performed the so-called recursive feature
elimination (RFE) on the initial feature vector, which significantly
reduces the dimensionality from 63 to 2929. It should be also
noted that highly intercorrelated features could increase the
computational cost and may affect the predictive power. It is
thus quite necessary to check the feature relevancy and
redundancy before any training process.

Machine learning algorithms
With the rapid development of artificial intelligence, various ML
algorithms have been proposed, such as the Bayesian Optimiza-
tion (BO)30, the eXtreme Gradient Boosting (XGBoost)31, the Neural
Network (NN)32, the Kernel Ridge Regression (KRR)33, the Least
Absolute Shrinkage and Selection Operator (LASSO)34, the Sure
Independence Screening and Sparsifying Operator (SISSO)35, the
Generalized Linear Regression (GLR)36, the Random Forest (RF)37,
the Gaussian Process Regression (GPR)38, and etc. In this section,
we give a brief introduction of the NN, SISSO, and RF, which are
widely used to construct high-throughput ML models for the
prediction of κL.
In the learning process, NN algorithm first feeds the input layer

with feature data, which is then manipulated by several hidden
layers, and the output layer finally generates the target value. Each
neuron is connected with all the neurons from the previous layer,
and it deals with the data according to a specific activation
function. When data is transferred between neurons, its value will

Fig. 1 A schematic illustration of machine learning for the high-throughput prediction of lattice thermal conductivities. Three
components are usually involved in machine learning: dataset construction, input features, and training algorithms.
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be multiplied by a weight parameter. To generate the best model,
one should optimize the hyperparameters (such as the activation
function, the number of neurons and the hidden layers) and
minimize the loss function. It has been demonstrated that NN can
effectively handle non-linear and complex problems, whereas the
obtained model is usually treated as a black box.
The SISSO algorithm relies on two key steps: the feature-space

construction and the descriptor identification. Specifically, the
input features are first combined by iteratively using the algebraic

operators I;þ;�; ´ ; =; exp; log; �j j; ffip
;�1 ;2 ;3

n o
, which could

construct a huge feature space. The sure independence screening
(SIS) then scores each new feature with a metric (correlation
magnitude), and selects the subspace that contains the descrip-
tors highly related with the training data. The sparsifying
operators (SO) is finally utilized to find the optimal n-dimensional
descriptor. Compared with many other ML algorithms, the SISSO
can identify descriptors that are explicit and analytic functions of
key inputs, which is very beneficial for understanding the inherent
physical mechanisms.

As an ensemble learning algorithm, RF combines multiple
decision trees (DT)39 to avoid overfitting. Each DT in the “forest” is
individually trained by randomly selecting a subset of features.
Here, the training data is divided into two or more categories at
the root node based on the feature values, and each subsequent
node will receive a data subgroup and then output the
separations to the next nodes until all the generated groups are
homogeneous. The output of a final node (called a “leaf”) gives the
mean value of the corresponding separated samples. In a word,
the trained DT model obtains the predicted value by determining
the interval of input features. Collectively, the RF model can rank
the importance of each feature according to the order of nodes,
and output the average value of predicted results by all the DT
ensemble models.

High-throughput prediction models
As an effective high-throughput method, ML has been widely
used to predict κL of various systems in recent years15,16,27–29,40–57.
For example, Wang et al. developed a XGBoost model and its
predictive power was checked by 549 compounds in the testing

Fig. 2 High-throughput prediction of lattice thermal conductivities by machine learning models. a The XGBoost model-predicted log-
scaled κL versus the calculated values for the testing set. The top and right histograms show the corresponding data distributions.
b Dependence of the predicted κL on specific elements for compounds in the ICSD, and the values are shown by colors along with the
ΔHatomic and ρ. a and b are reproduced with permission from ref. 44. c Schematics of the multilayer structures and the MD simulation setup.
d Comparisons of the real and predicted κL for 100 randomly generated RMLs and their corresponding 100 GMLs in the testing set. c and d are
reproduced with permission from ref. 45.

