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CEGANN: Crystal Edge Graph Attention Neural Network
for multiscale classification of materials environment
Suvo Banik1,2, Debdas Dhabal 3, Henry Chan 1, Sukriti Manna1,2, Mathew Cherukara 4, Valeria Molinero3 and
Subramanian K. R. S. Sankaranarayanan 1,2✉

We introduce Crystal Edge Graph Attention Neural Network (CEGANN) workflow that uses graph attention-based architecture to
learn unique feature representations and perform classification of materials across multiple scales (from atomic to mesoscale) and
diverse classes ranging from metals, oxides, non-metals to hierarchical materials such as zeolites and semi-ordered mesophases.
CEGANN can classify based on a global, structure-level representation such as space group and dimensionality (e.g., bulk, 2D,
clusters, etc.). Using representative materials such as polycrystals and zeolites, we demonstrate its transferability in performing local
atom-level classification tasks, such as grain boundary identification and other heterointerfaces. CEGANN classifies in (thermal)
noisy dynamical environments as demonstrated for representative zeolite nucleation and growth from an amorphous mixture.
Finally, we use CEGANN to classify multicomponent systems with thermal noise and compositional diversity. Overall, our approach
is material agnostic and allows for multiscale feature classification ranging from atomic-scale crystals to heterointerfaces to
microscale grain boundaries.
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INTRODUCTION
Characterization of materials with unique properties1–5 is at the
core of data-driven material design and discovery6,7. A relatively
small fraction of materials has been characterized either experi-
mentally or with computational methods, compared to their
anticipated potential diversity across a vast chemical space. Given
the surge in the development of materials databases8–10 in recent
years, there is an urgent need for automated tools to analyze large
amounts of structural data. In this regard, distinguishing the unique
characteristics across different classes of materials with varying
dimensionality can provide key insights into learnable aspects
which are crucial for state-of-the-art machine learning (ML) tools to
be successfully implemented in the design and discovery of new
materials with unique properties. To achieve such distinction, ML
models typically involve the use of fingerprints or descriptors11–16

that allow a learning algorithm to map the fingerprint to a user-
desired property of interest. A descriptor that maps the crystal
features in a vector space should always be (1) invariant to basis
symmetries such as rotation, reflection, translation, and permuta-
tion of atoms12, (2) unique to the system applied, but sensitive
towards variation in properties, and (3) simple and robust.
Additionally, these features play a crucial role in a wide range of
applications such as quantitative structure-property relationship
(QSPR)11,17–20, development of interatomic potentials13,21–23, pre-
diction of atomistic configurations based on targeted proper-
ties24–28, surface phenomena29, etc.
A feature representation is constructed primarily in two ways (i)

using a predefined mathematical formulation, or (ii) learning the
representation by combining fundamental low-level features and
correlating them to the relevant task being performed using ML
methods. A plethora of mathematical formulation-based descrip-
tors13–15,30–34 such as radial distribution functions (RDF), angular
distribution function (ADF), common neighbor analysis (CNA)30,

adaptive CNA30, centro-symmetry parameter (CSP)30, Voronoi
analysis30, Steinhardt order parameter (SP)31, bond angle analysis
(BAA)32, and neighbor distance analysis (NDA)30 are widely used
for featurization. A majority of these are very simple and of a very
local nature, i.e., mostly capable of differentiating ordered and
disordered structures. Improving upon these, a set of features can
be developed using pairwise feature matrices and their transfor-
mations12,18–20,33,34. These features may be as simple as pairwise
distances e.g., Weyl matrices34, Z-matrices35, or pairwise electro-
static interactions between atoms (Coulomb matrix18 and sine
matrix19). A more comprehensive representation of these matrices
is permutation histograms15 e.g., MBTR (Many-Body Tensor
Representation)12, BOB (Bag of Bonds)20. The advantages of these
methods are that the pairwise features are translationally
invariant, and these matrices present a unique representation of
the system. However, a major setback of these matrix representa-
tions is that they are not invariant to changes in atom ordering. A
very popular approach involves the use of smooth overlap of
atomic positions (SOAP)14 descriptors constructed by expanding
the atomic neighbor density ρ on a spherical harmonics basis and
then further expanding it on a radial basis to obtain the rotational
invariant power spectrum33. SOAP provides a robust representa-
tion of the local environment in a smooth and continuous manner
which makes it very suitable for mapping potential energy
surfaces. Nevertheless, most of the existing approaches for
structure characterization that involve global comparison between
two structures are either based on a simple aggregation-based
method (average kernel) that causes loss in resolution or are
computationally expensive such as, for example, the best match
kernel method14. Another setback is that the number of
descriptors increases quadratically6 with the increase in the
number of chemical species, precluding their applicability to
multicomponent systems.
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In this context, graph neural networks (GNNs)36–38 have been
widely used in node-level as well as graph-level classification tasks
with remarkable success. Furthermore, recent developments in
the area of graph attention networks39 make the task more
accurate by learning the interaction between node-level features.
These networks tend to learn flexible representations by combin-
ing very fundamental low-level features (interatomic distances,
bond angles, etc.), and yet produce a graph-based input that very
accurately maps to the target-specific tasks. This caters to the
limitations of static descriptors bound by predefined mathema-
tical formulations.
In crystal systems, GNNs can be made to operate on atom-

based graph representation to create node-level embedding
through convolutions on neighboring nodes and edges17,40–46.
More layers of convolutions tend to capture higher-level informa-
tion. A widely used framework for crystal systems is the Crystal
Graph Convolutional Neural Network (CGCNN)17,46. Xie and
Grossman have shown that CGCNN can directly learn material
properties from the connectivity of atoms in a crystal, thus
enabling an interpretable representation of crystalline materials47.
Graph attention-based architecture43 has also recently been
implemented for the structure-to-property mapping in atomistic
systems. Traditional CGCNN architecture tends to map structure to
the property by using a diverse set of atom-level features (e.g.,
group number, period number, atomic number, electronic
structure, etc.), and crystal graphs with simple edge feature such
as pairwise interatomic distances.

Predefined mathematical formulation-based descriptors are
useful when there isn’t sufficient data to learn from. However,
they largely suffer from transferability issues due to a lack of
flexibility. On the other hand, current existing graph-based CGCNN
architectures do not incorporate orientational features40,44 that
are very relevant for classification tasks in a multitude of atomic
environments. Moreover, these features tend to play a more
significant role in classification tasks than features belonging to
different atomic species. Although there have been recent
applications40,44 that include orientational features in their
network architecture, they are more complex in nature and
mostly focus on property prediction. To elucidate the issues
involving transferability and applicability, we present two distinct
classification scenarios (Fig. 1). To begin with, we classify the liquid
and glassy-amorphous phases of a representative material such as
silicon (Si). Both liquid and amorphous Si phases are disordered
with no symmetry whatsoever and only differ in density and
coordination number. Figure 1a displays the variability in the
coordination environment of the liquids and amorphous Si phases
used in this study. We use a dataset containing 2000 Si structures
with 50% of them being liquid and rest 50% amorphous (see
Supplementary Notes 1 for the details on the data generation
methods) and train a traditional CGCNN model using a train-to-
test split of 80:20. From the t-SNE (t-distributed stochastic
neighbor embedding) of feature representation of the test
dataset, with SOAP (cutoff 6 Å) (Fig. 1b), there is no distinct
separation of the phases in features space indicating the inability

Fig. 1 Classification of silicon (Si) liquid and amorphous (glass) phases and atoms belonging to the hexagonal and cubic motifs in an
ABABCB stacked ice. a Typical coordination number distribution of liquid and amorphous Si structures. b t-SNE plot of SOAP representation
of the crystalline and amorphous Si phases in the test dataset. c t-SNE plot for bond-order parameters (Q2, Q4, Q6)+ CN (Coordination
Number), feature representation. d t-SNE plot of embeddings of the test dataset obtained by training a classic CGCNN model. e classification
of hexagonal and cubic stacked ice in an ABABCB stacked ice with CHILL+ 48 algorithm. f classification using SOAP feature vector g by using
order parameters (Q2, Q4, Q6)+ CN, and h using the trained CGCNN model.
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of SOAP to distinguish the individual phases (see Supplementary
Fig. 1c, d) for different cutoffs). On the other hand, simple bond
order based features (Q2, Q4, Q6)+ CN (Coordination Number)
(cutoff 6 Å) (Fig. 1c) and a trained CGCNN (Fig. 1d) can clearly
characterize the two phases with decent separation in feature
space. The second task involves the identification of particles
belonging to local motifs (hexagonal or cubic) in a stacking
disordered (ABABCB), ice. The correlated bond order-based
CHILL+48 is used as a benchmark for labeling the data (Fig. 1e).
Similar to the earlier case, we employ order parameters, SOAP, and
CGCNN for this classification. The training data of CGCNN
comprises a pure cubic, hexagonal, and stacking faulted (ABCBCB)
ice structure. The results in Fig. 1f–h indicate that while SOAP is
able to classify local motifs, CGCNN or the order parameters-based
features fail to do so. This is converse to the fact that SOAP could
not characterize structures belonging to a liquid or an amorphous
class while its two counterparts could. This is an indication of the
transferability issue in existing characterization techniques across
various problems at different scales. Although traditional GNNs
(such as CGCNN) showing exceptional promise in learning flexible
feature representation at a graph level (global), their performance
in local environments is not as good as their predictability of
global attributes (e.g., properties such as energy, bandgap, etc.)
and remains mostly unexplored.
Clearly, there is a need for a method that is not only transferable,

but adaptable to variabilities in the material environment while
providing accurate characterization at different scales. To the best
of our knowledge, most efforts on crystal graph neural networks
have been restricted to map structures to properties and a few
property-based prediction tasks. There is still an immense untapped
potential for GNNs in classification at both the structure (global) and
atomic (local) levels. In this work, we introduce a graph attention-
based51 workflow that operates on edge graphs, convoluting
edges, and bond angle features and passing messages in between