Y. Luo et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)     4 



set, as shown in Fig. 2a44. Among 75 input features, the average
atomization enthalpy (ΔHatomic) and the density (ρ) were found to
be most relevant with the κL. Note that the training set contains
4937 κL calculated by the above-mentioned AGL method12, which
were collected from the AFLOW database24. The model was then
employed on all the entries in the Inorganic Crystallographic
Structure Database (ICSD)58, and it was found that compounds
containing halogen elements or heavy atoms exhibit low κL (see
Fig. 2b). Among them, potential TE materials (such as BiTe2Tl and
Cl2CsI) were screened out and the prediction accuracy was
validated by first-principles calculations. Besides, the NN algorithm
has been successfully applied to predict the κL of random
multilayer (RML) and gradient multilayer (GML) structures
composed of two types of conceptual atoms with different mass
values, as shown in Fig. 2c45. To construct the training set, the κL
of 1600 RMLs and their corresponding 1600 GMLs were calculated
by MD simulations. In contrast to generally used crystal and
elemental properties, the input features include several key
parameters for quantifying the disorder in layer thicknesses of
RMLs, as listed in Table 1. Figure 2d shows the predicted κL for 200
multilayer structures beyond the training set, which are in good
agreement with the MD results. Unlike most ML models which
appears as black boxes, Liu et al. employed the SISSO method to
establish a physically intuitive descriptor for predicting the κL of

HH compounds46. They found that the first term D1 ¼ m ´ χB ´ χA�χBj j
e2a

dominates the three-dimensional (3D) descriptor, where the κL
decreases with the lattice constant a but increases with the
electronegativity difference |χA − χB| between atoms at site A and

B. This is consistent with the general belief that systems with
larger unit cell usually have smaller κL, and stronger chemical
bonding would lead to higher κL. Beyond the initial 86 training
data, the strong predictive power of the descriptor was confirmed
by 75 HH compounds and 15 full-Heusler (FH) systems.
As typical input features for many ML models, accurate

structural parameters are usually obtained by first-principles
calculations40,41,54,56 if experimental results are not available.
Alternatively, Jaafreh et al. utilized the crystal features of a series
prototype structures to establish a RF-based model, which can be
applied to related systems without the use of any DFT-relaxed
structural parameters16. It should be noted that the crystal
features are generated by using the area of each face of the
Wigner-Seitz cell (see Fig. 3a) and the characteristics of neighbor-
ing atoms. The training set contains 2146 κL of 119 compounds at
a series of temperatures from 100 to 1000 K. As shown in Fig. 3b,
the RF-based model exhibits strong predictive power for 4 systems
in the testing set. To go further, the model was used to predict the
room temperature κL for 32,116 compounds in the ICSD, where
273 have ultralow values and 4 are even <0.1 Wm−1K−1

suggesting very promising applications in the field of energy
harvesting.
In recent years, the Convolutional Neural Network (CNN)

algorithm has been adopted to predict the κL of porous
graphene47, hybrid carbon-boron nitride honeycombs50, aperiodic
superlattices57, and etc. The input layer of CNN is fed with
particular arrays, which can be obtained by extracting character-
istics of an image representing the system, instead of selecting
features from various physical properties. In particular, the Crystal

Table 1. Summary of representative machine learning works on the direct prediction of lattice thermal conductivities in recent 5 years.

Training and testing sets Input features Algorithms

the κL of 120 compounds at 300 K, obtained from first-
principles calculations15

maximum phonon frequency, integrated Grüneisen
parameter up to 3 THz, average atomic mass, and volume
of the unit cell

GPR, SISSO

the 2146 κL of 119 compounds at various temperatures from
100 to 1000 K, obtained from first-principles calculations16

before filtering: 126 crystal features mainly generated
based on Wigner-Seitz cells, 145 elemental features, and
temperature

RF

the κL of 110 compounds at 300 K, obtained from first-
principles calculations28

a set of descriptors from simple elemental and structural
representations

BO

the κL of 5486 compounds at 300 K, obtained from the AGL
method44

7 crystal properties, 25 CW elemental properties, 25 crystal
structure fingerprints, and 18 statistical properties