(Fig. 2), to learn feature representation of material environments. An
advantage of attention-based architectures is that they can learn
the importance of feature vectors (i.e., bonds and angles) in the
neighborhood of each atom and put emphasis on the ones unique
to the task being performed. This helps in increasing performance
by ignoring redundant and unnecessary information. We demon-
strate the efficacy of our workflow in classification tasks at both the
atom-level (local) and structure-level (global) using a wide range of
representative examples from materials applications. For global-
level classification, we perform two tasks. The first is classifying a
diverse range of materials based on their space groups, and the
second is classifying them based on their dimensionality (bulk, 2D,
cluster, etc.). We base the local atom-level classification on structural
motifs (FCC, BCC, HCP, and diamond cubic), and demonstrate its
use on a classic problem of grain boundary identification and grain
size distribution. To validate the efficacy of our workflow in
environments with thermal variations or noise, we deploy our
classification workflow to facilitate the study of nucleation and
growth of a zeolite, a complex porous crystal, in molecular
dynamics simulations of synthesis. Often, practical materials
application involves the characterization of phases with structural
and compositional variances along with thermal noise. We address
these challenges through the identification of ice and liquid along
simulations of water crystallization, and the classification of
disordered, mesophase, and crystalline orders in simulations of
binary mixtures involving transformations between these phases.

RESULTS
Edge graph representation
Edge graphs are higher-order representations of atomic graphs
with edges as nodes and bond angles as connections between a
pair of edges (Fig. 2b). We start from a crystal structure, creating its

Fig. 2 Basic architecture of CEGANN workflow. a, b Crystals are converted into atom graphs and edge graphs are obtained from atom
graphs. c Shows alternate message passing and hierarchical interaction between edge and angle convolutions. Finally, the atom feature,
convolved edge, and angle features are concatenated to produce the final representation. d t-SNE plot of the feature vector of liquid and
amorphous structures as predicted by CEGANN workflow on an identical test dataset as Fig. 1. e Shows identification of particles belonging to
a hexagonal and cubic motif in an ABABCB stacked ice by a trained CEGANN workflow.
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atom-graph (atom as nodes, bonds as edges) based on a fixed
number of nearest neighbors. The edge graph is extracted from
the atom-graph afterward (Fig. 2a, b). The edge features (eij) are
obtained by expanding the pairwise distance on Gaussian basis
functions while the bond angle features (θijk) are obtained by
expanding the cosines of the bond angles on a Gaussian basis
as well.

Hierarchical message passing
One main feature of the proposed architecture is the hierarchical
interaction between edge and angle layers (Fig. 2c) (see Methods
section). The edge layer always gets updated first. This follows the
hierarchy that the bond angles are constructed from a pair of
edges and any change at the edge level should get updated first
before passing the information onto the corresponding angle. This
gives n-1 angle convolution operations for n edge convolutions,
where n is an integer.

CEGANN workflow for multiscale classification
The architecture of the CEGANN workflow used to perform
multiscale classification of materials is shown in Fig. 2c. The edge-
graph feature representation of the structures is passed to the
hierarchical message passing block for convolution operations.
The output of the convolved feature vectors from the edge and
angle convolution layers are then passed to the aggregation block
via dense layers (linear transformation), where feature representa-
tions of each of the structures are generated for the prediction
task. For multicomponent systems, additional chemical informa-
tion can be included in the input edge feature vector feij (Fig. 2c)
as one-hot encoding, depending on the characterization task
being performed. CEGANN architecture also has an inherent ability
of learning to distinguish atomic species from the interatomic
distances of nearest neighbor atoms (see Supplementary Note 2
and Supplementary Fig. 2). The choice of the number of edges
and angle convolution layers to be employed depends on the
scale at which the classification tasks are being performed. For
local-level tasks, it is preferable to have fewer convolutions while
its global application requires more. In this work, we select an
optimal number of convolutions that results in the best
performance of our model for each of the tasks being performed

(Table 1). Similar to the choice of the number of convolutions, the
number of neighbors considered for the graph constructions also
affects the model performance. A grid study can be performed to
obtain an optimal set of hyperparameters for the specific task (see
Supplementary Note 3 and Supplementary Fig. 3a–c). In the end,
the selection becomes entirely dependent on the choice of the
problem, the computational cost associated, and the accuracy of
the prediction. The number of neighbors and the number of
convolutions used for each of the tasks is reported in Table 1. It is
to be noted that for all classification tasks performed in this work,
we keep the input dimension of edge and angle feature vectors to
be 80. We maintain uniformity of samples belonging to each class
in both training and testing data while the splitting of any
individual class is done randomly at a given ratio.