XGBoost

the κL of 1700 RMLs and their corresponding 1700 GMLs at
30 K, obtained from MD simulations45

the thickness sequence, the thickness- and period-based
index of randomization, the standard deviation of
thickness, the maximum and minimum deviation of layer
thickness with respect to the mean layer thickness of RML

NN

the κL of 86 HH compounds at 300 K, obtained from first-
principles calculations or experimental measurements46

lattice constants and 24 elemental features SISSO

initialization: the κL of 100 porous graphene structures at
300 K, obtained from MD simulations47

a gray image representing the spatial distribution of
the holes

CNN+ active learning

initialization: the κL of 100 hybrid carbon-boron nitride
honeycombs (C-BNHCs) at 300 K, obtained from MD
simulations50

a grayscale image representing the top-view schematic of
C-BNHC

CNN+ active learning

(1) the κL of 2668 compounds at 300 K, obtained from high-
throughput first-principles calculations. (2) the κL of 132
compounds at 300 K, obtained from experimental
measurements51

a graph representing the connection of atoms in the crystal CGCNN+ transfer
learning

(1) the harmonic three-phonon scattering phase space of
320 crystals, obtained from first-principles calculations. (2)
the κL of 45 crystals at 300 K, obtained from first-principles
calculations53

290 elemental features NN, RF+ transfer learning

initialization: the κL of 300 randomly generated Si/Ge RMLs
at 300 K, obtained from MD simulations57

N-bit array: N is the number of unit cells in the RML, and
one can input a value of 1 or 2 depending on whether the
corresponding unit cell consists of Si or Ge atoms,
respectively

CNN+ active learning
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Graph Convolutional Neural Network (CGCNN) algorithm enables
the prediction of target properties by a graph representing the
connection of atoms in the crystal59. As a major advance, Zhu et al.
employed CGCNN to predict the κL of all known inorganic crystals
directly from their atomic structures51. As shown in Fig. 3c, they
established a model based on the dataset60 containing 2668
calculated lattice thermal conductivities (named κC in their work),
where the crystal structure was converted to a graph with the
nodes and the edges respectively representing atoms and
connections between neighboring atoms. The CNN was initialized
by feature vectors that characterize each node and edge. It should
be noted that these κC were firstly calculated by a semi-empirical
model, which inevitably exhibit insufficient accuracy51,61. To
address such a problem, they collected 132 experimentally
measured lattice thermal conductivities (κexp). Due to the small
size of the training set, the established model exhibits a large
mean absolute error (MAE) of 0.51 (for log-scaled κexp). As
correlated datasets share similar domain knowledge, they devel-
oped a transfer learning scheme (see Fig. 3c) where all layers from
the model trained by κC was transferred to initialize a second
CGCNN with reduced MAE of ~0.27.
It should be noted that ML models can be further optimized via

active learning, which is very useful for the inverse design of
systems with desired κL. For example, it is very time-consuming to
identify the optimal distribution of holes that can minimize the κL
of two-dimensional (2D) materials since the design space expands
dramatically with increasing hole density. Taking porous graphene
as a prototypical class of examples, Wan et al. adopted a CNN-
based inverse design approach to determine the structure with
the lowest κL, which only needs to simulate ~103 systems by MD
out of the total 106 possible candidates47. By performing MD
simulations, Chowdhury et al. obtained the κL of 300 randomly
generated Si/Ge RMLs which is used as the initial dataset57. They
iteratively identified RMLs with locally enhanced phonon transport

and included them as additional training data. Using the CNN
model, RMLs with unexpectedly higher κL are discovered, which
can be attributed to the presence of closely spaced interfaces.
Summarizing this section, considerable progress has been made in

the high-throughput prediction of κL by leveraging various data-
driven models. To have a fast understanding, Table 1 provides the
training and testing sets, the input features, and the adopted
algorithms of representative ML works in recent 5 years. With the
increasing growth of big data and accelerated development of
artificial intelligence, it is expected that ML would become a major
scientific paradigm for accurately predicting κL, and more ML models
or descriptors could be emerged to give physical insights into
different mechanisms to manipulate κL, such as phonon coherence,
weak coupling of phonons, and high-order phonon anharmonicity62.

INDIRECT APPROACH
Due to the lack of available training data, the above-mentioned
ML models cannot be directly applicable to various 2D materials,
nanowires, alloys, ternary salts, and etc. As an alternative, ML can
be also utilized to construct accurate interatomic potentials or
force constants so that efficient evaluation of κL become feasible
using MD simulations or even first-principles calculations.
It is known that the atomic-scale simulations need to determine the

PES that provides the potential energy as a function of atomic
positions. In principle, the most accurate PES can be obtained by
quantum mechanics calculations, which is however very time-
consuming and even prohibitive for large systems. Based on the
physical knowledge of the interatomic bonding, many specific
analytic expressions have been proposed, known as the empirical
potentials63. However, the PES is a multidimensional real-valued
function, which cannot be completely fitted by these specific
functional forms64. The empirical interatomic potentials thus usually
exhibit insufficient accuracy and the involved parameters should be

Fig. 3 Machine learning models using the Wigner-Seitz cell or the graph representing the connection of atoms in the crystal as input
features. a The Wigner-Seitz cell used to construct the feature space. b Comparisons of the calculated and predicted κL of 4 compounds in the
testing set. a and b are reproduced with permission from ref. 16. c Schematic of transfer learning based on CGCNN for the prediction of κL.
Here, the crystal structure is converted to a graph, where the nodes represent atoms and the edges connect the neighboring nodes.
Reproduced with permission from ref. 51.
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carefully optimized for different systems. Taking the bulk silicon as an
example, the κL calculated by using the original Stillinger-Weber
potential (~244Wm−1K−1 at room temperature) is much higher than
the experimentally measured result (~148Wm−1K−1)65. It is thus quite
necessary to develop alternative potentials for accurate prediction of
κL, and MLP is one of good choices.

Training data and input features
In principle, ML can be used to fit the correlation between atomic
configurations and physical properties of given systems. Com-
pared with empirical potentials, MLPs determine the PES in a data-
driven manner to describe the interatomic interactions. To ensure
that the MLPs exhibit first-principles level accuracy, the dataset is
usually constructed by performing ab-initio molecular dynamics
(AIMD) simulations at a series of temperatures, where the
energies, the forces, and the stresses of different atomic
configurations are then recorded66–68. It should be noted that
the atomic configurations are sampled from AIMD trajectories and
uncorrelated with each other.
Unlike many ML models for high-throughput prediction of κL,

establishing MLPs requires to input features that can represent the

local environment around each atom, usually within a specific
cutoff radius. The adopted features must be invariant to Euclidean
transformations and permutation of chemically equivalent atom69.
A simple example is the atomic Cartesian coordinates which
cannot be used for training. The reason is that when the system is
rotated or the chemically equivalent atoms are exchanged, a new
list of Cartesian coordinates is generated, which however
corresponds to the same atomic configuration. For the evaluation
of κL, the widely used features are the moment tensor70, the atom-
centered symmetry functions (ACSFs)71,72, and the smooth overlap
of atomic positions (SOAP)18. Taking the ACSFs as an example, the
G2
i and G4

i in the following expressions respectively describe the
radial and angular environment of atom i,

G2
i ¼

X
j

e�ηs Rij�Rsð Þ2 � fc Rij
� �

(1)

and

G4
i ¼ 21�ζ

Pall
j;k≠i

1þ λ cos θijk
� �ζ � e�ηa R2ijþR2ikþR2jk

� �
� fc Rij

� � � fc Rikð Þ � fc Rjk
� �

:

(2)

Table 2. Summary of widely adopted machine learning potentials for indirectly predicting lattice thermal conductivities.