Classification of liquid and amorphous silicon and stacking-
disordered ice
We start by employing our CEGANN workflow for the classification
tasks as discussed in Fig. 1. (a) Classification of liquid and
amorphous phases (Silicon) Fig. 1a–d. (b) Characterization of local
motifs (Hexagonal or Cubic) in stacking-disordered ice (ABABCB)
Fig. 1e–h. CEGANN is trained on the same training data as CGCNN
(Fig. 1d, h). The test data is also kept identical. From Fig. 2d, the
t-SNE plot of the feature vectors of liquid and amorphous Si
structures as predicted by CEGANN, it is evident that CEGANN has
been able to distinguish amorphous and liquid phases of silicon
conspicuously. Figure 2e also depicts the ability of CEGANN to
precisely classify local cubic and hexagonal motifs in stacking fault
structures where CGCNN performs poorly. CEGANN is shown to
overcome the challenge of transferability for both applications
ranging from global to local levels while its counterparts, such as
the traditional CGCNN, and descriptors such as SOAP fail to do so
(Fig. 1).

Characterization of crystal structures based on their space
groups
The space group of a crystalline system directly correlates to its
structural motif, albeit at a global level. We demonstrate that the
CEGANN framework can classify several different material classes
based on their space groups. For this classification task, we use the
same dataset as in ref. 49. The space group of each crystal is
calculated using a Pymatgen50 package. The dataset contains a
total of 10,517 crystal structures with seven crystal classes
belonging to eight different space groups. For the elemental
system, the classes are body-centered tetragonal (bct, 139 and
141), rhombohedral (rh, 166), hexagonal (hex, 194), simple cubic
(sc, 221), face-centered cubic (fcc, 225), diamond (dia, 227), and
body-centered cubic (bcc, 229), respectively (see Supplementary
Fig. 4a).
We start with the dataset having a train-to-test ratio of 90:10

and train CEGANN, CGCNN, and a SOAP_ML workflow on this
dataset. It is worth noting that our goal is to map SOAP feature
vectors (cutoff 6 Å) directly to the space group. So, instead of
passing the SOAP features through consecutive dense layers
(linear transformation) with nonlinear activations51, we have only
one dense layer that directly maps it to the target space
(SOAP_ML workflow) conforming to the specification used in
CEGANN after the aggregation block (Fig. 2c). The accuracy on the
test dataset is shown in Fig. 3d. The CEGANN workflow achieves
an accuracy of ~100% on the test set. The confusion matrix of
CEGANN (Fig. 3a) also demonstrates a perfect identification (no
off-diagonal entries) (also see Supplementary Fig. 4b–i) of each
class belonging to different space groups. The CGCNN, on the
other hand, achieves an accuracy of ~83% on the test dataset with
major confusion (Fig. 3b) between the hex (194) and fcc (225)
structures. This is evident from the fact that fcc and hcp are close-
packed with a 74% atomic packing factor, and 12 nearest

Table 1. CEGANN Network hyperparameters used during different
classification tasks.

Classification task Edge
convolution

Angle
convolution

Nearest
neighbors

Amorphous and liquid 2 1 12

Stacking-disordered ice 1 0 16

Space groups 2 1 12

Dimensionality
classification

2 1 12

Grain size
distribution (FCC)

1 0 12

Grain size
distribution (BCC)

1 0 14

Grain size distribution
(Diamond)

1 0 16

Grain size
distribution (HCP)

1 0 12

Dynamical classification
with noise

1 0 12

Mesophase
characterization

1 0 12

Interfacial growth of ice 1 0 12

S. Banik et al.

4

npj Computational Materials (2023)    23 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



neighbors for both, which results in an identical graphical
representation of the structures unless the orientational order of
the particles are considered. The CGCNN not having these
attributes in its graphical representation, significantly impacts its
performance. The performance of SOAP_ML workflow is poor
indicating that SOAP in its current mathematical state, however,
does contain all the information but is not flexible enough to be
directly mappable to the target space group. The degree of
characterization can also be visualized in the t-SNE plot of the
feature space representation on the test dataset (Fig. 3e–g). There
is a clear distinction in the representation of each class for
CEGANN, while CGCNN and SOAP feature vectors display a lack of
resolution in the representation of each class in the feature space.

Classification of polymorphs across various structural
dimensionalities
Next, we demonstrate the ability of CEGANN to perform
classification on material polymorphs across various dimensional-
ities, from clusters (0D) to sheets (2D) to bulk (3D). Carbon is
known to have a diverse range of allotropes across these
dimensionalities, making it an excellent candidate for validating
the performance of our network for dimensionality classification.
We start with a dataset of 511 bulk structures collected from the
Samara Carbon Allotrope Database (SACADA)52. Monolayer C
polymorphs53, Graphite with varying interlayer distances, and a
collection of different Graphite allotrope and 2D polymorphs

Carbon sampled using CASTING framework1,54 and LCBOP
potential55 making a total of 612, 2D structures. The addition of
704 C nanoclusters56,57 result in a total dataset of 1827 configura-
tions (see Supplementary Fig. 5). We divide our dataset into 80%
training and 20% test.
Figure 4a shows the confusion matrix for the dimensionality

classification. CEGANN workflow can classify the structures with
~100% accuracy. Figure 4b shows the t-SNE plot of the
embeddings of the test set data. A clear distinction between
phases can also be observed in the feature space which displays
the capability of CEGANN to characterize polymorphs of different
dimensions. It is worth mentioning that dimensionality is a
defining material parameter, depending on which material can
exhibit dramatically different properties58. Identification of materi-
als based on their dimensionality is a crucial aspect of new
material design and prediction25. While 3D crystalline objects are
well documented among the experimentally known crystals, the
same is not true for low dimensional structures such as 2D or 0D.
For example, in a few cases, isolated 2D carbon layers tend to form
porous bulk-like polymorphs which makes it difficult to categorize
and distinguish them from typical layered structures.

Grain boundary identification
Characterization of local motifs in full 3D samples of polycrystal-
line materials and accurately identifying grains and boundaries is a
nontrivial task with a plethora of applications in material science.

Fig. 3 Global classification of crystals structures based on space groups. a–c Shows the confusion matrix for CEGANN, CGCNN, SOAP_ML,
and workflow respectively. d Shows accuracy of prediction on the test set for the three different architectures used. e–g Show the t-SNE plot
of the embeddings in feature space as learned by the CEGANN, CGCNN, and SOAP_ML, respectively.
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Although there are many methods used for grain characteriza-
tion30,32, there is no gold standard for identifying the grain size
distribution in polycrystalline materials, as the predictions widely
vary with the methodology used. We use CNA (Common Neighbor
Analysis)30 as a benchmark to generate labels for the training and
test data. CNA has been widely utilized for the characterization of
local motifs in ordered and disordered systems30,59–61. The original
CNA method is based on generating the signatures of the local
neighborhood of an atom and matching it to a reference one. The
neighborhood of an atom is constructed based of a fixed cutoff
(rcut). The overall atomic signature of the atom consists of three
features: (1) the number of neighbor atoms the central atom and
its bonded neighbor have in common, ncn, (2) the total number of
bonds between these common neighbors, nb, and (3) the number
of bonds in the longest chain of bonds connecting the common
neighbors, nlcb. However, traditional CNA, and even its variations
(such as adaptive CNA), not only show variability in results, but
their performance also deteriorates under conditions with physical
deformtion61.
Here, we consider 4 representative polycrystal classes for the

prediction task. These are (i) Face-Centered Cubic (FCC- Al), Body-
Centered cubic (BCC-W), Diamond (Si), and Hexagonal Closed Pack
(HCP-Mg) with 40 grains. For the prediction of each of the
aforementioned classes, we generate 10 polycrystalline training
samples (see Supplementary Fig. 6a–d) using the atomsk62

package. The overall characterization is carried out with a two-
step approach. First, we label the atoms locally based on their
crystalline motifs (e.g, FCC, BCC, etc.) and then, we apply an
unsupervised learning DBSCAN63,64 clustering to identify the size
of the grains in the polycrystal samples. The grain size distribution
and the number of particles belonging to crystalline motifs as
predicted by CEGANN and CNA have been compared in Fig. 5. It is
to be noted that the ordinary CNA cannot classify the diamond
structure. Hence, we use a modified CNA65 for the creation of the
labels of the Si (diamond structures). The number of nearest
neighbors used for the construction of the graphs for each of the
classifications is reported in Table 1. This conforms to the number
of neighbors that traditional CNA30 uses for the prediction tasks.
The predictions of CEGANN (Fig. 5a–d) are almost identical to