Potential Feature Algorithm Application systems

MTP moment tensor70 linear regression monolayers77–84,95, bilayers85, heterostructures20, perovskites86, skutterudites68,87,
alloys88, wurtzite structures89, phase change materials91,92, complex crystals93, etc

NNP ACSF71,72, digital image66, SOAP18 NN molten salts21, polymorphs103, near-stoichiometric compounds106, high-entropy
ceramics107,108, ternary salts109, nanowires110, monolayers111,
antiperovskites112, etc

GAP SOAP18, two-body and three-body
descriptors117,118

GPR crystalline compounds113–115, crystals with defects116, monolayers117,118,
amorphous structures119, etc

Fig. 4 Scheme of active learning bootstrapping iterations for training the Moment Tensor Potential (MTP). By selecting extrapolative
configurations from the MD trajectories, the MTPs are trained in a loop until simulations are finished without exceeding the allowed maximum
of extrapolation grade. Reproduced with permission from ref. 94.
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Here Rij is the distance between atom i and j, θijk is the angle
centered at atom i, and fc is the smooth cutoff function. ηs and Rs
define the width and the center of the Gaussians, respectively. In
Eq. (2), the angular resolution and distribution can be determined
by ζ and ηa, and λ has the values of +1 and −1. It should be
emphasized that the construction of appropriate features is a very
challenging task, and we refer the interested reader to a review
article73 that summarizes recent work on the efficient representa-
tions of atomic and molecular structures.

Machine learning potentials
Table 2 summarizes several important MLPs used for the
evaluation of κL, which includes the Moment Tensor Potentials
(MTPs)70, the Neural Network Potentials (NNPs)71,74, and the
Gaussian Approximation Potentials (GAPs)75. In particular, the
MTPs exhibit an excellent balance between accuracy and
computational efficiency76, which have been widely used to
predict the κL of various systems, such as monolayers, alloys, and
complex compounds68,77–93. In principle, the purpose of training
MTP is minimizing the difference between the predicted and DFT-
calculated energies (E), forces (f), and stresses (σ) for K atomic
configurations:70,94,95

PK
k¼1

we EAIMD
k � EMTP

k

� �2þwf
PN
i

fAIMD
k;i � EMTP

k;i

��� ���2�

þwS
P3
i;j¼1

σAIMD
k;ij � σMTP

k;ij

��� ���2
#
! minimum:

(3)

Here, we, wf, and ws are respectively positive weights that express
the importance of energies, forces, and stresses in the training
process. In order to improve the quality of MTPs, active learning is
usually implemented, where the atomic configuration will be
included in the training set if its extrapolation grade (a feature
correlated with the prediction error94) is above the threshold and
below the allowed maximum. Figure 4 show the widely used
active learning scheme for training a MTP, which usually contains
six stages labeled as A to F.
To validate the accuracy of the trained MLP, the energies, the

forces, and the stresses of different atomic configurations are
checked in the testing and predicting sets. For instance, Huang
et al. proposed a single atom neural network potential (SANNP) for
the amorphous silicon based on the training set containing 800
atomic configurations from AIMD simulations67. Figure 5a−c
respectively show the predicted total energies, atomic energies,
and atomic forces in the testing set, which agree well with those
obtained from DFT calculations.

Application examples
As mentioned in the introduction part, the MLPs with first-
principles level accuracy can be implemented into the MD
simulations or the phonon BTE to indirectly predict κL of given
systems. Unlike conventional first-principle calculations or classic
MD with empirical potentials, the evaluation of κL by employing

MLPs simultaneously exhibits strong reliability and high efficiency,
which have been demonstrated by various systems as also
summarized in Table 220–23,66–68,77–119. For example, Korotaev
et al. used the active learning algorithm to develop the MTP for
the CoSb3 skutterudite and accurately predict its κL at different
temperatures68. Indeed, we see from Fig. 6a that the κL indirectly
obtained from MTP almost coincide with the experimentally
measured results. It should be emphasized that, compared with
conventional first-principles calculations, the MTP can significantly
accelerate the prediction process (the computational speed
increased by more than four orders of magnitude).
Due to the compositional complexity, predicting the κL of high-

entropy materials is usually a challenging task. Recently, Dai et al.
established a deep learning potential for the thermal insulting
material (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2120, which was then used in the
MD simulations to calculate its average lattice thermal conductiv-
ity along two directions (κp), as shown in Fig. 6b107. At room
temperature, the κp is predicted to be 4.0 Wm−1K−1, which is close
to the experimentally measured value of ~4.8 Wm−1K−1.
In addition, the GAP of crystalline Si with vacancies was adopted