those of CNA, both in terms of the grain size distribution and the
number of particles belonging to crystalline motifs of the grains.
This clearly demonstrates the ability of the CEGANN in learning
the different local motifs and distinguishing them from disordered
atoms. The predictions of CEGANN on the local-level classification
tasks are largely dependent on the selection of the number of
convolutional layers in the model as well as the number of
neighbors used for the local neighborhood of the edge graphs.
Adding more convolution layers will cause the compression of too

much information at a single node. This may result in a loss of
resolution, which in turn would deteriorate the CEGANN
performance. As we increase the number of convolutional layers
for fixed 12 neighbors of graph construction (Fig. 6a), the
performance severely declines at four edge-convolutional (+3
angle convolutions) layers. However, it seems that with an
increase in the number of neighbors, CEGANN tends to slightly
underpredict grain sizes (Fig. 6b). The amount of information
being compressed in each node of a graph using subsequent
convolutions follows the equation:

Ninfomation ¼ NNCONV (1)

where, Ninformation is the information from surrounding neighbors
in terms the number of atoms, “NN” is the number of nearest
neighbors of an atom in the graph, and “CONV” is the number of
convolutions being used. The mean grain size of the Mg (HCP)
system is ~1200 with a maximum value of ~2500. In Fig. 6c,
beyond the operation point 12, 3 (NN, CONV) the amount of
information being compressed is ~8000, which is much larger
than the maximum grain size. Hence, there is a severe mix-up
between the information on grain boundary and grains. Thus, the
model tends to perform poorly at 4 edge-convolutional (+3 angle
convolutions) (Fig. 6a). An increase in NN will cause this
deterioration very slowly and will result in an underprediction of
grain sizes (Fig. 6b). It is also worth mentioning that, unlike CNA,
CEGANN is very flexible in learning environments with local
noises, such as thermal noise, which is essential for practical
applications.

Dynamical classification of structures with thermal noise
Zeolites are ordered microporous silicates or aluminosilicate66,67

materials widely used as solid catalysts in the chemical industry.
Knowledge about the mechanistic pathways of the formation of
zeolites is still limited, which is a key to realizing new zeolites for
catalysis and separations. The stochastic nature of nucleation
processes and the small, nanoscopic size of critical nuclei within
the heterogeneous reaction mixture, make the detection of the
birth of a new phase challenging in experimental hydrothermal
synthesis. Molecular simulations have the right spatial resolution.
However, in the synthesis mixture, the zeolite crystallites and the
surrounding amorphous matrix have very similar local and
medium-range orders68. Figure 7a, b shows that, indeed, the
zeolite and the network former silica in the amorphous phase has
very similar radial and Qn (number of silica neighbors) distribu-
tions. Moreover, unlike the case of simple crystals, such as ice,
where the unit cell consists of 1–2 atoms, the unit cell of zeolites
typically has ~100 silica nodes. Even though each silicon has a

Fig. 4 Classification of carbon polymorphs of different dimensionalities 0D (Clusters), 2D (Sheets), and 3D (Bulk). a Shows the confusion
matrix of the prediction on the test dataset by CEGANN. b The t-SNE plot of the feature representation of the test dataset as predicted by
CEGANN.
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coordination number of 4, the environment of each silicon node in
a zeolite is diverse. This makes the identification of the nascent
zeolite inside an amorphous matrix a very challenging endeavor.
Traditional approaches, such as the bond-orientational order

parameter q6, could be used to detect the nucleation process of
zeolites. However, the requirement of the large cutoff distance
makes it inefficient to detect very small nuclei69–71. Moreover, the
bond-order parameter approach is specific to a particular zeolite
polymorph. Identification of crystal based on mobility criteria is

not zeolite specific, but it assumes that there is a considerable
mobility difference between the new crystal phase from the
mother phase. This approach does not work if the new phase
crystallizes from a glassy state, as is the case in zeolite synthesis68.
These necessitate the development of a classification technique
that distinguishes the zeolite nucleus from the amorphous phase
during the formation of zeolites.
We use the CEGANN framework to probe the evolution of the

zeolite nucleus and growth in the simulation mentioned above. To

Fig. 6 Effect of model parameters on the predicted grain size distribution. a Effect number of edge-convolutional layer on the prediction of
grain size distribution. b Effect of number nearest neighbors used for graph construction on grain boundary prediction. c The amount of
information (in terms of the number of atoms) being compressed in a node of the graph for different edge convolutions (& n-1 angle
convolutions) and the number of neighbors used for the graph construction.

Fig. 5 Characterization of grain boundary and grain size distribution in polycrystalline materials. Grain size distribution of polycrystals of
a Aluminum (FCC), b Tungsten (BCC), c Silicon (Diamond), and d Magnesium (HCP) computed using CEGANN+DBSCAN clustering and CNA
(Common neighbor analysis)+DBSCAN clustering.
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train our network, we use a total of 400 structures consisting of
50% pure crystalline zeolites at different temperatures, noisy
zeolite crystals (added Gaussian noise to the atomic positions) as
well as 50% amorphous structures at different temperatures (see
Supplementary Note 4). We use 12 NN (nearest neighbors) (see
Table 1) for the graph construction, although the effects of four
and eight nearest neighbors on the construction of the graph are
also explored (see Supplementary Fig. 7c). Figure 7c shows the
zeolite fraction in the simulation trajectory as a function of time
for the case of 12NN. A sharp change in the fraction of zeolite
starting at time 16.5 ns suggests the formation of stable nuclei of
zeolite Z1 that grow into a full slab at a time >25 ns. The same is
evident from the snapshots presented at different instances
during the crystallization (panel A–D in Fig. 7). This case study
clearly illustrates that the proposed CEGANN workflow is not only
capable of performing accurate classification in static local
environments but also equally effective in heterogeneous simula-
tion environments with considerable thermal noise.

Multilabel characterization of mesophases in binary mixtures
Mesophases have an ordered intermediate between that of
amorphous and crystalline phases. They are traditionally observed
in block copolymers and solutions surfactants but can also occur
in other systems with frustrated attraction72,73. Mesophases occur
on multiple morphologies such as lamellar, gyroid, and hexago-
nal72,74. The intermediate nature of the ordering in mesophases
makes them challenging to identify in simulations. We use the
CEGANN workflow to characterize the formation of mesophases,
and subsequent crystallization during the cooling of a binary
isotropic mixture of representative species A and B72. We also
characterize the order of the species in the system as the phase
transition is taking place. The dataset consisted of 22 lamellar, 22
crystalline, and 22 isotropic mixture structures (see Supplementary

Note 5 and Supplementary Fig. 8). The transitions are validated
with the potential energy changes in the system (side panel of
Fig. 8a). Figure 8a demonstrates that CEGANN successfully
characterizes the amorphous, lamellar and crystalline phases
individually, and also accurately detects the transition between
phases along a cooling simulation.

Multilabel classification of interface evolution during ice
growth
The crystallization of water is ubiquitous in natural environments.
Development in the last two decades, have enabled simulations of
ice nucleation and growth with molecular resolution75–78. Here,
we implement CEGANN for the characterization of the early stages
of growth of ice I from liquid water, a polyatomic molecule. The
molecular dynamics (MD) simulation was carried out using the
TIP4P/200579 water model (see Supplementary Notes 5 and
Supplementary Fig. 8). Using our multilabel classification
approach, we classify whether a particle in the MD trajectory
belongs to either crystalline or liquid phase, and also identify the
local order of each water molecules. In Fig. 8e, we show that
CEGANN precisely characterizes the crystallization of water
(reflected in the decrease of the potential energy of the system).
The above two examples—phase transitions in the binary

mixture and crystallization of water—display CEGANN’s ability to
characterize complex environments with multiple components or
polyatomic species, in the presence of thermal noise.

DISCUSSION
Characterization of materials at different scales and domains of
application is a must for any data-driven material science
application. In this work, we develop the graph attention-based
CEGANN workflow, which is transferrable across scales and

Fig. 7 Performance of CEGANN for dynamical classification during the nucleation and growth of a zeolite crystal from an amorphous
parent phase. a, b The radial distribution function between silica nodes (gT-T) and the number of silica neighbors (Qn) is very similar between
the amorphous and zeolite phases. c CEGANN predicts the fraction of silica sites that are part of the zeolite, as it nucleates and grows from the
synthesis mixture. The snapshots of the simulation box corresponding to points A–D are shown in the lower panel. Silica nodes of the
amorphous phase are shown in orange, whereas the crystalline silica detected by CEGANN is shown in green. For clarity, the organic cations
and water molecules are not shown.
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adaptable to variabilities in the material environment, while also
providing an accurate characterization. We demonstrate the
efficacy of our workflow on challenging and relevant classification
problems in material science. Unlike similar graph-based archi-
tecture (CGCNN) or mathematical formulation-based descriptors
(SOAP, order parameters), CEGANN is not only able to classify
disordered (liquid and amorphous phases) at a global level but is
equally accurate in classifying local motifs in stacking-disordered
structures, displaying transferability in the application domain. It is
equally effective in performing global-level classification tasks
such as space group classification and characterization of
structures based on their dimensionality, at the same time, it
can characterize local motifs, grain boundaries, and grain size
distribution in polycrystalline materials accurately.
We further extend the applicability of CEGANN in systems with

significant practical implications. Systems that have compositional
variability accompanied by thermal fluctuations. CEGANN can
identify the formation of complex crystals with large unit cells,

identifying of onset of nucleation and growth of a zeolite from a
synthesis solution with strong thermal fluctuations, even when the
size of the nucleus is much smaller than the unit cell of the zeolite,
and captures the growth process accurately. It can also identify
crystalline and amorphous phases in polyatomic systems with
thermal noise, as well as distinguish liquid, mesophase, and
crystalline order in binary mixtures. These applications showcase
the applicability of CEGANN to problems involving variability in
the environments. Overall, our approach is agnostic to the
problem and allows the classification of features at different
scales with equal efficacy.