by Babaei et al. to determine the lattice thermal conductivities
contributed from phonon-vacancy scattering (κph-v)116. As can be
found from Fig. 6c, the κph-v predicted from the GAP show good
agreement with the DFT-calculated results at different vacancy
concentrations, while those with empirical potentials exhibit much
larger errors. Similar picture can be found in Fig. 6d, where the
effects of three-phonon and phonon-vacancy scatterings are both
included (κ3ph+ph-v). Note that the computational cost of the GAP
is five orders of magnitude smaller than that of DFT calculations in
their own work, indicating the high efficiency of such kind of MLP
for the prediction of κL.
Last but not least, we note that several other MLPs were proposed

recently, such as the spectral neighbor analysis potential, the bond
order potential, the force constant potential, and the spatial density
neural network force fields, which have been also demonstrated to
accurately evaluate the κL of many systems at low computational
cost19,121–127. With the deep understanding of interatomic interac-
tions, it is reasonable to expect that more and more reliable and
universal MLPs could be developed in the future.

SUMMARY AND PERSPECTIVE
To conclude, we hope this mini review could enable the interested
reader to have a preliminary understanding of predicting κL via
ML, either directly or indirectly. As high-throughput ML models for
the direct prediction of κL, the input features usually contain
several fundamental physical properties related to the investi-
gated systems and the constituent elements, such as the lattice
constants, the phonon frequency, the atomic mass, and so on.
Such kind of data-driven models can be utilized for the rapid
screening and inverse design of materials with desired κL, and
their predictive power has been demonstrated by checking many
systems both inside or beyond the training sets. In addition, the
MLPs can be readily implemented into the MD simulations or the

Fig. 5 Validation of the accuracy of machine learning potentials. The intuitive linear correlations between the predicted a atomic energies,
b total energies, c atomic forces and those calculated by DFT in the testing set for the amorphous silicon. Reproduced with permission from
ref. 67.
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phonon BTE, which offer an indirect but quite efficient prediction
of κL for particular systems, including crystal with defects, high-
entropy compounds, amorphous structures, and so on. Compared
with conventional DFT and MD approaches, the MLPs can
significantly accelerate the evaluation of κL and simultaneously
retain first-principles level accuracy.
Although considerable advances have been made in the direct

prediction of κL via ML, there remain several challenges to be
addressed in the future. For example, it is still difficult to construct
large and reliable dataset required for training, which definitely
affects the predictive power and the transferability of such data-
driven method. In particular, many ML models are severely limited
to some specific systems (e.g. HH compounds, zincblende and
rocksalt structures), leaving a much larger materials space
unexplored40,41,43,46,52,54. Although one can find the κL values for
thousands of compounds in the AFLOW and the TE Design Lab
repositories, they are usually calculated by using empirical
models12,61 and may exhibit insufficient accuracy compared with
those obtained from first-principles calculations, MD simulations,
or experimental measurements. On the other hand, substantial
advances have been made in the high-throughput discovery of 2D
materials, while their thermal transport properties are less known
so far128–131. Due to the limited experimental and theoretical data,
it is rather difficult to derive a reliable ML model to predict the κL
of various 2D materials. It is believed that the transfer learning can
overcome the disadvantage of small data size by pretraining the
correlated dataset. However, it still requires accurate first-
principles calculations to obtain the scattering phase space of
numerous systems53, which remains a tough task. To take better
advantage of transfer learning, much efforts should be devoted to
identify readily available physical properties that are highly
correlated with κL.
In the case of developing efficient MLPs, it is usually necessary

to calculate the energies, the forces, and the stresses of a
substantial number of atomic configurations within the framework
of DFT. Such a task is however very time-consuming for the
systems with large unit cell and complex chemical composition,

such as molten salts21, skutterudites68, high-entropy com-
pounds107 and so on. Besides, the employed features usually
indicate the atomic environment within a certain cutoff radius,
and the established MLPs thus ignore the long-range interactions
that could be very important for thermal transport properties in
some cases. It is expected that the efficiency and accuracy of MLPs
can be further improved by careful selection and optimization of
input features and/or learning schemes.
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