METHODS
Angle convolution
The angle convolutional layer uses bond angle (θijk) cosines
expanded on a gaussian basis as the initial input. The idea is that
each angle learns and collects the messages from its adjacent edges

Fig. 8 Multilabel characterization using CEGANN. a Characterization of isotropic liquid, lamellar mesophase, and layered crystal in a binary
synthesis mixture. CEGANN identifies each phase along the thermal trajectories of phase transformation. Respective potential energy changes
with time and corresponding predictions of existing phases by CEGANN (b–d) are the confusion matrix of the overall chemical species
predicted by CEGANN at different time steps (A, B, C) for mesophase characterization. e Predicting the growth of ice from liquid at 235 K,
along with the atoms (“H” & “O”) present in the system (Multilabel). f–h are the confusion matrix of the atomic species predicted at different
time steps (A, B, C) as the system is crystalizing.
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through the convolutions. We use a simple graph attention-based
architecture and convolutional operation is performed according to

θlþ1
ijk ¼ softplus θlijk þ αijkl � Wf

ijkl θlijk�elij�eljk
� �

þ bfijkl
� �� �

(1)

where elij; e
l
jk are edge features from previous edge convolution

layers and αijkl is the attention coefficient calculated using39

αijkl ¼ softmax Watt
ijkl θlijk�elij�eljk
� �

þ battijkl

� �� �
(2)

where Wf
ijkl ; W

att
ijkl and bfijkl; b

att
ijkl are feature and attention weights

and biases, respectively. We use softmax activation as a normalizer
for calculating the attention coefficient and the final output of the
angle convolution is passed through a softplus activation to
obtain the final representation. Batch normalization is applied
after the aggregation operation.

Edge convolution
We follow a similar attention-type mechanism for the edge-
convolutional layer. The convolutional function is represented as

elþ1
ij ¼ softplus elij þ

X
k2N

softplus αijk � Wf
ijk θlijk�elij�eljk
� �

þ bfijk
� �� � !

(3)

where Wf
ijk and bfijk are the weights and biases for the feature

matrix and θlijk is the angle features from the previous angle
convolutional stage. αijk, the attention coefficient computed using
an equation analogous to Eq. 2, with different weights and biases.
We apply a nonlinear softplus activation function before and after
the aggregation over the neighborhood; the additional non-
linearity helps the features to adapt to the target task. There is also
a provision for adding explicit one hot-coded atomic feature xi
based on the characterizing task being performed. The incorpora-
tion of the chemical information is done before each edge
convolution. For l+ 1th edge convolution layer, with elij as input
form the lth layer, the atomic features of atom i and j (xi, xj) are
included as a concatenation of the features (Fig. 2c).

elij ¼ elij � xi � xj

Feature aggregation and concatenation
The aggregation block (Fig. 2c) consists of three stages. First, the
edge and angle features are aggregated as

elþ1
i ¼

X
j2N

softplus elij
� �

(4)

θlþ1
i ¼

X
j2N

softplus
X
k2N

softplus θlijk

� � !
(5)

The final feature representation is given as concatenation
Zi ¼ elþ1

i � θlþ1
i . To provide more resolution to the aggregated

feature, we take a linear transformation before the aggregation
stage. The pooling of the features follows the concatenation
operation. It should be noted that the pooling (average-pooling) on
the features is applied only if a global-level classification task is
being performed. For local classification tasks, no pooling is applied
to the features. Batch normalization is applied after the aggregation
operation. We also apply dropouts’ (0.5 rates) before subsequent
transformation after the convolutional layer. This helps in reducing
overfitting. We use cross-entropy loss as the loss metric17.

Training the model
The network is trained on 1 GPU-accelerated to compute node on
the NERSC computing cluster with 20-core Intel Xeon Gold 6148

(‘Skylake’) @ 2.40 GHz and 1 NVIDIA Tesla V100 (‘Volta’) GPU. The
feature vector for the Angle convolution and edge convolutions
are kept being 80. The hidden feature for the dense layer
following the edge and angle convolution layers is 256. Upon
aggregation, the overall dimension of the feature vector is 512.
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